Eight Associates 5<sup>th</sup> Floor 57a Great Suffolk Street London SE1 0BB

+44 (0) 20 7043 0418

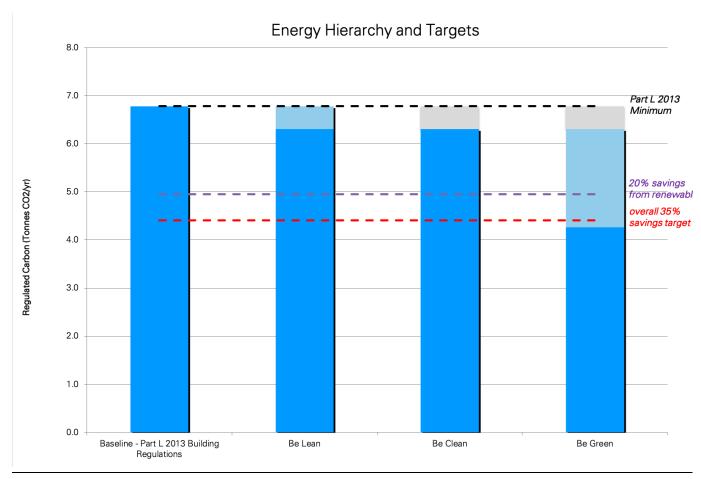
www.eightassociates.co.uk info@eightassociates.co.uk

# Energy Statement 34A-36 Kilburn High Road

| Document information   | Prepared for: Robert Winkley Rolfe Judd,                | Date of current issue: 31/05/2019                                                                                                                           |
|------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Old Church Court,<br>Claylands Road,<br>London, SW8 1NZ | Issue number: 1                                                                                                                                             |
|                        |                                                         | Our reference:<br>3006-Kilburn High Road- Energy Statement-<br>1905-31RS.docx                                                                               |
| Assessment information | Prepared by:                                            | Quality assured by:                                                                                                                                         |
|                        | Rishika Shroff                                          | Panayiota Paraskeva                                                                                                                                         |
| Disclaimer             |                                                         | Eight Associates. By receiving the report and acting on it, the on it - accepts that no individual is personally liable in contract, including negligence). |
| Contents               | Executive Summary  Establishing Emissions               |                                                                                                                                                             |

# **Executive Summary**

# Energy Statement 34A-36 Kilburn High Road


| About the scheme:        | The project consists of the construct to create 5 new residential units. The Camden area and it has a total net in                                                                                                                                                                                                         | e development is loc                                                 | ated in in the Lond                                                     |                             |  |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| Planning policy          | In accordance with the Appeal Decision, the scheme is required to achieve a 35% overall improvement over Part L Building Regulations 2013 with regards to carbon dioxide emissions reduction targets and 20% carbon reduction from renewable sources. An energy assessment was produced by Eight Associates on 30/04/2018. |                                                                      |                                                                         |                             |  |  |  |  |  |
|                          | The strategy included the use of gas emission heating system and thereforeport.                                                                                                                                                                                                                                            |                                                                      |                                                                         |                             |  |  |  |  |  |
| Aim of this study:       | The purpose of an energy statement<br>measures comply with London Plan<br>part of the development's design an                                                                                                                                                                                                              | energy policies. It al                                               |                                                                         |                             |  |  |  |  |  |
|                          | The Energy Statement is a revision t<br>Associates dated May 2018.                                                                                                                                                                                                                                                         | o the Energy Assess                                                  | sment carried out p                                                     | reviously by Eight          |  |  |  |  |  |
| Carbon dioxide emissions |                                                                                                                                                                                                                                                                                                                            | Baseline                                                             | Lean                                                                    | Green                       |  |  |  |  |  |
| reduction                | CO <sub>2</sub> emissions<br>(Tonnes CO <sub>2</sub> /yr)                                                                                                                                                                                                                                                                  | 6.78                                                                 | 6.31                                                                    | 4.26                        |  |  |  |  |  |
|                          | CO <sub>2</sub> emissions saving (Tonnes CO <sub>2</sub> /yr)                                                                                                                                                                                                                                                              | -                                                                    | 0.47                                                                    | 2.05                        |  |  |  |  |  |
|                          | Saving from each stage (%)                                                                                                                                                                                                                                                                                                 | -                                                                    | 7.00                                                                    | 30.20                       |  |  |  |  |  |
|                          | Total CO <sub>2</sub> emissions saving (Tonnes CO <sub>2</sub> /yr)                                                                                                                                                                                                                                                        |                                                                      | 2.52                                                                    |                             |  |  |  |  |  |
|                          | Total CO <sub>2</sub> emissions saving (%)                                                                                                                                                                                                                                                                                 |                                                                      | 37.10                                                                   |                             |  |  |  |  |  |
|                          | As demonstrated above, the scheme L1A 2013 building regulations. The conspecified superior building fabric projection of renewable energy to regulations.                                                                                                                                                                  | levelopment has app<br>perties, followed by<br>echnologies, to achie | olied the 'fabric first<br>energy efficient sys<br>eve the required sav | ' approach and<br>stems and |  |  |  |  |  |
|                          | The design parameters have been e                                                                                                                                                                                                                                                                                          | laborated on in the n                                                | ext section.                                                            |                             |  |  |  |  |  |

# Executive Summary Energy Statement 34A-36 Kilburn High Road

GLA's Energy Hierarchy – Regulated Carbon Emissions:

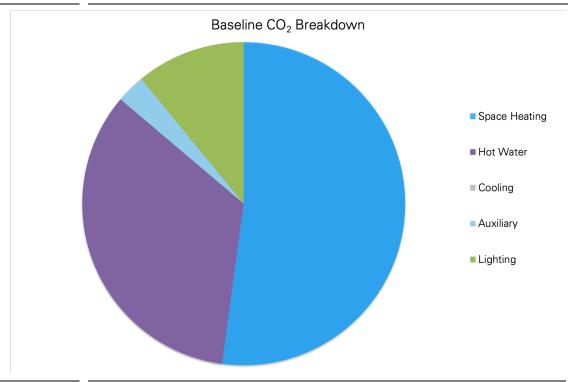
A graphical illustration of how the scheme performs in relation to Building Regulations and the Energy Hierarchy is shown below.

#### **Figure**



Summary:

As demonstrated above the development will reduce carbon emissions by 7.0% from the fabric energy efficiency measures described in the 'Be Lean' section, and will reduce total carbon emissions by 37.1% over Building Regulations with the further inclusion of low and zero carbon technologies (communal ASHP and photovoltaic panels).


# Establishing Emissions Energy Statement 34A-36 Kilburn High Road

Building Regulations Part L 2013 Minimum Compliance:

The 'baseline' carbon dioxide emissions for the development are 6.78 Tonnes CO<sub>2</sub>/yr.

The pie chart below provides a breakdown of the scheme's baseline carbon emissions by system over the course of one year.

| Carbon Emissions in Tonnes CO <sub>2</sub> /yr | Heating | Hot Water | Cooling | Auxiliary | Lighting |
|------------------------------------------------|---------|-----------|---------|-----------|----------|
|                                                | 3.54    | 2.31      | 0.00    | 0.19      | 0.74     |



Overview:

The chart above shows that space heating is the primary source of carbon emissions, and hot water is the second largest. Therefore, emphasis must be placed on reducing the heating demand for the dwellings.

# SAP Inputs

# Energy Statement 34A-36 Kilburn High Road

| Building fabric | D.11.                     | Minimum Building<br>Regulations U value | Proposed U-Value, |  |  |
|-----------------|---------------------------|-----------------------------------------|-------------------|--|--|
|                 | Building element          | W/m²K                                   | W/m²K             |  |  |
|                 | External Walls            | 0.30                                    | 0.15              |  |  |
|                 | Corridor Walls            | 0.30                                    | 0.15              |  |  |
|                 | Party Walls               | 0.20                                    | 0.00              |  |  |
|                 | Roofs                     | 0.20                                    | 0.10              |  |  |
|                 | Windows (g-value 0.55)    | 2.00                                    | 1.30              |  |  |
|                 | Rooflights (g-value 0.55) | 2.00                                    | 1.60              |  |  |
|                 | Doors                     | 2.00                                    | 1.30              |  |  |

#### Air tightness

The target air permeability for the scheme has been modelled as 3 m³/(hr.m²) @ 50 pa.

This will require careful attention to two key areas:

- Structural leakage
- Services leakage

Structural leakage occurs at joints in the building fabric and around window and door openings, loft hatches and access openings. There will also be some diffusion through materials such and cracks in masonry walls typically caused by poor perpends in blockwork inner leafs. Structural leakage is hard to remedy retrospectively therefore good detailing at the design stage is essential.

Services leakage occurs at penetrations from pipes and cables entering the building. These can be sewerage pipes, water pipes and heating pipes. As well as electricity cables there may also be telecommunication cables. Attention therefore, needs to be paid to sealing all penetrations during construction.

#### Thermal bridging

The scheme will be designed in line with the accredited construction details (ACD) and therefore it has been indicatively modelled with the accredited thermal bridge Psi-values for the following junctions:

- Lintels (E2)
- Sill (E3)
- Jambs (E4)
- Corners (E16)
- Inverted corners (E17)
- Party walls between dwellings (E18)

In addition, a bespoke calculation should be performed for the following junction:

• Inverted eave (E24) to target a psi-value of 0.15 W/mK

The default psi-value has been used for the remaining junctions.

#### Thermal mass

Thermal mass of the scheme has been indicatively modelled as 250 kJ/m<sup>2</sup>K (medium).

# SAP Inputs

# Energy Statement 34A-36 Kilburn High Road

#### **Energy efficient services**

# Fresh air in extract air Cooled air Warmed exhaust fresh air

Graphic illustration of a heat recovery unit, which exploits the extract hot air of the room to heat the cold supply air.

#### Heating:

For the Be Lean scenario, heating is provided by individual gas boilers with 89.5% efficiency and transmitted via radiators featuring time and temperature zone control by suitable arrangement of plumbing and electrical services and delayed thermostat.

For the Be Green scenario, a communal air source heat pump system with a COP of more than 3.0 has been specified where the charging system is linked to the use of a community heating programmer and at least two room thermostats. The heat will be distributed via underfloor heating.

#### Ventilation:

Balanced mechanical ventilation with heat recovery will be provided to dwellings and wet rooms. Apartments 1-4 with 1 wet room have a specific fan power of 0.53W/l/s and a heat recovery of 89%. Apartment 5 with 2 wet rooms has a specific fan power of 0.60W/l/s and a heat recovery of 88%.

#### Hot water:

For the Be Lean scenario, hot water will be provided by the gas boiler with an efficiency of 89.5%.

For the Be Green scenario, 70% of the hot water will be provided by the communal ASHP with a supplementary immersion heater for the remaining 30% of hot water demand.

#### Air conditioning:

No cooling system has been specified for the dwellings. Natural ventilation through openable windows will be used as a passive cooling measure.

#### Lighting

High efficiency lighting has been specified for the development with a luminaire efficacy of more than 70 lumens/watt.

#### Overheating



Possible air leakage points in a building

Renewable energy technology

#### Natural ventilation:

Openable windows are specified on all facades of the building. Cross ventilation will be achieved by opening windows on two facades and ensuring there is a clear path for airflow. Internal heat gains have been minimised where possible. Energy efficient appliances will help reduce internal heat gain and reduce overheating risk. Energy efficient lighting will also be specified to achieve low power densities.

Heat transfer and infiltration has been controlled in the following ways:

- Insulation levels have been maximised and the resulting u-values are lower than required by Building Regulations. The build-ups therefore prevent the penetration of heat as much as practically possible.
- A reduced air permeability rate of 3 m³/(hr.m²) @ 50 pa has been targeted to minimise uncontrolled air infiltration. This will require attention to detailing and sealing.

A photovoltaic panel system of 4.5 kWp (approximately 15PV panels of 300W each in total) has been specified for the development. PV panels will be oriented Southeast, with 10° tilt covering approximately 30m² of the roof.

# SAP Worksheets Energy Statement 34A-36 Kilburn High Road

**SAP Worksheets** 

Be Lean Block Compliance Be Green Block Compliance

# Block Compliance WorkSheet: 34A-36 Kilburn High Road

#### **User Details**

Assessor Name:Chris HocknellStroma Number:STRO016363Software Name:Stroma FSAPSoftware Version:Version: 1.0.4.16

#### Calculation Details

| Dwelling    | DER   | TER   | DFEE | TFEE | TFA   |
|-------------|-------|-------|------|------|-------|
| Apartment 1 | 23.14 | 23.63 | 67.3 | 68.4 | 50.17 |
| Apartment 2 | 21.06 | 22.53 | 60.7 | 66.7 | 59.25 |
| Apartment 3 | 17.56 | 19.57 | 49.6 | 56.6 | 72.85 |
| Apartment 4 | 20.66 | 21.91 | 59.8 | 64.3 | 61.4  |
| Apartment 5 | 17.9  | 19.75 | 49.9 | 58.5 | 75.4  |

#### Calculation Summary

| Total Floor Area        | 319.07 |
|-------------------------|--------|
| Average TER             | 21.25  |
| Average DER             | 19.76  |
| Average DFEE            | 56.48  |
| Average TFEE            | 62.26  |
| Compliance              | Pass   |
| % Improvement DER TER   | 7.01   |
| % Improvement DFEE TFEE | 9.28   |

# Block Compliance WorkSheet: 34A-36 Kilburn High Road

#### **User Details**

Assessor Name:Chris HocknellStroma Number:STRO016363Software Name:Stroma FSAPSoftware Version:Version: 1.0.4.16

#### Calculation Details

| Dwelling    | DER   | TER   | DFEE | TFEE | TFA   |
|-------------|-------|-------|------|------|-------|
| Apartment 1 | 15.15 | 34.66 | 67.3 | 68.4 | 50.17 |
| Apartment 2 | 14.09 | 32.84 | 60.7 | 66.7 | 59.25 |
| Apartment 3 | 12.02 | 28.26 | 49.6 | 56.6 | 72.85 |
| Apartment 4 | 13.96 | 31.89 | 59.8 | 64.3 | 61.4  |
| Apartment 5 | 12.39 | 28.51 | 49.9 | 58.5 | 75.4  |

#### Calculation Summary

| Total Floor Area        | 319.07 |
|-------------------------|--------|
| Average TER             | 30.87  |
| Average DER             | 13.36  |
| Average DFEE            | 56.48  |
| Average TFEE            | 62.26  |
| Compliance              | Pass   |
| % Improvement DER TER   | 56.72  |
| % Improvement DFEE TFEE | 9.28   |

# SAP Worksheets Energy Statement 34A-36 Kilburn High Road

**SAP Worksheets** 

TFEE and DFEE Worksheets

| Stroma Name:   Chris Hocknell   Stroma FSAP 2012   Stroma Number:   StR0016363   Version: 1.0.4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                                   | User [     | Details:     |              |             |             |             |                       |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------|------------|--------------|--------------|-------------|-------------|-------------|-----------------------|----------|
| Action   Control   Contr                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                   |            |              |              |             |             |             |                       |          |
| Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | F                                                 | roperty    | Address      | : Apartm     | nent 1      |             |             |                       |          |
| Strough   Floor   Fl                                                                                                                                                                                                                                                                                                                                                                           |                             | ancione:                                          |            |              |              |             |             |             |                       |          |
| Ground floor   Ground floor   Ground floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)   Ground floor area TFA = (1a)+(1b)+(1c)+(1d)+(1d)+(1d)+(1d)+(1d)+(1d)+(1d)+(1d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. Overall dwelling diffle  | HISIOHS.                                          | Δre        | a(m²)        |              | Δν Ηρ       | iaht(m)     | `           | Volume(m <sup>3</sup> | 3)       |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ground floor                |                                                   |            |              | (1a) x       |             |             | _           | ·                     | <u>^</u> |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total floor area TFA = (1   | a)+(1b)+(1c)+(1d)+(1e)+(1                         | n)         | 50 17        | l<br>[(4)    |             |             |             |                       |          |
| 2. Ventilation rate:    main   heating   heati                                                                                                                                                                                                                                                                                                                                                                         |                             | o, (, (, (, (,(.                                  |            | 30.17        | J            | n)+(3c)+(3c | d)+(3e)+    | (3n) =      | 405.40                | 7(5)     |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                                   |            |              | (00) (00     | ,, (00) (00 | a) · (OC) · | (011)       | 135.46                | (5)      |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. Ventilation rate:        | main seconda                                      | rv         | other        |              | total       |             |             | m³ per hou            | ır       |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Number of chimneys          | heating heating                                   |            |              | л <u>-</u> г |             | x           | 40 =        |                       | _        |
| Number of intermittent fans    2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                           |                                                   | ╛╘         |              | ╛╘           |             |             |             |                       | ╡``      |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                           |                                                   | ╛╵┖        | 0            | 」            | 0           |             |             | 0                     | =        |
| Number of flueless gas fires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Number of intermittent fa   | ns                                                |            |              |              | 2           | ×           | (10 =       | 20                    | (7a)     |
| Air changes per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Number of passive vents     |                                                   |            |              |              | 0           | X           | (10 =       | 0                     | (7b)     |
| Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Number of flueless gas fi   | res                                               |            |              |              | 0           | ×           | (40 =       | 0                     | (7c)     |
| Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                   |            |              |              |             |             | Air ch      | nangee ner he         | NII.     |
| If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)   Number of storeys in the dwelling (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Infiltration due to objects | fl and fano - (60)±(6b)±(                         | 7a)+/7b)+  | (70) =       | Г            |             |             |             |                       | _        |
| Number of storeys in the dwelling (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | <u>-</u>                                          |            |              | continue fu  |             | (16)        | ÷ (5) =     | 0.15                  | (8)      |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction   If both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35   If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                                   |            |              |              | (0) 10      | ( . 0)      |             | 0                     | (9)      |
| if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35  If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0  If no draught lobby, enter 0.05, else enter 0  Percentage of windows and doors draught stripped  Window infiltration  0.25 - [0.2 × (14) + 100] = 0 (15)  Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16)  Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) (17)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor (20) = 1 - [0.075 × (19)] = 0.92 (20)  Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7  (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Additional infiltration     |                                                   |            |              |              |             | [(9         | 9)-1]x0.1 = | 0                     | (10)     |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0   0 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                                   |            |              | •            | ruction     |             |             | 0                     | (11)     |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0  If no draught lobby, enter 0.05, else enter 0  Percentage of windows and doors draught stripped  Window infiltration  O.25 - [0.2 x (14) + 100] = 0 (15)  Infiltration rate  (8) + (10) + (11) + (12) + (13) + (15) = 0 (16)  Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then (18) = [(17) + 20] + (8), otherwise (18) = (16)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor  (20) = 1 - [0.075 x (19)] = 0.92 (20)  Infiltration rate incorporating shelter factor  (21) = (18) x (20) = 0.37 (21)  Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7  (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                                   | o the grea | ter wall are | ea (after    |             |             |             |                       |          |
| Percentage of windows and doors draught stripped  Window infiltration  0.25 - [0.2 x (14) + 100] = 0 (15)  Infiltration rate  (8) + (10) + (11) + (12) + (13) + (15) = 0 (16)  Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor  (20) = 1 - [0.075 x (19)] = 0.92 (20)  Infiltration rate incorporating shelter factor  (21) = (18) x (20) = 0.37 (21)  Infiltration rate modified for monthly wind speed  Monthly average wind speed from Table 7  (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                           |                                                   | .1 (seal   | ed), else    | enter 0      |             |             |             | 0                     | (12)     |
| Window infiltration $0.25 - [0.2 \times (14) + 100] = 0.25 - [$ | If no draught lobby, en     | ter 0.05, else enter 0                            |            |              |              |             |             |             | 0                     | (13)     |
| Infiltration rate  (8) + (10) + (11) + (12) + (13) + (15) =  0 (16)  Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then (18) = $[(17) \div 20] + (8)$ , otherwise (18) = (16)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor  (20) = 1 - $[0.075 \times (19)] =$ Infiltration rate incorporating shelter factor  (21) = $(18) \times (20) =$ Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7  (22)m= $[0.075 \times (19)] =$ Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>-</del>                | s and doors draught stripped                      |            |              |              |             |             |             | 0                     | (14)     |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then (18) = [(17) ÷ 20]+(8), otherwise (18) = (16)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor  (20) = 1 - [0.075 × (19)] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                   |            | -            | • •          | -           |             |             | 0                     | =        |
| If based on air permeability value, then $(18) = [(17) \div 20] \div (8)$ , otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $(21) = (18) \times (20) =$ Monthly average wind speed from Table 7 $(22) = 5.1 \times 4.9 \times 4.4 \times 4.3 \times 3.8 \times 3.8 \times 3.7 \times 4 \times 4.3 \times 4.5 \times 4.7$ Wind Factor $(22a) = (22) + 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                                   |            |              |              |             |             |             |                       | = ' '    |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.92  (20)$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.37  (21)$ Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7 $(22)m = 5.1  5  4.9  4.4  4.3  3.8  3.8  3.7  4  4.3  4.5  4.7$ Wind Factor $(22a)m = (22)m \div 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                           | ·                                                 | •          | -            | •            | etre ot e   | envelop     | e area      |                       | =        |
| Number of sides sheltered $ (20) = 1 - [0.075 \times (19)] = 0.92 $ (20) Infiltration rate incorporating shelter factor $ (21) = (18) \times (20) = 0.37 $ (21) Infiltration rate modified for monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                           | - <del>-</del>                                    |            |              |              | is being u  | sed         |             | 0.4                   | (10)     |
| Infiltration rate incorporating shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                                   |            |              | •            |             |             |             | 1                     | (19)     |
| Infiltration rate modified for monthly wind speed    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Shelter factor              |                                                   |            | (20) = 1 -   | [0.075 x (   | 19)] =      |             |             | 0.92                  | (20)     |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           Monthly average wind speed from Table 7           (22)m=         5.1         5         4.9         4.4         4.3         3.8         3.7         4         4.3         4.5         4.7           Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                           | •                                                 |            | (21) = (18   | s) x (20) =  |             |             |             | 0.37                  | (21)     |
| Monthly average wind speed from Table 7 (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | <del></del>                                       | 1          | 1 .          | T _          | T -         | 1           | <u> </u>    | 7                     |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                           | 1 1 1                                             | Jul        | Aug          | Sep          | Oct         | Nov         | Dec         | ]                     |          |
| Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del></del>                 | <del>                                      </del> | T          | T            | 1 .          | 1           | 1           | 1           | 1                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (22)m= 5.1 5                | 4.9   4.4   4.3   3.8                             | 3.8        | 3.7          | 4            | 4.3         | 4.5         | 4.7         | ]                     |          |
| (22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wind Factor (22a)m = (2     | 2)m ÷ 4                                           |            |              |              |             |             |             |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (22a)m= 1.27 1.25           | 1.23 1.1 1.08 0.95                                | 0.95       | 0.92         | 1            | 1.08        | 1.12        | 1.18        | ]                     |          |

| Adjusted infiltr                        | ation rat    | e (allowi   | ing for sh   | nelter an       | nd wind s      | speed) =                                         | : (21a) x                                        | (22a)m         |                                                  |                 |                    |               |               |
|-----------------------------------------|--------------|-------------|--------------|-----------------|----------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------------------------------------------|-----------------|--------------------|---------------|---------------|
| 0.47                                    | 0.46         | 0.45        | 0.4          | 0.4             | 0.35           | 0.35                                             | 0.34                                             | 0.37           | 0.4                                              | 0.41            | 0.43               | ]             |               |
| Calculate effe                          |              | _           | rate for t   | he appli        | cable ca       | ise                                              | •                                                |                | •                                                |                 | •                  |               |               |
| If mechanic                             |              |             | anadis NI (O | 10h) - (00a     | -) <b>-</b> (  |                                                  | NIT\\ a4ba                                       |                | -) - (22-)                                       |                 |                    | 0             | (23a          |
| If exhaust air h                        |              | 0           |              | , ,             | ,              | . `                                              | ,, .                                             | `              | o) = (23a)                                       |                 |                    | 0             | (23b          |
| If balanced wit                         |              |             | -            | _               |                |                                                  |                                                  |                |                                                  |                 |                    | 0             | (230          |
| a) If balance                           | 1            |             | ·            | i               | 1              | <del>-                                    </del> | <del>-                                    </del> | ŕ              | <del>-                                    </del> | <del></del>     | <del>- ` ` '</del> | ) ÷ 100]<br>1 | (24-          |
| (24a)m= 0                               | 0            | 0           | 0            | 0               | 0              | 0                                                | 0                                                | 0              | 0                                                | 0               | 0                  | ]             | (248          |
| b) If balance                           |              | ı           |              | 1               | 1              | <del>, , `</del>                                 | <del>,                                    </del> | <del>í `</del> | <del>,                                    </del> | <del>- ´-</del> |                    | 1             | (0.4)         |
| (24b)m= 0                               | 0            | 0           | 0            | 0               | 0              | 0                                                | 0                                                | 0              | 0                                                | 0               | 0                  | ]             | (24)          |
| c) If whole h                           |              |             |              | •               | •              |                                                  |                                                  |                | .5 × (23b                                        | ))              |                    |               |               |
| (24c)m= 0                               | 0            | 0           | 0            | 0               | 0              | 0                                                | 0                                                | 0              | 0                                                | 0               | 0                  | 1             | (24)          |
| d) If natural                           | ventilatio   | n or wh     | ole hous     | L<br>se positiv | ve input       | ventilati                                        | on from                                          | I<br>Ioft      |                                                  | <u> </u>        | ļ                  | J             |               |
| ,                                       | n = 1, the   |             |              | •               | •              |                                                  |                                                  |                | 0.5]                                             |                 |                    |               |               |
| (24d)m= 0.61                            | 0.61         | 0.6         | 0.58         | 0.58            | 0.56           | 0.56                                             | 0.56                                             | 0.57           | 0.58                                             | 0.59            | 0.59               |               | (240          |
| Effective air                           | change       | rate - er   | nter (24a    | ) or (24l       | b) or (24      | c) or (24                                        | ld) in bo                                        | x (25)         | -                                                | -               | -                  | _             |               |
| (25)m= 0.61                             | 0.61         | 0.6         | 0.58         | 0.58            | 0.56           | 0.56                                             | 0.56                                             | 0.57           | 0.58                                             | 0.59            | 0.59               | ]             | (25)          |
| 3. Heat losse                           | es and he    | eat loss i  | paramet      | er:             |                |                                                  |                                                  |                |                                                  |                 |                    | _             |               |
| ELEMENT                                 | Gros<br>area | SS          | Openin<br>m  | gs              | Net Ar<br>A ,ı |                                                  | U-val<br>W/m2                                    |                | A X U<br>(W/I                                    | K)              | k-value<br>kJ/m²·  |               | A X k<br>kJ/K |
| Doors                                   |              |             |              |                 | 2              | x                                                | 1                                                | =              | 2                                                |                 |                    |               | (26)          |
| Windows Type                            | e 1          |             |              |                 | 3.97           | x1                                               | /[1/( 1.4 )+                                     | 0.04] =        | 5.26                                             | 一               |                    |               | (27)          |
| Windows Type                            | e 2          |             |              |                 | 1.92           | x1                                               | /[1/( 1.4 )+                                     | 0.04] =        | 2.55                                             |                 |                    |               | (27)          |
| Windows Type                            | e 3          |             |              |                 | 1.73           | x1                                               | /[1/( 1.4 )+                                     | 0.04] =        | 2.29                                             |                 |                    |               | (27)          |
| Rooflights Typ                          | ne 1         |             |              |                 | 0.43649        | 994 x1                                           | /[1/(1.7) +                                      | 0.04] =        | 0.742048                                         | 39              |                    |               | (27)          |
| Rooflights Typ                          |              |             |              |                 | 0.74412        | _                                                | /[1/(1.7) +                                      |                | 1.26501                                          | =               |                    |               | `<br>(27t     |
| Walls Type1                             | 35.4         | IR          | 9.35         |                 | 26.13          | =                                                | 0.18                                             |                | 4.7                                              | <u>'</u>        |                    | $\neg$        | (29)          |
| Walls Type2                             | 30.4         |             | 2            |                 | 28.48          | _                                                | 0.18                                             | = =            | 5.13                                             | <del>-</del>    |                    | <b>-</b>   -  | (29)          |
| Roof                                    |              |             |              |                 |                | =                                                |                                                  | = -            |                                                  |                 |                    | <b>-</b>    - |               |
|                                         | 50.1         |             | 1.18         |                 | 48.99          | =                                                | 0.13                                             |                | 6.37                                             |                 |                    |               | (30)          |
| Total area of                           | elements     | , 111       |              |                 | 116.1          | =                                                |                                                  |                |                                                  |                 |                    |               | (31)          |
| Party wall                              |              |             |              |                 | 26.97          | 7 ×                                              | 0                                                | =              | 0                                                |                 |                    | 4             | (32)          |
| Party floor                             | , ,          |             |              |                 | 50.17          |                                                  |                                                  |                |                                                  |                 |                    |               | (32           |
| * for windows and<br>** include the are |              |             |              |                 |                | lated using                                      | g formula 1                                      | 1/[(1/U-valt   | ue)+0.04] a                                      | as given in     | n paragrapi        | h 3.2         |               |
| Fabric heat lo                          | ss, W/K :    | = S (A x    | U)           |                 |                |                                                  | (26)(30                                          | ) + (32) =     |                                                  |                 |                    | 32.47         | (33)          |
| Heat capacity                           | Cm = S(      | (Axk)       |              |                 |                |                                                  |                                                  | ((28).         | (30) + (32                                       | 2) + (32a).     | (32e) =            | 13363         |               |
| Thermal mass                            | parame       | ter (TMF    | ⊃ = Cm ÷     | ÷ TFA) ir       | า kJ/m²K       | ,                                                |                                                  | Indica         | ative Value                                      | : Medium        |                    | 250           | (35)          |
|                                         | sments wh    | ere the de  | tails of the | construct       | ion are no     | t known p                                        | recisely the                                     | e indicative   | e values of                                      | TMP in T        | able 1f            |               |               |
| For design asses can be used inste      |              |             |              | oononaoi        |                |                                                  | ,                                                |                |                                                  |                 |                    |               |               |
| -                                       | ead of a de  | tailed calc | ulation.     |                 |                | K                                                | ,                                                |                |                                                  |                 |                    | 11.14         | (36)          |

| Total fabric he                    | at loss     |             |                  |                  |                  |            |             | (33) +                                  | (36) =             |                         |         | 43.61   | (37)          |
|------------------------------------|-------------|-------------|------------------|------------------|------------------|------------|-------------|-----------------------------------------|--------------------|-------------------------|---------|---------|---------------|
| Ventilation hea                    | at loss ca  | alculated   | l monthl         | V                |                  |            |             | . ,                                     | ` '                | 25)m x (5)              |         | 40.01   | (5.7)         |
| Jan                                | Feb         | Mar         | Apr              | May              | Jun              | Jul        | Aug         | Sep                                     | Oct                | Nov                     | Dec     |         |               |
| (38)m= 27.27                       | 27.08       | 26.89       | 26.01            | 25.85            | 25.08            | 25.08      | 24.94       | 25.37                                   | 25.85              | 26.18                   | 26.53   |         | (38)          |
| Heat transfer of                   | coefficier  | nt, W/K     |                  | •                | •                |            |             | (39)m                                   | = (37) + (         | 38)m                    |         | •       |               |
| (39)m= 70.88                       | 70.68       | 70.5        | 69.62            | 69.45            | 68.69            | 68.69      | 68.55       | 68.98                                   | 69.45              | 69.79                   | 70.13   |         |               |
|                                    |             |             |                  |                  |                  | •          | •           |                                         | _                  | Sum(39) <sub>1</sub>    | 12 /12= | 69.62   | (39)          |
| Heat loss para                     | · `         | <u> </u>    |                  |                  |                  |            |             | ` ′                                     | = (39)m ÷          | <del>`</del>            |         | I       |               |
| (40)m= 1.41                        | 1.41        | 1.41        | 1.39             | 1.38             | 1.37             | 1.37       | 1.37        | 1.37                                    | 1.38               | 1.39                    | 1.4     | 4.20    | <b>—</b> (40) |
| Number of day                      | /s in moi   | nth (Tab    | le 1a)           |                  |                  |            |             | ,                                       | Average =          | Sum(40) <sub>1</sub>    | 12 /12= | 1.39    | (40)          |
| Jan                                | Feb         | Mar         | Apr              | May              | Jun              | Jul        | Aug         | Sep                                     | Oct                | Nov                     | Dec     |         |               |
| (41)m= 31                          | 28          | 31          | 30               | 31               | 30               | 31         | 31          | 30                                      | 31                 | 30                      | 31      |         | (41)          |
|                                    |             |             |                  |                  |                  |            |             |                                         |                    |                         |         | •       |               |
| 4. Water heat                      | ting ene    | rgy requi   | rement:          |                  |                  |            |             |                                         |                    |                         | kWh/ye  | ear:    |               |
| A                                  |             |             |                  |                  |                  |            |             |                                         |                    |                         |         | 1       |               |
| Assumed occur<br>if TFA > 13.9     |             |             | [1 - exp         | (-0.0003         | 349 x (TF        | FA -13.9   | )2)1 + 0.0  | 0013 x ( <sup>-</sup>                   | ΓFA -13.           |                         | .7      |         | (42)          |
| if TFA £ 13.9                      |             | •           | [. exp           | ( 0.000          | • ( · ·          |            | /_/]        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                    | ,                       |         |         |               |
| Annual averag                      |             |             |                  |                  |                  |            |             |                                         |                    |                         | .46     |         | (43)          |
| Reduce the annua not more that 125 | _           |             |                  |                  | _                | _          | to acnieve  | a water us                              | se target o        | Ī                       |         |         |               |
|                                    | Feb         | Mar         |                  | <u> </u>         |                  | Jul        | Δυα         | Sep                                     | Oct                | Nov                     | Dec     |         |               |
| Jan Hot water usage ii             |             |             | Apr<br>ach month | May<br>Vd,m = fa | Jun<br>ctor from |            | Aug<br>(43) | Sep                                     | Oct                | INOV                    | Dec     |         |               |
| (44)m= 81.9                        | 78.93       | 75.95       | 72.97            | 69.99            | 67.01            | 67.01      | 69.99       | 72.97                                   | 75.95              | 78.93                   | 81.9    |         |               |
| (1.1)                              |             |             |                  | 00.00            | 0                |            | 00.00       |                                         |                    | m(44) <sub>1 12</sub> = |         | 893.51  | (44)          |
| Energy content of                  | hot water   | used - cal  | culated me       | onthly $= 4$ .   | 190 x Vd,ı       | m x nm x E | OTm / 3600  | kWh/mor                                 | nth (see Ta        | ables 1b, 1             | c, 1d)  |         |               |
| (45)m= 121.46                      | 106.23      | 109.62      | 95.57            | 91.7             | 79.13            | 73.33      | 84.14       | 85.15                                   | 99.23              | 108.32                  | 117.63  |         |               |
|                                    |             |             |                  |                  |                  |            | •           |                                         | Total = Su         | m(45) <sub>112</sub> =  |         | 1171.53 | (45)          |
| If instantaneous w                 | ater heatii | ng at point | of use (no       | hot water        | r storage),      | enter 0 in | boxes (46,  | ) to (61)                               |                    |                         |         | •       |               |
| (46)m= 0                           | 0           | 0           | 0                | 0                | 0                | 0          | 0           | 0                                       | 0                  | 0                       | 0       |         | (46)          |
| Water storage Storage volum        |             | ) includin  | na anv si        | olar or M        | WHDS             | etorana    | within sa   | ma vas                                  | امء                |                         | 0       | 1       | (47)          |
| If community h                     | , ,         |             |                  |                  |                  | •          |             | arric ves                               | 301                |                         | 0       |         | (47)          |
| Otherwise if no                    | -           |             |                  | -                |                  |            |             | ers) ente                               | er 'O' in <i>(</i> | 47)                     |         |         |               |
| Water storage                      |             |             | (4               |                  |                  |            |             | ,                                       |                    | ,                       |         |         |               |
| a) If manufact                     | urer's de   | eclared l   | oss facto        | or is kno        | wn (kWl          | n/day):    |             |                                         |                    |                         | 0       |         | (48)          |
| Temperature fa                     | actor fro   | m Table     | 2b               |                  |                  |            |             |                                         |                    |                         | 0       |         | (49)          |
| Energy lost fro                    | m water     | storage     | , kWh/ye         | ear              |                  |            | (48) x (49) | ) =                                     |                    |                         | 0       |         | (50)          |
| b) If manufact                     |             |             | -                |                  |                  |            |             |                                         |                    |                         |         | İ       |               |
| Hot water stora                    | -           |             |                  | ie 2 (KVV        | n/litre/da       | ay)        |             |                                         |                    |                         | 0       |         | (51)          |
| Volume factor                      | _           |             | JII 4.3          |                  |                  |            |             |                                         |                    |                         | 0       | 1       | (52)          |
| Temperature fa                     |             |             | 2b               |                  |                  |            |             |                                         |                    | -                       | 0       |         | (53)          |
| Energy lost fro                    |             |             |                  | ear              |                  |            | (47) x (51) | ) x (52) x (                            | 53) =              |                         | 0       |         | (54)          |
| Enter (50) or (                    |             | _           | , "J             |                  |                  |            | . , , , ,   | . , (                                   | •                  | -                       | 0       |         | (55)          |
| , ,                                | . `         | •           |                  |                  |                  |            |             |                                         |                    |                         |         | 1       | •             |

| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | storage                                                                                                                                      | loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                 | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                               | ((56)m = (                                                                    | 55) × (41)ı                                                 | m                                               |                                               |                                |               |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|--------------------------------|---------------|----------------------------------------------|
| (56)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                             | 0                                                                             | 0                                                           | 0                                               | 0                                             | 0                              |               | (56)                                         |
| If cylinde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r contains                                                                                                                                   | dedicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)ı                                                                              | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                  | H11)] ÷ (5                                                                    | 0), else (5                                                                   | 7)m = (56)                                                  | m where (                                       | H11) is fro                                   | m Append                       | ix H          |                                              |
| (57)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                             | 0                                                                             | 0                                                           | 0                                               | 0                                             | 0                              |               | (57)                                         |
| Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y circuit                                                                                                                                    | loss (ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m Table                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                               |                                                                               |                                                             |                                                 |                                               | 0                              |               | (58)                                         |
| Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y circuit                                                                                                                                    | loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                 | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                     | (58) ÷ 36                                                                     | 65 × (41)                                                                     | m                                                           |                                                 |                                               |                                | •             |                                              |
| (mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dified by                                                                                                                                    | factor fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                               | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                    | er heatir                                                                     | ng and a                                                                      | cylinde                                                     | r thermo                                        | stat)                                         |                                |               |                                              |
| (59)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                             | 0                                                                             | 0                                                           | 0                                               | 0                                             | 0                              |               | (59)                                         |
| Combi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | loss cal                                                                                                                                     | culated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                  | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                    | 65 × (41)                                                                     | )m                                                                            |                                                             |                                                 |                                               |                                |               |                                              |
| (61)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                             | 0                                                                             | 0                                                           | 0                                               | 0                                             | 0                              |               | (61)                                         |
| Total h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eat requ                                                                                                                                     | uired for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for eac                                                                      | h month                                                                       | (62)m =                                                                       | 0.85 × (                                                    | (45)m +                                         | (46)m +                                       | (57)m +                        | (59)m + (61)m |                                              |
| (62)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.24                                                                                                                                       | 90.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81.24                                                                                    | 77.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.26                                                                        | 62.33                                                                         | 71.52                                                                         | 72.38                                                       | 84.35                                           | 92.07                                         | 99.99                          |               | (62)                                         |
| Solar DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IW input o                                                                                                                                   | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                               | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                    | ve quantity                                                                   | /) (enter '0                                                                  | if no sola                                                  | r contribut                                     | ion to wate                                   | er heating)                    | '             |                                              |
| (add ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dditiona                                                                                                                                     | lines if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or V                                                                                 | WHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | applies                                                                      | , see Ap                                                                      | pendix (                                                                      | 3)                                                          |                                                 |                                               |                                |               |                                              |
| (63)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                             | 0                                                                             | 0                                                           | 0                                               | 0                                             | 0                              |               | (63)                                         |
| Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | from wa                                                                                                                                      | ater hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                               |                                                                               |                                                             |                                                 |                                               |                                | •             |                                              |
| (64)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.24                                                                                                                                       | 90.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81.24                                                                                    | 77.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.26                                                                        | 62.33                                                                         | 71.52                                                                         | 72.38                                                       | 84.35                                           | 92.07                                         | 99.99                          |               |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                               | Outp                                                                          | out from wa                                                 | ater heate                                      | r (annual) <sub>1</sub>                       | 12                             | 995.8         | (64)                                         |
| Heat ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ains froi                                                                                                                                    | n water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/mo                                                                                   | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                    | × (45)m                                                                       | + (61)m                                                                       | n] + 0.8 x                                                  | ((46)m                                          | + (57)m                                       | + (59)m                        | ]             | _                                            |
| (65)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.81                                                                                                                                        | 22.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.31                                                                                    | 19.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.82                                                                        | 45.50                                                                         | 47.00                                                                         | 40.00                                                       | 04.00                                           | <del></del>                                   | <u> </u>                       | i -           | (CE)                                         |
| ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.31                                                                                    | 19.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.02                                                                        | 15.58                                                                         | 17.88                                                                         | 18.09                                                       | 21.09                                           | 23.02                                         | 25                             |               | (65)                                         |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                     | <u> </u>                                                                      |                                                                               |                                                             |                                                 | <u> </u>                                      |                                | eating        | (65)                                         |
| inclu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | de (57)ı                                                                                                                                     | m in cald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m                                                                                 | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                     | <u> </u>                                                                      |                                                                               |                                                             |                                                 | <u> </u>                                      | munity h                       | eating        | (00)                                         |
| includes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de (57)ı<br>ernal ga                                                                                                                         | m in cald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                       | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                     | <u> </u>                                                                      |                                                                               |                                                             |                                                 | <u> </u>                                      |                                | eating        | (65)                                         |
| includes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de (57)ı<br>ernal ga                                                                                                                         | m in cald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>and 5a                                                                       | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                     | <u> </u>                                                                      |                                                                               | or hot w                                                    |                                                 | <u> </u>                                      |                                | eating        | (65)                                         |
| includes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de (57)i<br>ernal ga<br>olic gain                                                                                                            | m in cald<br>ins (see<br>s (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                       | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                    | s in the d                                                                    | dwelling                                                                      |                                                             | ater is fr                                      | om com                                        | munity h                       | eating        | (66)                                         |
| include  5. Inter  Metabo  (66)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | de (57)r<br>ernal ga<br>blic gain<br>Jan<br>84.76                                                                                            | n in cald<br>ins (see<br>s (Table<br>Feb<br>84.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | culation of Table 5 5), Wat Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76                                               | only if constant of the consta | ylinder is<br>Jun<br>84.76                                                   | Jul<br>84.76                                                                  | Aug<br>84.76                                                                  | or hot w<br>Sep<br>84.76                                    | ater is fr                                      | om com                                        | munity h                       | eating        |                                              |
| include  5. Inter  Metabo  (66)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | de (57)r<br>ernal ga<br>blic gain<br>Jan<br>84.76                                                                                            | n in cald<br>ins (see<br>s (Table<br>Feb<br>84.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E Table 5<br>2 5), Wat<br>Mar<br>84.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76                                               | only if constant of the consta | ylinder is<br>Jun<br>84.76                                                   | Jul<br>84.76                                                                  | Aug<br>84.76                                                                  | or hot w<br>Sep<br>84.76                                    | ater is fr                                      | om com                                        | munity h                       | eating        |                                              |
| include  5. Interest of the second of the se | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains                                                                                 | m in calc<br>lins (see<br>s (Table<br>Feb<br>84.76<br>(calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ETable 5 E 5), Wat Mar 84.76 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of (65)m and 5a ts Apr 84.76 ppendix 7.21                                                | May<br>84.76<br>L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>84.76<br>ion L9 o                                                     | Jul<br>84.76<br>r L9a), a                                                     | Aug<br>84.76<br>Iso see                                                       | Sep<br>84.76<br>Table 5<br>8.58                             | Oct 84.76                                       | Nov<br>84.76                                  | Dec                            | eating        | (66)                                         |
| include  5. Interest of the second of the se | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains                                                                                 | m in calc<br>lins (see<br>s (Table<br>Feb<br>84.76<br>(calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ETable 5 E Table 5 E 5), Wat Mar 84.76 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of (65)m and 5a ts Apr 84.76 ppendix 7.21                                                | May<br>84.76<br>L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>84.76<br>ion L9 o                                                     | Jul<br>84.76<br>r L9a), a                                                     | Aug<br>84.76<br>Iso see                                                       | Sep<br>84.76<br>Table 5<br>8.58                             | Oct 84.76                                       | Nov<br>84.76                                  | Dec                            | eating        | (66)                                         |
| include  5. Interest Metabor  (66)m=  Lighting  (67)m=  Applian  (68)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains<br>13.18<br>nces gai                                                            | m in calconins (see s (Table Feb 84.76 (calcular 11.71 ns (calcular 149.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ETable 5 E Table 5 E 5), Wat Mar 84.76 ted in Ap 9.52 ulated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m and 5a ts Apr 84.76 ppendix 7.21 Appendix 137.13                                | only if controls:  May 84.76 L, equat 5.39 dix L, eq 126.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L                                | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1                                 | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also                                  | Sep 84.76 Table 5 8.58 see Ta 112.81                        | Oct 84.76  10.89 ble 5 121.03                   | Nov<br>84.76                                  | Dec 84.76                      | eating        | (66)<br>(67)                                 |
| include  5. Interest Metabor  (66)m=  Lighting  (67)m=  Applian  (68)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains<br>13.18<br>nces gai                                                            | m in calconins (see s (Table Feb 84.76 (calcular 11.71 ns (calcular 149.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Example 5 ted in Apple 5 ted in Appl | of (65)m and 5a ts Apr 84.76 ppendix 7.21 Appendix 137.13                                | only if controls:  May 84.76 L, equat 5.39 dix L, eq 126.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L                                | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1                                 | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also                                  | Sep 84.76 Table 5 8.58 see Ta 112.81                        | Oct 84.76  10.89 ble 5 121.03                   | Nov<br>84.76                                  | Dec 84.76                      | eating        | (66)<br>(67)                                 |
| include  5. Interest Metabor  (66)m=  Lighting  (67)m=  Applian  (68)m=  Cooking  (69)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains<br>13.18<br>nces gai<br>147.68<br>g gains<br>31.48                              | m in calcular (calcular 31.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Example 5 Exampl | of (65)m s and 5a ts Apr 84.76 ppendix 7.21 Append 137.13 ppendix 31.48                  | May 84.76 L, equat 5.39 dix L, eq 126.75 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun 84.76 ion L9 of 4.55 uation L 116.99 ion L15                             | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)           | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95                        | Sep 84.76 Table 5 8.58 see Tal 112.81 ee Table              | Oct 84.76  10.89 ble 5 121.03                   | Nov<br>84.76<br>12.71                         | Dec 84.76                      | eating        | (66)<br>(67)<br>(68)                         |
| include  5. Interest Metabor  (66)m=  Lighting  (67)m=  Applian  (68)m=  Cooking  (69)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains<br>13.18<br>nces gai<br>147.68<br>g gains<br>31.48                              | m in calcular (calcular 31.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ETable 5 E 5), Wat Mar 84.76 ted in Ap 9.52 ulated in 145.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of (65)m s and 5a ts Apr 84.76 ppendix 7.21 Append 137.13 ppendix 31.48                  | May 84.76 L, equat 5.39 dix L, eq 126.75 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun 84.76 ion L9 of 4.55 uation L 116.99 ion L15                             | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)           | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95                        | Sep 84.76 Table 5 8.58 see Tal 112.81 ee Table              | Oct 84.76  10.89 ble 5 121.03                   | Nov<br>84.76<br>12.71                         | Dec 84.76                      | eating        | (66)<br>(67)<br>(68)                         |
| include  5. Interest Metabor  (66)m=  Lighting (67)m=  Applian (68)m=  Cooking (69)m=  Pumps (70)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains<br>13.18<br>nces gai<br>147.68<br>g gains<br>31.48<br>and far<br>0              | m in calc sins (see s (Table Feb 84.76 (calcula 11.71 ns (calc 149.21 (calcula 31.48 ns gains 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evaluation of the collection o | of (65)m s and 5a ts Apr 84.76 ppendix 7.21 Appendix 137.13 ppendix 31.48 5a) 0          | only if constructions only if constructions only if constructions on the construction of the construction  | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L<br>116.99<br>tion L15<br>31.48 | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.58 see Ta 112.81 ee Table 31.48         | Oct 84.76  10.89 ble 5 121.03 5 31.48           | Nov<br>84.76<br>12.71<br>131.41<br>31.48      | Dec 84.76 13.55 141.16 31.48   | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| include  5. Interest Metabor  (66)m=  Lighting (67)m=  Applian (68)m=  Cooking (69)m=  Pumps (70)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains<br>13.18<br>nces gai<br>147.68<br>g gains<br>31.48<br>and far<br>0              | m in calc sins (see s (Table Feb 84.76 (calcula 11.71 ns (calc 149.21 (calcula 31.48 ns gains 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ETable 5 E Table 5 E 5), Wat Mar 84.76 ted in Ap 9.52 ulated in 145.35 uted in A 31.48 (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m s and 5a ts Apr 84.76 ppendix 7.21 Appendix 137.13 ppendix 31.48 5a) 0          | only if constructions only if constructions only if constructions on the construction of the construction  | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L<br>116.99<br>tion L15<br>31.48 | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.58 see Ta 112.81 ee Table 31.48         | Oct 84.76  10.89 ble 5 121.03 5 31.48           | Nov<br>84.76<br>12.71<br>131.41<br>31.48      | Dec 84.76 13.55 141.16 31.48   | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| include  5. Interest Metabor  (66)m=  Lighting (67)m=  Applian (68)m=  Cooking (69)m=  Pumps (70)m=  Losses (71)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains<br>13.18<br>nces gai<br>147.68<br>g gains<br>31.48<br>and far<br>0<br>e.e.g. ev | m in calconins (see s (Table Feb 84.76 (calcula 11.71 ns (calcula 31.48 ns gains 0 aporatio -67.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | culation of the ted in April 145.35 and the ted in April 145.35 and ted in Apr | of (65)m s and 5a ts Apr 84.76 ppendix 7.21 Append 137.13 ppendix 31.48 5a) 0 tive value | only if construction only if c | Jun 84.76 ion L9 of 4.55 uation L 116.99 ion L15 31.48  0                    | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>0, also se<br>31.48 | Sep 84.76 Table 5 8.58 see Tal 112.81 ee Table 31.48        | Oct 84.76  10.89 ble 5 121.03 5 31.48           | Nov<br>84.76<br>12.71<br>131.41<br>31.48      | Dec 84.76 13.55 141.16 31.48   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include  5. Interest Metabor  (66)m=  Lighting (67)m=  Applian (68)m=  Cooking (69)m=  Pumps (70)m=  Losses (71)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de (57)i<br>ernal ga<br>blic gain<br>Jan<br>84.76<br>g gains<br>13.18<br>nces gai<br>147.68<br>g gains<br>31.48<br>and far<br>0<br>e.e.g. ev | m in calconins (see s (Table Feb 84.76 (calcula 11.71 ns (calcula 149.21 (calcula 31.48 ns gains 0 aporatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | culation of the ted in April 145.35 and the ted in April 145.35 and ted in Apr | of (65)m s and 5a ts Apr 84.76 ppendix 7.21 Append 137.13 ppendix 31.48 5a) 0 tive value | only if construction only if c | Jun 84.76 ion L9 of 4.55 uation L 116.99 ion L15 31.48  0                    | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>0, also se<br>31.48 | Sep 84.76 Table 5 8.58 see Tal 112.81 ee Table 31.48        | Oct 84.76  10.89 ble 5 121.03 5 31.48           | Nov<br>84.76<br>12.71<br>131.41<br>31.48      | Dec 84.76 13.55 141.16 31.48   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include  5. Interest Metabor  (66)m=  Lighting (67)m=  Applian (68)m=  Cooking (69)m=  Pumps (70)m=  Losses (71)m=  Water h (72)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de (57)i ernal ga  blic gain  34.76 g gains 13.18 nces gai 147.68 g gains 31.48 and far 0 s e.g. ev  -67.8 heating 34.69                     | m in calc lins (see s (Table Feb 84.76 (calcula 11.71 ns (calcula 31.48 ns gains 0 aporatic -67.8 gains (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | culation of the Table 5 2 5), Wat Mar 84.76 ted in Ap 9.52 ulated in 145.35 ated in Ap 31.48 (Table 5 0 on (negation of the Table 5) 31.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m s and 5a ts Apr 84.76 ppendix 7.21 Appendix 31.48 5a) 0 tive value -67.8        | only if constructions only if constructions only if constructions on the construction of the construction  | Jun 84.76 ion L9 of 4.55 uation L 116.99 ion L15 31.48  0 le 5) -67.8        | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1:<br>110.48<br>or L15a;<br>31.48 | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>0, also se<br>31.48 | Sep 84.76 Table 5 8.58 see Ta 112.81 ee Table 31.48 0 -67.8 | Oct 84.76  10.89 ble 5 121.03 5 31.48  0  -67.8 | Nov<br>84.76<br>12.71<br>131.41<br>31.48<br>0 | Dec 84.76 13.55 141.16 31.48 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| include  5. Interest Metabor  (66)m=  Lighting (67)m=  Applian (68)m=  Cooking (69)m=  Pumps (70)m=  Losses (71)m=  Water h (72)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de (57)i ernal ga  blic gain  34.76 g gains 13.18 nces gai 147.68 g gains 31.48 and far 0 s e.g. ev  -67.8 heating 34.69                     | m in calcular section (calcular section 149.21 (calcular section 31.48 experience of the color o | culation of the Table 5 2 5), Wat Mar 84.76 ted in Ap 9.52 ulated in 145.35 ated in Ap 31.48 (Table 5 0 on (negation of the Table 5) 31.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m s and 5a ts Apr 84.76 ppendix 7.21 Appendix 31.48 5a) 0 tive value -67.8        | only if constructions only if constructions only if constructions on the construction of the construction  | Jun 84.76 ion L9 of 4.55 uation L 116.99 ion L15 31.48  0 le 5) -67.8        | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>0, also se<br>31.48 | Sep 84.76 Table 5 8.58 see Ta 112.81 ee Table 31.48 0 -67.8 | Oct 84.76  10.89 ble 5 121.03 5 31.48  0  -67.8 | Nov<br>84.76<br>12.71<br>131.41<br>31.48<br>0 | Dec 84.76 13.55 141.16 31.48 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:    | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|-----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x  | 0.77                      | X | 3.97       | x | 11.28            | x | 0.63           | x | 0.7            | =   | 13.69        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 11.28            | x | 0.63           | x | 0.7            | =   | 6.62         | (75) |
| Northeast 0.9x  | 0.77                      | X | 3.97       | x | 22.97            | x | 0.63           | x | 0.7            | =   | 27.87        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 22.97            | x | 0.63           | x | 0.7            | =   | 13.48        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 41.38            | x | 0.63           | x | 0.7            | =   | 50.2         | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 41.38            | x | 0.63           | x | 0.7            | =   | 24.28        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 67.96            | x | 0.63           | x | 0.7            | ] = | 82.45        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 67.96            | x | 0.63           | x | 0.7            | =   | 39.87        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 91.35            | x | 0.63           | x | 0.7            | =   | 110.83       | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 91.35            | x | 0.63           | x | 0.7            | =   | 53.6         | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 97.38            | x | 0.63           | x | 0.7            | =   | 118.15       | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 97.38            | x | 0.63           | x | 0.7            | =   | 57.14        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 91.1             | x | 0.63           | x | 0.7            | =   | 110.53       | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 91.1             | x | 0.63           | x | 0.7            | =   | 53.46        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 72.63            | x | 0.63           | X | 0.7            | =   | 88.12        | (75) |
| Northeast 0.9x  | 0.77                      | X | 1.92       | x | 72.63            | X | 0.63           | X | 0.7            | =   | 42.62        | (75) |
| Northeast 0.9x  | 0.77                      | X | 3.97       | x | 50.42            | x | 0.63           | X | 0.7            | =   | 61.17        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 50.42            | x | 0.63           | x | 0.7            | =   | 29.59        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 28.07            | x | 0.63           | x | 0.7            | =   | 34.05        | (75) |
| Northeast 0.9x  | 0.77                      | X | 1.92       | x | 28.07            | x | 0.63           | X | 0.7            | =   | 16.47        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 14.2             | x | 0.63           | x | 0.7            | =   | 17.22        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 14.2             | x | 0.63           | x | 0.7            | =   | 8.33         | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 9.21             | x | 0.63           | x | 0.7            | =   | 11.18        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 9.21             | x | 0.63           | x | 0.7            | =   | 5.41         | (75) |
| Northwest 0.9x  | 0.77                      | X | 1.73       | x | 11.28            | X | 0.63           | X | 0.7            | =   | 11.93        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 22.97            | x | 0.63           | X | 0.7            | =   | 24.29        | (81) |
| Northwest 0.9x  | 0.77                      | X | 1.73       | x | 41.38            | X | 0.63           | X | 0.7            | =   | 43.75        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 67.96            | X | 0.63           | X | 0.7            | =   | 71.86        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 91.35            | x | 0.63           | X | 0.7            | =   | 96.59        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 97.38            | x | 0.63           | X | 0.7            | =   | 102.98       | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 91.1             | X | 0.63           | X | 0.7            | =   | 96.33        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 72.63            | x | 0.63           | x | 0.7            | =   | 76.8         | (81) |
| Northwest 0.9x  | 0.77                      | X | 1.73       | x | 50.42            | x | 0.63           | x | 0.7            | =   | 53.32        | (81) |
| Northwest 0.9x  | 0.77                      | X | 1.73       | x | 28.07            | x | 0.63           | x | 0.7            | =   | 29.68        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 14.2             | x | 0.63           | x | 0.7            | =   | 15.01        | (81) |
| Northwest 0.9x  | 0.77                      | X | 1.73       | x | 9.21             | x | 0.63           | x | 0.7            | ] = | 9.74         | (81) |
| Rooflights 0.9x | 1                         | X | 0.44       | x | 26               | x | 0.63           | x | 0.7            | ] = | 4.5          | (82) |
| Rooflights 0.9x | 1                         | X | 0.74       | x | 26               | × | 0.63           | x | 0.7            | ] = | 7.68         | (82) |
| Rooflights 0.9x | 1                         | X | 0.44       | x | 54               | × | 0.63           | x | 0.7            | ] = | 9.36         | (82) |
|                 |                           |   |            | - |                  | • |                | • |                | -   |              | _    |

| Rooflights 0.9x            | 1             | x          | 0.74      | 4        | X             | 54             | ] <sub>x</sub>        | 0.63           | ×              | 0.7            |       | 15.95    | (82) |
|----------------------------|---------------|------------|-----------|----------|---------------|----------------|-----------------------|----------------|----------------|----------------|-------|----------|------|
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.44      | ==       | x             | 96             | ] x                   | 0.63           | ×              | 0.7            | ╡ .   | 16.63    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.74      |          | x             | 96             | ] ^<br>] x            | 0.63           | -              | 0.7            | ╡ .   | 28.35    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.44      | =        | x             | 150            | ] ^<br>] <sub>x</sub> | 0.63           | d °            | 0.7            | ╡ .   | 25.99    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.74      | =        | x             | 150            | ] ^<br>] <sub>X</sub> | 0.63           | d ×            | 0.7            | ╡ .   | 44.3     | (82) |
| Rooflights <sub>0.9x</sub> | <u>'</u><br>1 | ×          | 0.44      |          | x             | 192            | ] ^<br>] x            | 0.63           | _ ^ x          | 0.7            | ╡ .   | 33.26    | (82) |
| Rooflights 0.9x            | 1             | ×          | 0.74      | =        | x             | 192            | ] ^<br>] x            | 0.63           | ┤ ^ ×          | 0.7            | ╡ .   | 56.71    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.44      |          | x             | 200            | ] ^<br>] <sub>x</sub> | 0.63           | d ×            | 0.7            | ╡ .   | 34.65    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.74      | =        | x             | 200            | ] ^<br>] x            | 0.63           | d ×            | 0.7            | ╡ .   | 59.07    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.44      |          | x             | 189            | ] x                   | 0.63           | ×              | 0.7            | ╡ -   | 32.74    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.74      | =        | x             | 189            | ] x                   | 0.63           | ×              | 0.7            | ╡ -   | 55.82    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.44      | ==       | x             | 157            | ] ^<br>] x            | 0.63           | d ×            | 0.7            | ╡ -   | 27.2     | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.74      | =        | x             | 157            | ] ^<br>] <sub>X</sub> | 0.63           | d ×            | 0.7            | ╡ .   | 46.37    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | ×          | 0.44      |          | x             | 115            | ] ^<br>] <sub>X</sub> | 0.63           | ╡ ̈́           | 0.7            | ╡ -   | 19.92    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | X          | 0.74      |          | x             | 115            | ] x                   | 0.63           | ×              | 0.7            | ╡ .   | 33.96    | (82) |
| Rooflights <sub>0.9x</sub> | <u>'</u><br>1 | ×          | 0.44      |          | x             | 66             | ] x                   | 0.63           | X              | 0.7            | ╡ .   | 11.43    | (82) |
| Rooflights 0.9x            | <u>·</u><br>1 | X          | 0.74      | =        | x             | 66             | ] x                   | 0.63           | ×              | 0.7            | ╡ .   | 19.49    | (82) |
| Rooflights <sub>0.9x</sub> | 1             | X          | 0.4       | _        | X             | 33             | ]<br>]                | 0.63           | ا<br>×         | 0.7            | = =   | 5.72     | (82) |
| Rooflights 0.9x            | 1             | x          | 0.74      | ==       | X             | 33             | ]<br>  x              | 0.63           | ╡ ×            | 0.7            | = =   | 9.75     | (82) |
| Rooflights 0.9x            | 1             | ×          | 0.4       |          | X             | 21             | )<br>  x              | 0.63           | ا<br>×         | 0.7            | = =   | 3.64     | (82) |
| Rooflights 0.9x            | 1             | ×          | 0.74      |          | X             | 21             | ]<br>  x              | 0.63           | ا<br>×         | 0.7            | = =   | 6.2      | (82) |
| - L                        |               |            | <u> </u>  |          |               |                | J                     | 0.00           |                | <u> </u>       |       | <u> </u> | ` ′  |
| Solar gains in             | watts, cal    | culated    | for each  | n month  | 1             |                | (83)m                 | n = Sum(74)m . | (82)m          |                |       |          |      |
| (83)m= 44.42               | 90.93         | 163.22     | 264.47    | 350.99   |               | 71.99 348.88   | 281                   |                | 111.13         | 3 56.03        | 36.17 |          | (83) |
| Total gains – i            | nternal ar    | nd solar   | (84)m =   | (73)m    | + (8          | 33)m , watts   | •                     | •              |                | •              | •     | •        |      |
| (84)m= 288.4               | 333.87        | 397.83     | 485.44    | 557.74   | 5             | 55.32 533.65   | 468                   | .89 392.91     | 319.82         | 2 280.54       | 272.9 |          | (84) |
| 7. Mean inter              | nal tempe     | erature (  | heating   | seasor   | ו)            |                |                       |                |                |                |       |          |      |
| Temperature                | during he     | eating pe  | eriods in | the liv  | ing           | area from Tal  | ole 9                 | , Th1 (°C)     |                |                |       | 21       | (85) |
| Utilisation fac            | tor for ga    | ins for li | ving are  | a, h1,n  | า (ร          | ee Table 9a)   |                       |                |                |                |       |          |      |
| Jan                        | Feb           | Mar        | Apr       | May      |               | Jun Jul        | Α                     | ug Sep         | Oct            | Nov            | Dec   |          |      |
| (86)m= 1                   | 1             | 0.99       | 0.96      | 0.87     |               | 0.7 0.55       | 0.6                   | 0.88           | 0.98           | 1              | 1     |          | (86) |
| Mean interna               | I tempera     | ture in I  | iving are | ea T1 (f | ollo          | w steps 3 to 7 | in T                  | able 9c)       |                |                |       |          |      |
| (87)m= 19.4                | 19.56         | 19.88      | 20.32     | 20.71    | 2             | 0.92 20.98     | 20.                   | 96 20.77       | 20.27          | 19.76          | 19.38 |          | (87) |
| Temperature                | durina he     | eating pe  | eriods in | rest of  | dw            | elling from Ta | ble 9                 | ). Th2 (°C)    |                | •              | •     |          |      |
| (88)m= 19.75               | 19.76         | 19.76      | 19.77     | 19.78    | $\overline{}$ | 9.79 19.79     | 19.                   |                | 19.78          | 19.77          | 19.76 |          | (88) |
| Utilisation fac            | tor for a     | ins for r  | est of dv | velling  | h2            | m (see Tahle   | 921                   | 1              | ·              |                | !     | 1        |      |
| (89)m= 1                   | 0.99          | 0.99       | 0.94      | 0.82     | $\overline{}$ | 0.6 0.41       | 0.4                   | 8 0.81         | 0.97           | 1              | 1     |          | (89) |
|                            | <u> </u>      |            |           |          |               | ļ.             |                       |                |                |                | I     | I        | •    |
| Mean interna (90)m= 18.31  | 18.47         | 18.79      | 19.24     | 19.58    | Ť             | 9.75 19.78     | 19.                   |                | e 9c)<br>19.19 | 18.69          | 18.3  |          | (90) |
| (00)111- 10.01             | 1 10.77       | 10.19      | 10.27     | 10.00    | <u> </u>      | 0.70           | L 13.                 |                |                | ving area ÷ (4 |       | 0.47     | (91) |
|                            |               |            |           | ala duv  |               | ~\ <b>_</b> fl | . /1                  | fl A \ v TO    |                | <b>U</b> (     | ,     | L 5.71   |      |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 1                                                                                                                                                      | 8.83 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.12                                                         | 20.31                                                                       | 20.35                                                               | 20.34                                                              | 20.18                           | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.19                                                                  | 18.81                                      |                                | (92)                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------------------------------------------|
| Apply ac                                                                                                                                                      | djustment t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n interna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l temper                                                      | ature fro                                                                   | m Table                                                             | 4e, whe                                                            | ere appro                       | priate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                        |                                            |                                |                                                                      |
| (93)m= 1                                                                                                                                                      | 8.83 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.12                                                         | 20.31                                                                       | 20.35                                                               | 20.34                                                              | 20.18                           | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.19                                                                  | 18.81                                      |                                | (93)                                                                 |
| 8. Space                                                                                                                                                      | e heating r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | equiremen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                             |                                                                     |                                                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                            |                                |                                                                      |
|                                                                                                                                                               | the mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | ed at ste                                                                   | ep 11 of                                                            | Table 9                                                            | o, so tha                       | t Ti,m=(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76)m an                                                                | d re-calc                                  | ulate                          |                                                                      |
|                                                                                                                                                               | ation facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               | i                                                                           |                                                                     | ı                                                                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                            |                                |                                                                      |
|                                                                                                                                                               | Jan Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May                                                           | Jun                                                                         | Jul                                                                 | Aug                                                                | Sep                             | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov                                                                    | Dec                                        |                                |                                                                      |
|                                                                                                                                                               | on factor fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                             | I                                                                   |                                                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                                      |                                            |                                | (0.4)                                                                |
| (94)m=                                                                                                                                                        | 1 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.83                                                          | 0.64                                                                        | 0.47                                                                | 0.55                                                               | 0.84                            | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99                                                                   | 1                                          |                                | (94)                                                                 |
|                                                                                                                                                               | ains, hmG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>`</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>r ` ` </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                             |                                                                             |                                                                     | 0=0.07                                                             | 222 =2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        | 0=0.01                                     |                                | (05)                                                                 |
| ` ′                                                                                                                                                           | 87.5 331.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 457.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 463.73                                                        | 363.85                                                                      | 251.91                                                              | 259.31                                                             | 329.73                          | 311.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 278.95                                                                 | 272.24                                     |                                | (95)                                                                 |
|                                                                                                                                                               | average e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i                                                             |                                                                             | 100                                                                 | 40.4                                                               | 444                             | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                                            |                                | (00)                                                                 |
| ` '                                                                                                                                                           | 4.3 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7                                                          | 14.6                                                                        | 16.6                                                                | 16.4                                                               | 14.1                            | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1                                                                    | 4.2                                        |                                | (96)                                                                 |
|                                                                                                                                                               | s rate for r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | · ·                                                                         | <del>-``</del>                                                      | <del>-``</del>                                                     | <u> </u>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        | 4004.50                                    |                                | (07)                                                                 |
| ` ′                                                                                                                                                           | 29.53 995.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 755.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 584.55                                                        | 391.9                                                                       | 257.49                                                              | 270.02                                                             | 419.39                          | 632.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 844.04                                                                 | 1024.56                                    |                                | (97)                                                                 |
| · —                                                                                                                                                           | eating requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or each n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · ·                                                           | ı                                                                           | r                                                                   |                                                                    | )m – (95<br>0                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŕ                                                                      | 550.70                                     |                                |                                                                      |
| (98)m= 55                                                                                                                                                     | 52.07 446.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 380.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 214.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89.89                                                         | 0                                                                           | 0                                                                   | 0                                                                  |                                 | 238.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 406.86                                                                 | 559.73                                     |                                | 7,000                                                                |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                             |                                                                     | Tota                                                               | I per year                      | (kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r) = Sum(9                                                             | 8) <sub>15,912</sub> =                     | 2888.38                        | (98)                                                                 |
| Space h                                                                                                                                                       | eating requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uirement ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ı kWh/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ²/year                                                        |                                                                             |                                                                     |                                                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                            | 57.57                          | (99)                                                                 |
| 8c. Spac                                                                                                                                                      | ce cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | equireme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |                                                                             |                                                                     |                                                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                            |                                |                                                                      |
| Calcu <u>lat</u>                                                                                                                                              | ed for June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e, July and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | August.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | See Tal                                                       | ole 10b                                                                     |                                                                     |                                                                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                            |                                |                                                                      |
| _ ,                                                                                                                                                           | Jan Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May                                                           | Jun                                                                         | Jul                                                                 | Aug                                                                | Sep                             | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov                                                                    | Dec                                        |                                |                                                                      |
| Heat los                                                                                                                                                      | s rate Lm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l usina 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5°C inter                                                     | nal temi                                                                    | nerature.                                                           | and evt                                                            | arnal tan                       | nneratur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e from T                                                               | able 10)                                   |                                |                                                                      |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | ilai terri                                                                  | ·                                                                   | and CAR                                                            | erriar teri                     | iperatui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del> </del>                                                           |                                            |                                |                                                                      |
| (100)m=                                                                                                                                                       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                             | 645.67                                                                      | 508.29                                                              | 520.95                                                             | 0                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                      | 0                                          |                                | (100)                                                                |
| ` ′                                                                                                                                                           | 0 0<br>on factor fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               | · ·                                                                         | i                                                                   |                                                                    |                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i e                                                                    | i i                                        |                                | (100)                                                                |
| ` ′                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               | · ·                                                                         | i                                                                   |                                                                    |                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i e                                                                    | i i                                        |                                | (100)                                                                |
| Utilisatio (101)m= Useful lo                                                                                                                                  | on factor fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | loss hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                             | 645.67<br>0.85                                                              | 0.91                                                                | 520.95<br>0.87                                                     | 0                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                      | 0                                          |                                | (101)                                                                |
| Utilisatio                                                                                                                                                    | on factor fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | loss hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                             | 0.85                                                                        | 0.91                                                                | 520.95<br>0.87                                                     | 0                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                      | 0                                          |                                | , ,                                                                  |
| Utilisatio (101)m= Useful lo (102)m= Gains (s                                                                                                                 | on factor fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 loss hm 0 (Watts) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>(100)m >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>(101)m<br>0                                         | 645.67  0.85  548.95 eather re                                              | 0.91<br>461.37<br>egion, se                                         | 520.95<br>0.87<br>451.53<br>e Table                                | 0 0                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                      | 0                                          |                                | (101)                                                                |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m=                                                                                                         | on factor fo  0 0  oss, hmLm  0 0  solar gains  0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 loss hm 0 (Watts) = 0 calculated 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>(100)m ><br>0<br>for appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>((101)m<br>0<br>cable we                                 | 645.67  0.85  548.95 eather re 709.09                                       | 0.91<br>461.37<br>egion, se                                         | 0.87<br>451.53<br>ee Table<br>599.52                               | 0 0 10) 0                       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0 0                                                                  | 0 0                                        |                                | (101)                                                                |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space c                                                                                                 | on factor fo  on | 0 loss hm 0 (Watts) = 0 calculated 0 virement for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 (100)m > 0 for applied 0 or month,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 (101)m 0 cable we 0 whole co                              | 645.67  0.85  548.95 eather re 709.09                                       | 0.91<br>461.37<br>egion, se                                         | 0.87<br>451.53<br>ee Table<br>599.52                               | 0 0 10) 0                       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0                                                                    | 0 0                                        |                                | (101)                                                                |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space c set (104                                                                                        | on factor fo  on | 0 loss hm 0 (Watts) = 0 calculated 0 uirement for if (104)m o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>(100)m x<br>0<br>for appli<br>0<br>or month,<br>< 3 × (98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 (101)m 0 cable we 0 whole come o                            | 0.85  548.95 eather re 709.09                                               | 0.91<br>461.37<br>egion, se<br>671.73                               | 520.95  0.87  451.53  e Table  599.52  ous ( kW                    | 0<br>0<br>10)<br>0<br>(h) = 0.0 | 0<br>0<br>0<br>0<br>24 x [(10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>03)m – (                                           | 0<br>0<br>0<br>0<br>102)m];                |                                | (101)                                                                |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space c                                                                                                 | on factor fo  on | 0 loss hm 0 (Watts) = 0 calculated 0 virement for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 (100)m > 0 for applied 0 or month,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 (101)m 0 cable we 0 whole co                              | 645.67  0.85  548.95 eather re 709.09                                       | 0.91<br>461.37<br>egion, se                                         | 0.87<br>451.53<br>ee Table<br>599.52                               | 0 0 10) 0 (h) = 0.0             | 0<br>0<br>0<br>24 x [(10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>03)m - (                                           | 0 0 0 0 102)m]                             | x (41)m                        | (101)<br>(102)<br>(103)                                              |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space c set (104 (104)m=                                                                                | on factor fo  on | 0 loss hm 0 (Watts) = 0 calculated 0 uirement for if (104)m o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>(100)m x<br>0<br>for appli<br>0<br>or month,<br>< 3 × (98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 (101)m 0 cable we 0 whole come o                            | 0.85  548.95 eather re 709.09                                               | 0.91<br>461.37<br>egion, se<br>671.73                               | 520.95  0.87  451.53  e Table  599.52  ous ( kW                    | 0 0 10) 0 (h) = 0.0             | 0 0 0 24 x [(10 0 = Sum(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>03)m - (<br>0<br>1,0,4)                            | 0 0 0 0 102)m]                             | x (41)m<br>381.91              | (101)<br>(102)<br>(103)                                              |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space o set (104) (104)m= Cooled fra                                                                    | on factor fo  on | 0 loss hm 0 (Watts) = 0 calculated 0 uirement for if (104)m 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>(100)m x<br>0<br>for appli<br>0<br>or month,<br>< 3 × (98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 (101)m 0 cable we 0 whole come o                            | 0.85  548.95 eather re 709.09                                               | 0.91<br>461.37<br>egion, se<br>671.73                               | 520.95  0.87  451.53  e Table  599.52  ous ( kW                    | 0 0 10) 0 (h) = 0.0             | 0 0 0 24 x [(10 0 = Sum(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>03)m - (                                           | 0 0 0 0 102)m]                             | x (41)m                        | (101)<br>(102)<br>(103)                                              |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space o set (104) (104)m= Cooled fra                                                                    | on factor fo  on | 0 loss hm 0 (Watts) = 0 calculated 0 uirement for if (104)m 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>(100)m x<br>0<br>for appli<br>0<br>or month,<br>< 3 × (98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 (101)m 0 cable we 0 whole come o                            | 0.85  548.95 eather re 709.09                                               | 0.91<br>461.37<br>egion, se<br>671.73                               | 520.95  0.87  451.53  e Table  599.52  ous ( kW                    | 0 0 10) 0 (h) = 0.0             | 0 0 0 24 x [(10 0 = Sum(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>03)m - (<br>0<br>1,0,4)                            | 0 0 0 0 102)m]                             | x (41)m<br>381.91              | (101)<br>(102)<br>(103)                                              |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space c set (104 (104)m=  Cooled fra Intermitte                                                         | on factor fo  on | o loss hm 0 (Watts) = 0 calculated o direment for if (104)m o (Table 10t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>(100)m ><br>0<br>for appli<br>0<br>or month,<br>< 3 × (98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0 (101)m 0 cable we 0 whole co)m 0                          | 0.85<br>548.95<br>eather re<br>709.09<br>dwelling,                          | 0.91<br>461.37<br>egion, se<br>671.73<br>continue                   | 520.95  0.87  451.53  e Table 599.52  ous ( kW                     | 0 0 10) 0 Total f C =           | 0 0 0 24 x [(10 0 = Sum( cooled a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>03)m - (<br>0<br>1,0,4)<br>area ÷ (4                    | 0<br>0<br>0<br>102)m] 2                    | x (41)m<br>381.91              | (101)<br>(102)<br>(103)<br>(104)<br>(105)                            |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space c set (104 (104)m=  Cooled fra Intermitte (106)m=                                                 | on factor fo  on | 0 loss hm 0 (Watts) = 0 calculated 0 lirement for if (104)m o (Table 10t 0 loss)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>(100)m ><br>0<br>for appli<br>0<br>or month,<br>< 3 × (98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0 (101)m 0 cable we 0 whole co )m 0                         | 645.67  0.85  548.95  eather re 709.09  dwelling,  115.3                    | 0.91<br>461.37<br>egion, se<br>671.73<br>continue<br>156.5          | 520.95  0.87  451.53 ee Table 599.52  ous ( kW  110.1              | 0 0 10) 0 Total f C =           | 0 0 0 24 x [(10 0 = Sum(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>03)m - (<br>0<br>1,0,4)<br>area ÷ (4                    | 0<br>0<br>0<br>102)m];                     | x (41)m<br>381.91              | (101)<br>(102)<br>(103)                                              |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space c set (104 (104)m=  Cooled fra Intermitte (106)m=                                                 | on factor fo  on factor gains  on factor fo  on factor factor  on factor fo  on fact | 0 loss hm 0 (Watts) = 0 calculated 0 lirement for if (104)m o (Table 10t 0 loss)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>(100)m ><br>0<br>for appli<br>0<br>or month,<br>< 3 × (98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0 (101)m 0 cable we 0 whole co )m 0                         | 645.67  0.85  548.95  eather re 709.09  dwelling,  115.3                    | 0.91<br>461.37<br>egion, se<br>671.73<br>continue<br>156.5          | 520.95  0.87  451.53 ee Table 599.52  ous ( kW  110.1              | 0 0 10) 0 Total f C =           | 0 0 0 24 x [(10 0 = Sum( cooled a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>03)m - (<br>0<br>1,0,4)<br>area ÷ (4                    | 0<br>0<br>0<br>102)m];                     | x (41)m<br>381.91              | (101)<br>(102)<br>(103)<br>(104)<br>(105)                            |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space o set (104) (104)m= Cooled fro Intermitte (106)m= Space co                                        | on factor fo  on factor fo  on factor fo  on factor fo  on factor  on factor fo  on factor  on factor fo  on factor  on f | o loss hm o (Watts) = o calculated o dif (104)m o (Table 10b) o calculated o (104)m o (Table 10b) o calculated o (Table 10b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>(100)m ><br>0<br>for appli<br>0<br>or month,<br>< 3 × (98<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0 (101)m 0 cable we 0 whole co)m 0                          | 645.67  0.85  548.95 eather re 709.09 dwelling,  115.3  0.25  × (105)       | 0.91  461.37 egion, se 671.73  continue 156.5  0.25  × (106)r       | 520.95  0.87  451.53  The Table of Sp9.52  599.52  110.1  0.25     | 0 0 10) 0 Total f C = 0 Total   | 0 0 0 24 x [(10 0 = Sum( cooled :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,0,4)<br>area ÷ (4<br>0<br>(1,0,4) | 0<br>0<br>0<br>102)m ] 2<br>0<br>=<br>4) = | x (41)m<br>381.91              | (101)<br>(102)<br>(103)<br>(104)<br>(105)                            |
| Utilisatio (101)m= Useful Ic (102)m= Gains (s (103)m= Space c set (104 (104)m=  Cooled fra Intermitte (106)m=  Space co (107)m=                               | on factor fo  on factor gains  on factor fo  on factor fo  on factor fo  on factor fo  on factor fac | o loss hm o (Watts) = o calculated o dif (104)m o calculated o o calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 (100)m > 0 (100)m > 0 for applii 0 0 or month, < 3 × (98 0 ) 0 0 composed on the composed of | 0 (101)m 0 cable we 0 whole c )m 0  (104)m 0                  | 645.67  0.85  548.95 eather re 709.09 dwelling,  115.3  0.25  × (105)       | 0.91  461.37 egion, se 671.73  continue 156.5  0.25  × (106)r       | 520.95  0.87  451.53  The Table of Sp9.52  599.52  110.1  0.25     | 0 0 10) 0 Total 0 Total 0 Total | 0 0 0 24 x [(10 0 = Sum( cooled :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,0,4)<br>area ÷ (4<br>0<br>(1,0,4) | 0 0 0 0 102)m]; 0 = 1) = 0                 | x (41)m<br>381.91<br>1<br>0    | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Utilisatio (101)m= Useful Ic (102)m= Gains (s (103)m= Space c set (104 (104)m=  Cooled fra Intermitte (106)m=  Space co (107)m=                               | on factor fo  on factor fo  on factor fo  on factor fo  on factor  on factor gains  on factor  on f | orement in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>(100)m ><br>0<br>for appli<br>0<br>or month,<br>< 3 × (98<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 (101)m 0 cable we 0 whole c )m 0  (104)m 0  year            | 645.67  0.85  548.95 eather re 709.09 dwelling,  115.3  0.25  × (105) 28.83 | 0.91  461.37 egion, se 671.73  continue 156.5  0.25  × (106)r 39.13 | 520.95  0.87  451.53  The Table see Table see 110.1  0.25  m 27.53 | 0 0 10) 0 Total 0 Total (107)   | 0 0 0 24 x [(10 0 = Sum( cooled : 0 = Sum( ) 0 = Sum( ) (4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1,0,4)<br>area ÷ (4<br>0<br>(1,0,4) | 0 0 0 0 102)m]; 0 = 1) = 0                 | x (41)m<br>381.91<br>1         | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Utilisatio (101)m= Useful lo (102)m= Gains (s (103)m= Space c set (104 (104)m=  Cooled fra Intermitte (106)m=  Space co (107)m=  Space co                     | on factor for 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | loss hm loss h | 0<br>(100)m ><br>0<br>for appli<br>0<br>or month,<br>< 3 × (98<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 (101)m 0 cable we 0 whole c )m 0  (104)m 0  year            | 645.67  0.85  548.95 eather re 709.09 dwelling,  115.3  0.25  × (105) 28.83 | 0.91  461.37 egion, se 671.73  continue 156.5  0.25  × (106)r 39.13 | 520.95  0.87  451.53  The Table see Table see 110.1  0.25  m 27.53 | 0 0 10) 0 Total 0 Total (107)   | 0 0 0 24 x [(10 0 = Sum( cooled : 0 = Sum( 0 = Sum( 0 + S | 0 0 0 0 0 0 0 1,0,4) area ÷ (4 0 1,0,4) 0 1,0,7)                       | 0 0 0 0 102)m]; 0 = 1) = 0                 | x (41)m  381.91 1 0  95.48 1.9 | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)<br>(107)<br>(108) |
| Utilisatio (101)m= Useful Ic (102)m= Gains (s (103)m= Space c set (104 (104)m=  Cooled fra Intermitte (106)m=  Space co (107)m=  Space co 8f. Fabric Fabric E | on factor fo  on factor fo  on factor fo  on factor fo  on factor  on factor gains  on factor  on f | loss hm   0   (Watts) =   0   calculated   0   direment for   0   (Table 10t   0   rement for   0   rement in   ficiency (ciency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 (100)m > 0 (100)m > 0 for applii 0 0 or month, < 3 × (98 0 0 ) 0 cmonth = 0 0 kWh/m²/yalculatec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 (101)m 0 cable we 0 whole o )m 0  (104)m 0  year lonly un | 645.67  0.85  548.95 eather re 709.09 dwelling,  115.3  0.25  × (105) 28.83 | 0.91  461.37 egion, se 671.73  continue 156.5  0.25  × (106)r 39.13 | 520.95  0.87  451.53  The Table see Table see 110.1  0.25  m 27.53 | 0 0 10) 0 Total 0 Total (107)   | 0 0 0 24 x [(10 0 = Sum( cooled : 0 = Sum( ) 0 = Sum( ) (4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0 0 0 0 0 1,0,4) area ÷ (4 0 1,0,4) 0 1,0,7)                       | 0 0 0 0 102)m]; 0 = 1) = 0                 | x (41)m<br>381.91<br>1<br>0    | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)                   |

| Assessor Name: Chris Hocknell: Stroma Number: STRO016363 Software Version: Version: 1.0.4.16    Record   Stroma Number: Stroma SAP 2012   Stroma Number: Software Version: Version: 1.0.4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                            | l Isar I               | )etails: _    |               |             |          |           |                       |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------|---------------|---------------|-------------|----------|-----------|-----------------------|----------------|
| Software Name:   Stroma FSAP 2012   Software Version:   Version: 1.0.4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Assessor Name:                          | Chris Hocknell                             | – <del>- 0</del> 361 L |               | a Num         | ber:        |          | STRO      | 016363                |                |
| ## Action   Control   Cont                |                                         |                                            |                        |               |               |             |          |           |                       |                |
| Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | F                                          | Property               | Address       | : Apartm      | nent 2      |          |           |                       |                |
| Area(m/*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | projono:                                   |                        |               |               |             |          |           |                       |                |
| Ground floor   Ground floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)   Ground floor area TFA = (1a)+(1b)+(1c)+(1d)+(1c)+(1d)+(1d)+(1d)+(1d)+(1d)+(1d)+(1d)+(1d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Overall dwelling diffie              | : IISIUIIS.                                | Are                    | a(m²)         |               | Av. He      | iaht(m)  |           | Volume(m <sup>3</sup> | <sup>3</sup> ) |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ground floor                            |                                            |                        |               | (1a) x        |             |          | (2a) =    | ·                     | <u>^</u>       |
| 2. Ventilation rate:    main   heating   heati                | Total floor area TFA = (1               | a)+(1b)+(1c)+(1d)+(1e)+(1                  | n)                     | 59.25         | (4)           |             |          | _         |                       |                |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dwelling volume                         |                                            |                        |               | I<br>(3a)+(3b | )+(3c)+(3c  | d)+(3e)+ | .(3n) =   | 159.98                | (5)            |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                            |                        |               |               |             |          |           |                       |                |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. Ventuation rate.                     |                                            | ry                     | other         |               | total       |          |           | m³ per hou            | ır             |
| Number of intermittent fans    2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of chimneys                      |                                            | + [                    | 0             | ] = [         | 0           | X 4      | 40 =      | 0                     | (6a)           |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number of open flues                    | 0 + 0                                      | <b></b>                | 0             | Ī = Ē         | 0           | x        | 20 =      | 0                     | (6b)           |
| Number of flueless gas fires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of intermittent fa               | ins                                        |                        |               |               | 2           | x        | 10 =      | 20                    | (7a)           |
| Air changes per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number of passive vents                 | <b>;</b>                                   |                        |               |               | 0           | x        | 10 =      | 0                     | (7b)           |
| Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of flueless gas fi               | ires                                       |                        |               |               | 0           | x 4      | 40 =      | 0                     | (7c)           |
| Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                            |                        |               | _             |             |          |           |                       |                |
| If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)   Number of storeys in the dwelling (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                            |                        |               | _             |             |          | Air ch    | nanges per ho         | _              |
| Number of storeys in the dwelling (ns)   Additional infiltration   (g)-1)x0.1 =   0 (10) (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | •                                          |                        |               | continue fr   |             |          | ÷ (5) =   | 0.13                  | (8)            |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction  if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35  If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0  If no draught lobby, enter 0.05, else enter 0  Percentage of windows and doors draught stripped  Window infiltration  0.25 - [0.2 × (14) + 100] =  0.15)  Infiltration rate  (8) + (10) + (11) + (12) + (13) + (15) =  0.16)  Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then (18) = [(17) + 20] + (8), otherwise (18) = (16)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor  (20) = 1 - [0.075 × (19)] =  0.78  (20)  Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7  (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                            | <i>ia to (11)</i> ,    | ouror wise t  | oonanac n     | 0111 (0) 10 | (10)     |           | 0                     | (9)            |
| if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35  If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0  If no draught lobby, enter 0.05, else enter 0  Percentage of windows and doors draught stripped  Window infiltration  0.25 - [0.2 × (14) * 100] = 0  Infiltration rate  (8) + (10) + (11) + (12) + (13) + (15) = 0  If based on air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor  (20) = 1 - [0.075 × (19)] = 0.78  (20)  Infiltration rate incorporating shelter factor  (21) = (18) × (20) = 0.29  Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7  (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Additional infiltration                 |                                            |                        |               |               |             | [(9)     | -1]x0.1 = | 0                     | (10)           |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0   0 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                            |                        |               | •             | ruction     |          |           | 0                     | (11)           |
| If no draught lobby, enter 0.05, else enter 0  Percentage of windows and doors draught stripped  Window infiltration  0.25 - [0.2 × (14) + 100] = 0 (15)  Infiltration rate  (8) + (10) + (11) + (12) + (13) + (15) = 0 (16)  Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) (17)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor  (20) = 1 - [0.075 × (19)] = 0.78 (20)  Infiltration rate incorporating shelter factor  (21) = (18) × (20) = 0.29 (21)  Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7  (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • • • • • • • • • • • • • • • • • • • • | •                                          | o tne grea             | ter wall are  | ea (aπer      |             |          |           |                       |                |
| Percentage of windows and doors draught stripped  Window infiltration  0.25 - [0.2 x (14) + 100] = 0 (15)  Infiltration rate  (8) + (10) + (11) + (12) + (13) + (15) = 0 (16)  Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor  (20) = 1 - [0.075 x (19)] = 0.78 (20)  Infiltration rate incorporating shelter factor  (21) = (18) x (20) = 0.29 (21)  Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7  (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                       | ,                                          | .1 (seale              | ed), else     | enter 0       |             |          |           | 0                     | (12)           |
| Window infiltration       0.25 - [0.2 x (14) + 100] =       0       (15)         Infiltration rate       (8) + (10) + (11) + (12) + (13) + (15) =       0       (16)         Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area       5       (17)         If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)       0.38       (18)         Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used       3       (19)         Shelter factor       (20) = 1 - [0.075 x (19)] =       0.78       (20)         Infiltration rate incorporating shelter factor       (21) = (18) x (20) =       0.29       (21)         Infiltration rate modified for monthly wind speed       Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec       Dec         Monthly average wind speed from Table 7       (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7       4.7         Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                       |                                            |                        |               |               |             |          |           | 0                     | =              |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)  Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then $(18) = [(17) + 20] + (8)$ , otherwise $(18) = (16)$ 0.38 (18)  Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.78$ (20)  Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.29$ (21)  Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7  (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor $(22a)m = (22)m \div 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                       | s and doors draught stripped               |                        | 0 25 - [0 2   | 9 x (14) ÷ 1  | 1001 =      |          |           |                       | = ' '          |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor $(20) = 1 - [0.075 \times (19)] = $ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = $ Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7 $(22)m = 5.1  5  4.9  4.4  4.3  3.8  3.8  3.7  4  4.3  4.5  4.7$ Wind Factor $(22a)m = (22)m \div 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                            |                        |               | . ,           | _           | + (15) = |           |                       | =              |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.78  (20)$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.29  (21)$ Infiltration rate modified for monthly wind speed  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Monthly average wind speed from Table 7 $(22)m = 5.1  5  4.9  4.4  4.3  3.8  3.8  3.7  4  4.3  4.5  4.7$ Wind Factor $(22a)m = (22)m \div 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | q50, expressed in cubic metro              | es per ho              | our per s     | quare m       | etre of e   | envelope | area      |                       | ≓` ′           |
| Number of sides sheltered Shelter factor $ (20) = 1 - [0.075 \times (19)] = 0.78 $ (20) $ [10,075] = 0.78 $ (20) $ [21] = (18) \times (20) = 0.29 $ (21) $ [10,075] = 0.78 $ (20) $ [21] = (18) \times (20) = 0.29 $ (21) $ [10,075] = 0.78 $ (20) $ [21] = 0.78 $ (20) $ [21] = 0.78 $ (21) $ [21] = 0.78 $ (21) $ [22] = 0.29 $ (21) $ [21] = 0.78 $ (22) $ [21] = 0.78 $ (23) $ [21] = 0.78 $ (24) $ [22] = 0.78 $ (25) $ [23] = 0.78 $ (26) $ [22] = 0.78 $ (27) $ [22] = 0.78 $ (28) $ [23] = 0.78 $ (29) $ [23] = 0.78 $ (20) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (22) $ [23] = 0.78 $ (23) $ [23] = 0.78 $ (24) $ [23] = 0.78 $ (25) $ [23] = 0.78 $ (26) $ [23] = 0.78 $ (27) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (29) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (22) $ [23] = 0.78 $ (23) $ [23] = 0.78 $ (24) $ [23] = 0.78 $ (25) $ [23] = 0.78 $ (26) $ [23] = 0.78 $ (27) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (29) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (22) $ [23] = 0.78 $ (23) $ [23] = 0.78 $ (24) $ [23] = 0.78 $ (25) $ [23] = 0.78 $ (26) $ [23] = 0.78 $ (27) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (29) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (22) $ [23] = 0.78 $ (23) $ [23] = 0.78 $ (24) $ [23] = 0.78 $ (25) $ [23] = 0.78 $ (26) $ [23] = 0.78 $ (27) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (29) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (21) $ [23] = 0.78 $ (22) $ [23] = 0.78 $ (23) $ [23] = 0.78 $ (24) $ [23] = 0.78 $ (25) $ [23] = 0.78 $ (26) $ [23] = 0.78 $ (27) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.78 $ (28) $ [23] = 0.$ | If based on air permeabil               | lity value, then $(18) = [(17) \div 20] +$ | (8), otherw            | vise (18) = ( | (16)          |             |          |           | 0.38                  | (18)           |
| Shelter factor $ (20) = 1 - [0.075 \times (19)] = 0.78 $ (20) Infiltration rate incorporating shelter factor $ (21) = (18) \times (20) = 0.29 $ (21) Infiltration rate modified for monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                            | ne or a de             | gree air pe   | rmeability    | is being u  | sed      |           |                       |                |
| Infiltration rate incorporating shelter factor $ (21) = (18) \times (20) =                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <b>2</b> 0                                 |                        | (20) = 1 -    | [0.075 x (*   | 19)] =      |          |           |                       | <b>→</b> ' ' ' |
| Infiltration rate modified for monthly wind speed   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | ting shelter factor                        |                        | (21) = (18    | ) x (20) =    | <i>7</i> -  |          |           |                       | =              |
| Monthly average wind speed from Table 7 (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                       | •                                          |                        |               |               |             |          |           | 0.20                  | ` ′            |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7  Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jan Feb                                 | Mar Apr May Jun                            | Jul                    | Aug           | Sep           | Oct         | Nov      | Dec       |                       |                |
| Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monthly average wind sp                 | peed from Table 7                          |                        |               |               |             |          |           | _                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (22)m= 5.1 5                            | 4.9 4.4 4.3 3.8                            | 3.8                    | 3.7           | 4             | 4.3         | 4.5      | 4.7       |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wind Factor (22a)m = (2                 | 2)m ÷ 4                                    |                        |               |               |             |          |           |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | <del></del>                                | 0.95                   | 0.92          | 1             | 1.08        | 1.12     | 1.18      |                       |                |

| Calculate effective air change rate for the applicable cases   Calculate effective air change rate for the applicable cases   Calculate effective air change rate for the applicable cases   Calculate effective air change rate for the applicable cases   Calculate effective air change rate for the applicable cases   Calculate effective air change rate   Calculate effective air change rate   Calculate   Calculate | Adjusted infiltra                                                                                                                            | ation rate                                                                   | allowi                                                                                   | ng for sh                                                     | ıelter an                                           | d wind s                                          | peed) =                                          | (21a) x                | (22a)m                                               |                                               |                      |                |                         |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------------|------------------------------------------------------|-----------------------------------------------|----------------------|----------------|-------------------------|-----------------------------------------------|
| If mechanical ventilation:    California   Formation   Formation | 0.37                                                                                                                                         | 0.36                                                                         | 0.36                                                                                     | 0.32                                                          | 0.31                                                | 0.28                                              | 0.28                                             | 0.27                   | 0.29                                                 | 0.31                                          | 0.33                 | 0.34           | ]                       |                                               |
| If exhaust air heat pump using Appendix N, (28b) = (23a) × Fmv (equation (NS)), otherwise (23b) = (23a)    (23c) If balanced with heat recovery; efficiency in & allowing for in-use factor (from Table 4h) = 0    (24a) may 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |                                                                              | •                                                                                        | rate for t                                                    | he appli                                            | cable ca                                          | se                                               | •                      | •                                                    |                                               |                      | •              |                         |                                               |
| The balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                              |                                                                                          | andiv N (2                                                    | 3h) = (23c                                          | a) v Emy (c                                       | aguation (1                                      | VEVV otho              | nvico (23h                                           | ı) = (23a)                                    |                      |                |                         | ==                                            |
| a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) × [1 - (23c) + 100] (24a)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                              |                                                                                          |                                                               |                                                     |                                                   |                                                  |                        |                                                      | ) – (23a)                                     |                      |                |                         |                                               |
| (24a)   (24a)   (24a)   (24b)   (24b |                                                                                                                                              |                                                                              | -                                                                                        | •                                                             | _                                                   |                                                   |                                                  |                        |                                                      | Ob.)                                          | 20h\ v [             | 1 (00.0)       |                         | (23c)                                         |
| b) If balanced mechanical ventilation without heat recovery (MV) (24b)m = (22b)m + (23b)   (24b)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · -                                                                                                                                          |                                                                              | ı                                                                                        |                                                               |                                                     |                                                   | <del>-                                    </del> | <del>- ^ `</del>       | ŕ                                                    | <del>' i</del>                                | · -                  | <del>```</del> | ) + 100j<br>]           | (24a)                                         |
| C24b m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ` '                                                                                                                                          |                                                                              |                                                                                          |                                                               |                                                     |                                                   |                                                  |                        |                                                      |                                               |                      |                | J                       | (210)                                         |
| c) If whole house extract ventilation or positive input ventilation from outside if (22b)m < 0.5 × (23b), then (24c) = (23b); otherwise (24c) = (22b) m + 0.5 × (23b)  (24c)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |                                                                              |                                                                                          | ı — ı                                                         |                                                     |                                                   | <del>-                                    </del> | <del></del>            | ŕ                                                    | <del>r ´ `</del> i                            |                      | Ι ο            | 1                       | (24b)                                         |
| The content of the  |                                                                                                                                              |                                                                              |                                                                                          |                                                               |                                                     | <u> </u>                                          |                                                  | <u> </u>               |                                                      |                                               |                      |                | J                       | (=)                                           |
| C24c)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                            |                                                                              |                                                                                          |                                                               | •                                                   | •                                                 |                                                  |                        |                                                      | .5 × (23b                                     | )                    |                |                         |                                               |
| The control of the  |                                                                                                                                              |                                                                              | <del>`                                    </del>                                         | <u> </u>                                                      | <u> </u>                                            | r <del>i</del>                                    | <u> </u>                                         | ŕ                      | ŕ                                                    | <del>`</del>                                  |                      | 0              | ]                       | (24c)                                         |
| The control of the  | d) If natural                                                                                                                                | ventilatio                                                                   | n or wh                                                                                  | ole hous                                                      | e positiv                                           | ve input                                          | ventilatio                                       | on from I              | oft                                                  |                                               |                      |                | J                       |                                               |
| Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) (25)    25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                            |                                                                              |                                                                                          |                                                               |                                                     | •                                                 |                                                  |                        |                                                      | 0.5]                                          |                      |                | _                       |                                               |
| Case    | (24d)m= 0.57                                                                                                                                 | 0.57                                                                         | 0.56                                                                                     | 0.55                                                          | 0.55                                                | 0.54                                              | 0.54                                             | 0.54                   | 0.54                                                 | 0.55                                          | 0.55                 | 0.56           |                         | (24d)                                         |
| 3. Heat losses and heat loss parameter:  ELEMENT Gross Openings area (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Effective air                                                                                                                                | change r                                                                     | rate - en                                                                                | iter (24a                                                     | ) or (24b                                           | o) or (24                                         | c) or (24                                        | d) in box              | x (25)                                               |                                               |                      |                | _                       |                                               |
| ELEMENT         Gross area (m²)         Openings area (m²)         Net Area A , m²         U-value W/m2K         A X U (W/K)         k-value kJ/m²-K         A X k kJ/K           Doors         2 x 1 = 2         (26)           Windows Type 1         4.89 x1/[1/(1.4) + 0.04] = 6.48         (27)           Windows Type 2         2.49 x1/[1/(1.4) + 0.04] = 3.3         (27)           Windows Type 3         1.9 x1/[1/(1.4) + 0.04] = 2.52         (27)           Windows Type 4         2.58 x1/[1/(1.4) + 0.04] = 3.42         (27)           Rooflights         0.9523603 x1/[1/(1.7) + 0.04] = 1.619012         (27)           Walls Type1 38.95 11.86 27.09 x 0.18 = 4.88         (29)           Walls Type2 45.47 2 43.47 x 0.18 = 7.82         (29)           Roof 59.25 0.95 58.3 x 0.13 = 7.58         (30)           Total area of elements, m²         143.67           Party floor         59.25         (31)           ** include the areas on both sides of internal walls and partitions           Fabric heat loss, W/K = S (A x U)         (26)(30) + (32) = 1.33         (33)           Heat capacity Cm = S(A x k)         (26)(30) + (32) = 1.33         (33)           Thermal mass parameter (TMP = Cm + TFA) in kJ/m²K         Indicative value: Medium         250         (35)           For design assessments where the details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (25)m= 0.57                                                                                                                                  | 0.57                                                                         | 0.56                                                                                     | 0.55                                                          | 0.55                                                | 0.54                                              | 0.54                                             | 0.54                   | 0.54                                                 | 0.55                                          | 0.55                 | 0.56           |                         | (25)                                          |
| ELEMENT         Gross area (m²)         Openings area (m²)         Net Area A , m²         U-value W/m2K         A X U (W/K)         k-value kJ/m²-K         A X k kJ/K           Doors         2 x 1 = 2         (26)           Windows Type 1         4.89 x1/[1/(1.4) + 0.04] = 6.48         (27)           Windows Type 2         2.49 x1/[1/(1.4) + 0.04] = 3.3         (27)           Windows Type 3         1.9 x1/[1/(1.4) + 0.04] = 2.52         (27)           Windows Type 4         2.58 x1/[1/(1.4) + 0.04] = 3.42         (27)           Rooflights         0.9523603 x1/[1/(1.7) + 0.04] = 1.619012         (27)           Walls Type1 38.95 11.86 27.09 x 0.18 = 4.88         (29)           Walls Type2 45.47 2 43.47 x 0.18 = 7.82         (29)           Roof 59.25 0.95 58.3 x 0.13 = 7.58         (30)           Total area of elements, m²         (143.67)           Party wall         25.95 x 0 = 0         (32)           Party floor         59.25         0.95 36.33           ** ionidows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2           *** include the areas on both sides of internal walls and partitions           Fabric heat loss, W/K = S (A x U)         (26)(30) + (32) =         39.52 33)         33)           Thermal mass parameter (TMP = Cm + TFA) in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3. Heat losses                                                                                                                               | s and he                                                                     | at loss r                                                                                | paramete                                                      | er:                                                 |                                                   |                                                  |                        |                                                      |                                               |                      |                |                         |                                               |
| Doors  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              | Gros                                                                         | S                                                                                        | Openin                                                        | gs                                                  |                                                   |                                                  |                        |                                                      |                                               | ()                   |                |                         |                                               |
| Windows Type 1  4.89  x1/[1/(1.4) + 0.04] = 6.48  (27)  Windows Type 2  2.49  x1/[1/(1.4) + 0.04] = 3.3  (27)  Windows Type 3  1.9  x1/[1/(1.4) + 0.04] = 2.52  (27)  Windows Type 4  2.58  x1/[1/(1.4) + 0.04] = 3.42  (27)  Rooflights  0.9523603  x1/[1/(1.7) + 0.04] = 1.619012  (27b)  Walls Type 1  38.95  11.86  27.09  x 0.18  = 4.88  (29)  Walls Type 2  45.47  2  43.47  x 0.18  = 7.82  (29)  Roof  59.25  0.95  58.3  x 0.13  = 7.58  (30)  Total area of elements, m²  143.67  Party wall  25.95  x 0 = 0  (32)  Party floor  59.25  39.52  30.30  * tor windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2  ** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A x U)  (26)(30) + (32) = 39.52  (35)  Heat capacity Cm = S(A x k)  ((28)(30) + (32) + (32a)(32e) = 16820.08  (34)  Thermal mass parameter (TMP = Cm + TFA) in kJ/m²K  Indicative Values Medium  250  (35)  For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Doors                                                                                                                                        |                                                                              | ,                                                                                        |                                                               |                                                     |                                                   |                                                  |                        | — ı                                                  | •                                             | -,<br>               |                |                         |                                               |
| Windows Type 3    2.49   x1/[1/(1.4) + 0.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Windows Type                                                                                                                                 | <u>:</u> 1                                                                   |                                                                                          |                                                               |                                                     |                                                   |                                                  | <u> </u>               | 0.04] =                                              |                                               | $\dashv$             |                |                         | , ,                                           |
| Nindows Type 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |                                                                              |                                                                                          |                                                               |                                                     | 2 49                                              | $=$ $_{x^1}$                                     | /[1/( 1.4 )+           | 0.04] =                                              |                                               | ╡                    |                |                         | , ,                                           |
| Windows Type 4  Rooflights  0.9523603  x1/[1/(1.4) + 0.04] = 3.42  (27)  Rooflights  0.9523603  x1/[1/(1.7) + 0.04] = 1.619012  (27b)  Walls Type 1 38.95  11.86  27.09  x 0.18 = 4.88  (29)  Walls Type 2 45.47  2 43.47  x 0.18 = 7.82  (29)  Roof  59.25  0.95  58.3  x 0.13 = 7.58  (30)  Total area of elements, m²  143.67  (31)  Party wall  25.95  x 0 = 0  (32)  Party floor  *for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2  *** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A x U)  (26)(30) + (32) = 39.52  (33)  Heat capacity Cm = S(A x k)  ((28)(30) + (32) + (32a)(32e) = 16820.08  (34)  Thermal mass parameter (TMP = Cm + TFA) in kJ/m²K  Indicative Value: Medium  250  (35)  For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K  11.3  (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •                                                                                                                                          |                                                                              |                                                                                          |                                                               |                                                     |                                                   | _                                                |                        |                                                      |                                               | ╡                    |                |                         | , ,                                           |
| Rooflights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                                                                                                                          |                                                                              |                                                                                          |                                                               |                                                     |                                                   | = ,                                              |                        |                                                      |                                               | $\dashv$             |                |                         | , ,                                           |
| Walls Type1 38.95 11.86 27.09 x 0.18 = 4.88 (29)  Walls Type2 45.47 2 43.47 x 0.18 = 7.82 (29)  Roof 59.25 0.95 58.3 x 0.13 = 7.58 (30)  Total area of elements, m² 143.67 (31)  Party wall 25.95 x 0 = 0 (32)  Party floor 59.25 (32a)  * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2  *** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A x U) (26)(30) + (32) = 39.52 (33)  Heat capacity Cm = S(A x k) ((28)(30) + (32) + (32a)(32e) = 16820.08 (34)  Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K Indicative Value: Medium 250 (35)  For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •                                                                                                                                          | •                                                                            |                                                                                          |                                                               |                                                     |                                                   | = .                                              |                        |                                                      |                                               |                      |                |                         |                                               |
| Walls Type2 $45.47$ $2$ $43.47$ $\times$ $0.18$ $=$ $7.82$ $(29)$ Roof $59.25$ $0.95$ $58.3$ $\times$ $0.13$ $=$ $7.58$ $(30)$ Total area of elements, m² $(31)$ Party wall $25.95$ $\times$ $0$ $=$ $0$ $(32)$ Party floor $59.25$ $\times$ $0$ $=$ $0$ $(32)$ $\times$ * for windows and roof windows, use effective window U-value calculated using formula $1/[(1/U-value)+0.04]$ as given in paragraph $3.2$ *** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A $\times$ U) $(26)(30) + (32) =$ $(33)$ Heat capacity Cm = S(A $\times$ K) $((28)(30) + (32) + (32a)(32e) =$ $(33)$ Thermal mass parameter (TMP = Cm $\div$ TFA) in kJ/m²K Indicative Value: Medium $(250)$ $(35)$ For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L $\times$ Y) calculated using Appendix K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ū                                                                                                                                            | 28.00                                                                        |                                                                                          | 11.00                                                         |                                                     |                                                   |                                                  |                        |                                                      |                                               | <del>-</del>         |                |                         |                                               |
| Roof 59.25 0.95 58.3 x 0.13 = 7.58 (30)  Total area of elements, m² 143.67 (31)  Party wall 25.95 x 0 = 0 (32)  Party floor 59.25 (32a)  * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2  ** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A x U) (26)(30) + (32) = (32a)(32e) = (33a)  Heat capacity Cm = S(A x k) ((28)(30) + (32) + (32a)(32e) = (35a)  Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K Indicative Value: Medium 250 (35)  For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                          |                                                                              |                                                                                          |                                                               | <u>`</u>                                            |                                                   | =                                                |                        | =                                                    |                                               | <u> </u>             |                | -                       |                                               |
| Total area of elements, m²  143.67  Party wall  25.95 x 0 = 0 (32)  Party floor  59.25  * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2  ** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A x U)  Heat capacity Cm = S(A x k)  (26)(30) + (32) = 39.52 (33)  Heat capacity Cm = S(A x k)  (128)(30) + (32) + (32a)(32e) = 16820.08 (34)  Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K  Indicative Value: Medium  250 (35)  For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                          |                                                                              |                                                                                          |                                                               | =                                                   |                                                   | =                                                |                        | =                                                    |                                               | -     -              |                | ┥                       |                                               |
| Party wall $ 25.95 \times 0 = 0 $ (32) Party floor $ 59.25 \times 0 = 0 $ (32a) * for windows and roof windows, use effective window U-value calculated using formula $1/[(1/U-value)+0.04]$ as given in paragraph 3.2 *** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A x U) (26)(30) + (32) = 39.52 (33)  Heat capacity Cm = S(A x k) ((28)(30) + (32) + (32a)(32e) = 16820.08 (34)  Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K Indicative Value: Medium 250 (35)  For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROOI                                                                                                                                         | 1 59.25                                                                      | 5                                                                                        | 1 0 0 5                                                       |                                                     |                                                   | l X                                              |                        |                                                      | 7 5 2                                         |                      |                |                         | (30)                                          |
| Party floor  * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2  ** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A x U)  Heat capacity Cm = S(A x k)  (26)(30) + (32) =  (128)(30) + (32) + (32a)(32e) =  (16820.08)  (34)  Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K  Indicative Value: Medium  250  (35)  For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T-1-1                                                                                                                                        |                                                                              |                                                                                          | 0.93                                                          |                                                     | 58.3                                              | <b>=</b>   ^ _                                   | 0.13                   | =                                                    | 7.50                                          |                      |                |                         |                                               |
| * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2  ** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A x U) (26)(30) + (32) = 39.52 (33)  Heat capacity Cm = S(A x k) ((28)(30) + (32) + (32a)(32e) = 16820.08 (34)  Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K Indicative Value: Medium 250 (35)  For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                              | m²                                                                                       | 0.93                                                          |                                                     |                                                   | =                                                | 0.13                   | =                                                    | 7.50                                          |                      |                |                         |                                               |
| ** include the areas on both sides of internal walls and partitions  Fabric heat loss, W/K = S (A x U)   Heat capacity Cm = S(A x k)   Thermal mass parameter (TMP = Cm $\div$ TFA) in kJ/m²K   Indicative Value: Medium   Thermal bridges: S (L x Y) calculated using Appendix K   (26)(30) + (32) = 39.52 (33) (34) (32) + (32a)(32e) = 16820.08 (34) (35) (35) (35) (35) (35) (35) (35) (35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Party wall                                                                                                                                   |                                                                              | m²                                                                                       | 0.90                                                          |                                                     | 143.6                                             | 7                                                |                        |                                                      |                                               | _                    |                |                         | (32)                                          |
| Fabric heat loss, W/K = S (A x U) (26)(30) + (32) = 39.52 (33)<br>Heat capacity Cm = S(A x k) ((28)(30) + (32) + (32a)(32e) = 16820.08 (34)<br>Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K Indicative Value: Medium 250 (35)<br>For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.<br>Thermal bridges : S (L x Y) calculated using Appendix K 11.3 (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Party wall<br>Party floor                                                                                                                    | lements,                                                                     |                                                                                          |                                                               |                                                     | 143.6<br>25.95<br>59.25                           | 7 x                                              | 0                      | =                                                    | 0                                             | <br>] [<br>]         |                |                         | (32)                                          |
| Heat capacity $Cm = S(A \times K)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Party wall Party floor * for windows and                                                                                                     | lements,                                                                     | ows, use e                                                                               | effective wi                                                  | ndow U-va                                           | 143.6<br>25.95<br>59.25                           | 7 x                                              | 0                      | =                                                    | 0                                             | [<br>                | paragraph      | ] []<br>] 3.2           | (32)                                          |
| Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K  Indicative Value: Medium  250  (35)  For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K  11.3  (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Party wall Party floor * for windows and ** include the area                                                                                 | lements, roof windo                                                          | ows, use e<br>sides of in                                                                | offective win                                                 | ndow U-va                                           | 143.6<br>25.95<br>59.25                           | 7 X                                              | 0 formula 1            | =  <br>/[(1/U-valu                                   | 0                                             | [<br>[<br>s given in | paragraph      |                         | (32)<br>(32a)                                 |
| For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.  Thermal bridges: S (L x Y) calculated using Appendix K  11.3  (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Party wall Party floor * for windows and ** include the area Fabric heat los                                                                 | roof windo<br>as on both s                                                   | ows, use e<br>sides of in<br>S (A x                                                      | offective win                                                 | ndow U-va                                           | 143.6<br>25.95<br>59.25                           | 7 X                                              | 0 formula 1            | =  <br>/[(1/U-valu<br>) + (32) =                     | 0<br>ue)+0.04] a                              |                      |                | 39.52                   | (32)<br>(32a)<br>(33)                         |
| Thermal bridges : S (L x Y) calculated using Appendix K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity                                                   | roof windo<br>as on both s<br>as, W/K =<br>Cm = S(A                          | ows, use e<br>sides of in<br>S (A x<br>A x k )                                           | offective winternal wall                                      | ndow U-va                                           | 143.6<br>25.95<br>59.25<br>alue calcul<br>titions | 7 X                                              | 0 formula 1            | =  <br>/[(1/U-valu<br>) + (32) =<br>((28).           | 0<br>ue)+0.04] a<br>(30) + (32                | ) + (32a).           |                | 39.52<br>16820.0        | (32)<br>(32a)<br>(33)<br>(34)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity of Thermal mass For design assess                 | roof windo as on both s as, W/K = Cm = S(A paramet                           | ows, use e<br>sides of in<br>S (A x<br>A x k )<br>ter (TMF<br>ere the det                | offective winternal wall  U)  P = Cm ÷  tails of the          | ndow U-va<br>Is and part                            | 143.6 25.95 59.25 alue calcul titions             | 7 X                                              | 0  formula 1  (26)(30) | =  <br>/[(1/U-valu<br>) + (32) =<br>((28).<br>Indica | 0<br>ue)+0.04] a<br>(30) + (32<br>tive Value: | ) + (32a).<br>Medium | (32e) =        | 39.52<br>16820.0        | (32)<br>(32a)<br>(33)<br>(34)                 |
| if details of thermal bridging are not known (36) = 0.15 x (31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity Thermal mass For design assess can be used instea | roof windo<br>as on both s<br>as, W/K =<br>Cm = S(A<br>paramet<br>sments whe | ews, use e<br>sides of in<br>S (A x<br>A x k )<br>ter (TMF<br>ere the det<br>ailed calcu | offective winternal wall  U)  P = Cm ÷ tails of the culation. | ndow U-va<br>ls and part<br>- TFA) ir<br>constructi | 143.6 25.95 59.25 alue calcul titions  n kJ/m²K   | 7 x 5 ated using                                 | 0  formula 1  (26)(30) | =  <br>/[(1/U-valu<br>) + (32) =<br>((28).<br>Indica | 0<br>ue)+0.04] a<br>(30) + (32<br>tive Value: | ) + (32a).<br>Medium | (32e) =        | 39.52<br>16820.0<br>250 | (32)<br>(32a)<br>(33)<br>(38)<br>(34)<br>(35) |

| Total fabric heat loss                                                                                                                 |                |             |            |             | (33) +                | (36) =                 |                                       | ĺ       | 50.82   | (37) |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|------------|-------------|-----------------------|------------------------|---------------------------------------|---------|---------|------|
| Ventilation heat loss calculated month                                                                                                 | ly             |             |            |             | (38)m                 | = 0.33 × (             | 25)m x (5)                            |         |         |      |
| Jan Feb Mar Apr                                                                                                                        | May            | Jun         | Jul        | Aug         | Sep                   | Oct                    | Nov                                   | Dec     |         |      |
| (38)m= 30.02 29.88 29.74 29.09                                                                                                         | 28.97          | 28.41       | 28.41      | 28.3        | 28.63                 | 28.97                  | 29.22                                 | 29.47   |         | (38) |
| Heat transfer coefficient, W/K                                                                                                         |                |             |            |             | (39)m                 | = (37) + (3            | 38)m                                  |         |         |      |
| (39)m= 80.84 80.7 80.57 79.92                                                                                                          | 79.8           | 79.23       | 79.23      | 79.13       | 79.45                 | 79.8                   | 80.04                                 | 80.3    |         |      |
| Heat loss parameter (HLP), W/m²K                                                                                                       |                |             |            |             |                       | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub> (4)             | 12 /12= | 79.92   | (39) |
| (40)m= 1.36 1.36 1.35                                                                                                                  | 1.35           | 1.34        | 1.34       | 1.34        | 1.34                  | 1.35                   | 1.35                                  | 1.36    |         |      |
| Number of days in month (Table 1a)                                                                                                     |                |             |            |             | ,                     | Average =              | Sum(40) <sub>1.</sub>                 | 12 /12= | 1.35    | (40) |
| Jan Feb Mar Apr                                                                                                                        | May            | Jun         | Jul        | Aug         | Sep                   | Oct                    | Nov                                   | Dec     |         |      |
| (41)m= 31 28 31 30                                                                                                                     | 31             | 30          | 31         | 31          | 30                    | 31                     | 30                                    | 31      |         | (41) |
|                                                                                                                                        |                |             |            |             |                       |                        |                                       |         |         |      |
| 4. Water heating energy requirement                                                                                                    | :              |             |            |             |                       |                        |                                       | kWh/ye  | ear:    |      |
| Assumed occupancy, N<br>if TFA > 13.9, N = 1 + 1.76 x [1 - ex<br>if TFA £ 13.9, N = 1                                                  | p(-0.00034     | ŀ9 x (TF    | FA -13.9)  | )2)] + 0.0  | 0013 x ( <sup>-</sup> | ΓFA -13.               |                                       | 96      |         | (42) |
| Annual average hot water usage in litted Reduce the annual average hot water usage by not more that 125 litres per person per day (all | 5% if the dw   | elling is o | designed t |             |                       | se target o            |                                       | .76     |         | (43) |
| Jan Feb Mar Apr                                                                                                                        | May            | Jun         | Jul        | Aug         | Sep                   | Oct                    | Nov                                   | Dec     |         |      |
| Hot water usage in litres per day for each mont                                                                                        | h Vd,m = facto | or from 7   | Table 1c x | (43)        |                       |                        |                                       |         |         |      |
| (44)m= 88.83 85.6 82.37 79.14                                                                                                          | 75.91          | 72.68       | 72.68      | 75.91       | 79.14                 | 82.37                  | 85.6                                  | 88.83   |         |      |
| Energy content of hot water used - calculated r                                                                                        | nonthly = 4.19 | 90 x Vd,n   | n x nm x D | )Tm / 3600  |                       |                        | m(44) <sub>112</sub> =<br>ables 1b, 1 |         | 969.1   | (44) |
| (45)m= 131.74 115.22 118.9 103.66                                                                                                      | 99.46          | 85.83       | 79.53      | 91.26       | 92.35                 | 107.63                 | 117.49                                | 127.58  |         |      |
| If instantaneous water heating at point of use (i                                                                                      | o hot water s  | storage),   | enter 0 in | boxes (46)  |                       | Γotal = Su             | m(45) <sub>112</sub> =                |         | 1270.64 | (45) |
| (46)m= 0 0 0 0                                                                                                                         | ΙοΙ            | 0           | 0          | 0           | 0                     | 0                      | 0                                     | 0       |         | (46) |
| Water storage loss:                                                                                                                    | 1 - 1          |             |            |             |                       |                        |                                       |         |         |      |
| Storage volume (litres) including any                                                                                                  | solar or WV    | WHRS:       | storage    | within sa   | me ves                | sel                    |                                       | 0       |         | (47) |
| If community heating and no tank in d                                                                                                  | _              |             |            | ` '         |                       |                        |                                       |         |         |      |
| Otherwise if no stored hot water (this                                                                                                 | ncludes ins    | stantan     | eous co    | mbi boil    | ers) ente             | er '0' in (            | 47)                                   |         |         |      |
| Water storage loss:  a) If manufacturer's declared loss fac                                                                            | tor is know    | ın (kWh     | n/dav).    |             |                       |                        |                                       | 0       |         | (48) |
| Temperature factor from Table 2b                                                                                                       |                | (           | uu j /.    |             |                       |                        |                                       | 0       |         | (49) |
| Energy lost from water storage, kWh/v                                                                                                  | ear            |             |            | (48) x (49) | =                     |                        |                                       | 0       |         | (50) |
| b) If manufacturer's declared cylinder<br>Hot water storage loss factor from Tal                                                       | loss factor    |             | known:     | , , , ,     |                       |                        |                                       | 0       |         | (51) |
| If community heating see section 4.3                                                                                                   | •              |             | • /        |             |                       |                        |                                       |         |         | ` '  |
| Volume factor from Table 2a                                                                                                            |                |             |            |             |                       |                        |                                       | 0       |         | (52) |
| Temperature factor from Table 2b                                                                                                       |                |             |            |             |                       |                        |                                       | 0       |         | (53) |
| Energy lost from water storage, kWh/y                                                                                                  | /ear           |             |            | (47) x (51) | x (52) x (            | 53) =                  |                                       | 0       |         | (54) |
| Enter (50) or (54) in (55)                                                                                                             |                |             |            |             |                       |                        |                                       | 0       |         | (55) |

| Water stor                                                                                                                                                                       | rage loss cal                                                                                                                                                                                | culated t                                                                                                                   | for each                                                                              | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                                              | ((56)m = (                                                                        | 55) × (41)                                                              | m                                             |                                            |                                      |               |                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------|---------------|----------------------------------------------|
| (56)m=                                                                                                                                                                           | 0 0                                                                                                                                                                                          | 0                                                                                                                           | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                            | 0                                                                                 | 0                                                                       | 0                                             | 0                                          | 0                                    |               | (56)                                         |
| If cylinder co                                                                                                                                                                   | ntains dedicate                                                                                                                                                                              | d solar sto                                                                                                                 | rage, (57)ı                                                                           | n = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                 | H11)] ÷ (5                                                                   | 0), else (5                                                                       | 7)m = (56)                                                              | m where (                                     | H11) is fro                                | m Append                             | ix H          |                                              |
| (57)m=                                                                                                                                                                           | 0 0                                                                                                                                                                                          | 0                                                                                                                           | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                            | 0                                                                                 | 0                                                                       | 0                                             | 0                                          | 0                                    |               | (57)                                         |
| Primary ci                                                                                                                                                                       | rcuit loss (ar                                                                                                                                                                               | nnual) fro                                                                                                                  | m Table                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                                              |                                                                                   |                                                                         |                                               |                                            | 0                                    |               | (58)                                         |
| Primary ci                                                                                                                                                                       | rcuit loss ca                                                                                                                                                                                | lculated t                                                                                                                  | for each                                                                              | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                    | (58) ÷ 36                                                                    | 5 × (41)                                                                          | m                                                                       |                                               |                                            |                                      | •             |                                              |
| (modifie                                                                                                                                                                         | ed by factor f                                                                                                                                                                               | rom Tab                                                                                                                     | le H5 if t                                                                            | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                   | ter heatir                                                                   | ng and a                                                                          | cylinde                                                                 | r thermo                                      | stat)                                      |                                      |               |                                              |
| (59)m=                                                                                                                                                                           | 0 0                                                                                                                                                                                          | 0                                                                                                                           | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                            | 0                                                                                 | 0                                                                       | 0                                             | 0                                          | 0                                    |               | (59)                                         |
| Combi los                                                                                                                                                                        | s calculated                                                                                                                                                                                 | for each                                                                                                                    | month (                                                                               | 61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (60) ÷ 36                                                                   | 65 × (41)                                                                    | )m                                                                                |                                                                         |                                               |                                            |                                      |               |                                              |
| (61)m=                                                                                                                                                                           | 0 0                                                                                                                                                                                          | 0                                                                                                                           | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                            | 0                                                                                 | 0                                                                       | 0                                             | 0                                          | 0                                    |               | (61)                                         |
| Total heat                                                                                                                                                                       | required for                                                                                                                                                                                 | water h                                                                                                                     | eating ca                                                                             | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for eac                                                                     | h month                                                                      | (62)m =                                                                           | 0.85 × (                                                                | (45)m +                                       | (46)m +                                    | (57)m +                              | (59)m + (61)m |                                              |
| (62)m= 11                                                                                                                                                                        | 1.98 97.94                                                                                                                                                                                   | 101.06                                                                                                                      | 88.11                                                                                 | 84.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72.95                                                                       | 67.6                                                                         | 77.57                                                                             | 78.5                                                                    | 91.48                                         | 99.86                                      | 108.44                               |               | (62)                                         |
| Solar DHW i                                                                                                                                                                      | nput calculated                                                                                                                                                                              | using App                                                                                                                   | endix G or                                                                            | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                   | ve quantity                                                                  | ) (enter '0                                                                       | if no sola                                                              | r contribut                                   | ion to wate                                | er heating)                          | '             |                                              |
| (add addit                                                                                                                                                                       | ional lines if                                                                                                                                                                               | FGHRS                                                                                                                       | and/or V                                                                              | VWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                     | , see Ap                                                                     | pendix (                                                                          | 3)                                                                      |                                               |                                            |                                      |               |                                              |
| (63)m=                                                                                                                                                                           | 0 0                                                                                                                                                                                          | 0                                                                                                                           | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                            | 0                                                                                 | 0                                                                       | 0                                             | 0                                          | 0                                    |               | (63)                                         |
| Output fro                                                                                                                                                                       | m water hea                                                                                                                                                                                  | ıter                                                                                                                        | -                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                           | -                                                                            |                                                                                   |                                                                         |                                               | -                                          | -                                    |               |                                              |
| (64)m= 11                                                                                                                                                                        | 1.98 97.94                                                                                                                                                                                   | 101.06                                                                                                                      | 88.11                                                                                 | 84.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72.95                                                                       | 67.6                                                                         | 77.57                                                                             | 78.5                                                                    | 91.48                                         | 99.86                                      | 108.44                               |               |                                              |
|                                                                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                              | Outp                                                                              | out from wa                                                             | ater heate                                    | r (annual) <sub>1</sub>                    | 12                                   | 1080.05       | (64)                                         |
| Heat gains                                                                                                                                                                       | s from water                                                                                                                                                                                 | heating,                                                                                                                    | kWh/mo                                                                                | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                   | × (45)m                                                                      | + (61)m                                                                           | n] + 0.8 x                                                              | ((46)m                                        | + (57)m                                    | + (59)m                              | ]             | _                                            |
| (65)m= 27                                                                                                                                                                        | 7.99 24.48                                                                                                                                                                                   | 25.27                                                                                                                       | 22.03                                                                                 | 21.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.24                                                                       | 16.9                                                                         | 19.39                                                                             | 19.63                                                                   | 22.87                                         | 24.97                                      | 27.11                                | <u> </u>      | (65)                                         |
|                                                                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                              | 10.00                                                                             | 10.00                                                                   | 22.01                                         | 24.81                                      | 21.11                                |               | (55)                                         |
| include                                                                                                                                                                          | (57)m in cal                                                                                                                                                                                 | culation (                                                                                                                  | of (65)m                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l .                                                                         |                                                                              |                                                                                   |                                                                         |                                               | <u> </u>                                   |                                      | l<br>eating   | (55)                                         |
|                                                                                                                                                                                  | (57)m in cal                                                                                                                                                                                 |                                                                                                                             | ` '                                                                                   | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l .                                                                         |                                                                              |                                                                                   |                                                                         |                                               | <u> </u>                                   |                                      | eating        | (00)                                         |
| 5. Intern                                                                                                                                                                        | al gains (see                                                                                                                                                                                | e Table 5                                                                                                                   | and 5a                                                                                | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l .                                                                         |                                                                              |                                                                                   |                                                                         |                                               | <u> </u>                                   |                                      | eating        | (65)                                         |
| 5. Intern                                                                                                                                                                        | . ,                                                                                                                                                                                          | e Table 5                                                                                                                   | and 5a                                                                                | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l .                                                                         |                                                                              |                                                                                   | or hot w                                                                |                                               | <u> </u>                                   |                                      | eating        |                                              |
| 5. Intern                                                                                                                                                                        | al gains (see                                                                                                                                                                                | e Table 5                                                                                                                   | and 5a                                                                                | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                   | s in the d                                                                   | dwelling                                                                          |                                                                         | ater is fr                                    | om com                                     | munity h                             | eating        | (66)                                         |
| 5. Intern Metabolic J (66)m= 98                                                                                                                                                  | al gains (see<br>gains (Table<br>an Feb                                                                                                                                                      | e Table 5<br>e 5), Wat<br>Mar<br>98.02                                                                                      | ts Apr 98.02                                                                          | only if constant of the consta | ylinder is<br>Jun<br>98.02                                                  | Jul<br>98.02                                                                 | Aug<br>98.02                                                                      | or hot w<br>Sep<br>98.02                                                | ater is fr<br>Oct                             | om com                                     | munity h                             | eating        |                                              |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga                                                                                                                                  | gains (Table<br>an Feb<br>3.02 98.02                                                                                                                                                         | e Table 5<br>e 5), Wat<br>Mar<br>98.02                                                                                      | ts Apr 98.02                                                                          | only if constant of the consta | ylinder is<br>Jun<br>98.02                                                  | Jul<br>98.02                                                                 | Aug<br>98.02                                                                      | or hot w<br>Sep<br>98.02                                                | ater is fr<br>Oct                             | om com                                     | munity h                             | eating        |                                              |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga  (67)m= 15                                                                                                                       | gains (Table an Feb 3.02 98.02 ains (calcula 5.26 13.55                                                                                                                                      | e Table 5 e 5), Wat Mar 98.02 tted in Ap                                                                                    | ts Apr 98.02 ppendix 8.34                                                             | May<br>98.02<br>L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>98.02<br>ion L9 o                                                    | Jul<br>98.02<br>r L9a), a                                                    | Aug<br>98.02<br>Iso see                                                           | Sep<br>98.02<br>Table 5                                                 | Oct 98.02                                     | Nov<br>98.02                               | Dec 98.02                            | eating        | (66)                                         |
| 5. Intern  Metabolic  (66)m= 98  Lighting ga  (67)m= 15  Appliance                                                                                                               | gains (Table<br>gains (Table<br>an Feb<br>3.02 98.02<br>ains (calcula                                                                                                                        | e Table 5 e 5), Wat Mar 98.02 tted in Ap                                                                                    | ts Apr 98.02 ppendix 8.34                                                             | May<br>98.02<br>L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>98.02<br>ion L9 o                                                    | Jul<br>98.02<br>r L9a), a                                                    | Aug<br>98.02<br>Iso see                                                           | Sep<br>98.02<br>Table 5                                                 | Oct 98.02                                     | Nov<br>98.02                               | Dec 98.02                            | eating        | (66)                                         |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga  (67)m= 15  Appliance  (68)m= 17                                                                                                 | al gains (see gains (Table an Feb 3.02 98.02 ains (calcula 5.26 13.55 s gains (calcula 1.05 172.83                                                                                           | Mar<br>98.02<br>ted in Ap<br>11.02<br>culated in<br>168.35                                                                  | ts Apr 98.02 ppendix 8.34 Appendix 158.83                                             | May<br>98.02<br>, equat<br>6.24<br>dix L, eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L                               | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1                                | Aug<br>98.02<br>lso see<br>7.39<br>3a), also                                      | Sep 98.02 Table 5 9.92 see Ta 130.66                                    | Oct 98.02  12.6 ble 5 140.19                  | Nov 98.02                                  | Dec 98.02                            | eating        | (66)<br>(67)                                 |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga  (67)m= 15  Appliance  (68)m= 17  Cooking g                                                                                      | gains (Table an Feb 98.02 98.02 ains (calcula 5.26 13.55 s gains (calcula                                                                                                                    | Mar<br>98.02<br>ted in Ap<br>11.02<br>culated in<br>168.35                                                                  | ts Apr 98.02 ppendix 8.34 Appendix 158.83                                             | May<br>98.02<br>, equat<br>6.24<br>dix L, eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L                               | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1                                | Aug<br>98.02<br>lso see<br>7.39<br>3a), also                                      | Sep 98.02 Table 5 9.92 see Ta 130.66                                    | Oct 98.02  12.6 ble 5 140.19                  | Nov 98.02                                  | Dec 98.02                            | eating        | (66)<br>(67)                                 |
| 5. Intern  Metabolic  (66)m= 98  Lighting ga (67)m= 15  Appliance (68)m= 17  Cooking g (69)m= 33                                                                                 | al gains (see gains (Table an Feb 3.02 98.02 ains (calcula 5.26 13.55 as gains (calcula 1.05 172.83 ains (calcula 2.8 32.8                                                                   | Mar 98.02 ted in Ap 11.02 culated in 168.35 ated in A 32.8                                                                  | ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8                                  | May 98.02 L, equat 6.24 dix L, eq 146.81 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51                     | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)          | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                            | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta<br>130.66                     | Oct 98.02 12.6 ble 5 140.19 5                 | Nov<br>98.02<br>14.71                      | Dec 98.02                            | eating        | (66)<br>(67)<br>(68)                         |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga  (67)m= 15  Appliance  (68)m= 17  Cooking g  (69)m= 33  Pumps an                                                                 | al gains (see gains (Table an Feb a.02 98.02 ains (calcula 5.26 13.55 s gains (calcula 1.05 172.83 ains (calcula                                                                             | Mar 98.02 ted in Ap 11.02 culated in 168.35 ated in A 32.8                                                                  | ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8                                  | May 98.02 L, equat 6.24 dix L, eq 146.81 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51                     | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)          | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                            | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta<br>130.66                     | Oct 98.02 12.6 ble 5 140.19 5                 | Nov<br>98.02<br>14.71                      | Dec 98.02                            | eating        | (66)<br>(67)<br>(68)                         |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga  (67)m= 15  Appliance  (68)m= 17  Cooking g  (69)m= 3:  Pumps an  (70)m=                                                         | al gains (see gains (Table an Feb 3.02 98.02 ains (calcula 5.26 13.55 s gains (calcula 1.05 172.83 ains (calcula 2.8 32.8 d fans gains 0 0                                                   | Mar 98.02 ted in Ap 11.02 culated in 168.35 ated in A 32.8 c (Table \$                                                      | s and 5a<br>ts Apr<br>98.02<br>ppendix 8.34<br>Appendix 158.83<br>ppendix 32.8<br>5a) | only if controls:  May 98.02  L, equat 6.24  dix L, equat 146.81  L, equat 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8  | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>a, also se<br>32.8      | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta<br>130.66<br>ee Table<br>32.8 | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov<br>98.02<br>14.71<br>152.21            | Dec 98.02 15.68 163.5                | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga  (67)m= 15  Appliance  (68)m= 17  Cooking g  (69)m= 32  Pumps an  (70)m= Losses e.                                               | al gains (see gains (Table an Feb 3.02 98.02 ains (calcula 5.26 13.55 s gains (calcula 1.05 172.83 ains (calcula 2.8 32.8 d fans gains                                                       | Mar 98.02 ted in Ap 11.02 culated in 168.35 ated in A 32.8 c (Table \$                                                      | s and 5a<br>ts Apr<br>98.02<br>ppendix 8.34<br>Appendix 158.83<br>ppendix 32.8<br>5a) | only if controls:  May 98.02  L, equat 6.24  dix L, equat 146.81  L, equat 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8  | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>a, also se<br>32.8      | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta<br>130.66<br>ee Table<br>32.8 | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov<br>98.02<br>14.71<br>152.21            | Dec 98.02 15.68 163.5                | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga  (67)m= 15  Appliance  (68)m= 17  Cooking g  (69)m= 33  Pumps an  (70)m= Losses e.(71)m= -78                                     | al gains (see gains (Table an Feb 3.02 98.02 ains (calcula 5.26 13.55 s gains (calcula 1.05 172.83 ains (calcula 2.8 32.8 d fans gains 0 0 0 g. evaporatio                                   | ted in Ap 11.02 culated in 168.35 ated in A 32.8 c (Table 5                                                                 | ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 0 tive value               | only if construction only if c | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>iion L15<br>32.8 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>o, also se<br>32.8      | Sep 98.02 Table 5 9.92 see Ta 130.66 ee Table 32.8                      | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov 98.02 14.71 152.21 32.8                | Dec 98.02 15.68 163.5                | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga  (67)m= 15  Appliance  (68)m= 17  Cooking g  (69)m= 3:  Pumps an  (70)m= Losses e.( (71)m= -78  Water hea                        | al gains (see gains (Table an Feb 3.02 98.02 ains (calcula 5.26 13.55 s gains (calcula 1.05 172.83 ains (calcula 2.8 32.8 d fans gains 0 0 g. evaporatio 3.41 -78.41                         | ted in Ap 11.02 culated in 168.35 ated in A 32.8 c (Table 5                                                                 | ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 0 tive value               | only if construction only if c | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>iion L15<br>32.8 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>o, also se<br>32.8      | Sep 98.02 Table 5 9.92 see Ta 130.66 ee Table 32.8                      | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov 98.02 14.71 152.21 32.8                | Dec 98.02 15.68 163.5                | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. Intern  Metabolic  (66)m= 98  Lighting ga (67)m= 15  Appliance (68)m= 17  Cooking g (69)m= 33  Pumps an (70)m=    Losses e.g (71)m= -76  Water hea (72)m= 37                  | al gains (see gains (Table an Feb 3.02 98.02 ains (calcula 5.26 13.55 s gains (calcula 2.8 32.8 d fans gains 0 0 0 g. evaporatio 3.41 -78.41 ating gains (Table 3.41 -78.41                  | e Table 5 e 5), Wat Mar 98.02 ted in Ap 11.02 culated in 168.35 ated in A 32.8 c (Table 5 0 on (negat -78.41 Table 5) 33.96 | ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 0 tive value -78.41        | only if constructions only if constructions only if constructions on the construction of the construction  | Jun 98.02 ion L9 of 5.26 uation L 135.51 ion L15 32.8  0 le 5) -78.41       | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1:<br>127.97<br>or L15a;<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>o, also se<br>32.8<br>0 | Sep 98.02 Table 5 9.92 See Ta 130.66 ee Table 32.8  0  -78.41           | Oct 98.02  12.6 ble 5 140.19 5 32.8  0 -78.41 | Nov 98.02 14.71 152.21 32.8 0 -78.41 34.67 | Dec 98.02 15.68 163.5 0 -78.41 36.44 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. Intern  Metabolic  J  (66)m= 98  Lighting ga  (67)m= 15  Appliance  (68)m= 17  Cooking g  (69)m= 33  Pumps an  (70)m= Losses e.  (71)m= -78  Water hea  (72)m= 37  Total inte | al gains (see gains (Table an Feb 3.02 98.02 ains (calcula 5.26 13.55 s gains (calcula 1.05 172.83 ains (calcula 2.8 32.8 d fans gains 0 0 g. evaporatio 3.41 -78.41 ating gains (7.63 36.43 | e Table 5 e 5), Wat Mar 98.02 ted in Ap 11.02 culated in 168.35 ated in A 32.8 c (Table 5 0 on (negat -78.41 Table 5) 33.96 | ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 0 tive value -78.41        | only if constructions only if constructions only if constructions on the construction of the construction  | Jun 98.02 ion L9 of 5.26 uation L 135.51 ion L15 32.8  0 le 5) -78.41       | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>o, also se<br>32.8<br>0 | Sep 98.02 Table 5 9.92 see Ta 130.66 ee Table 32.8  0  -78.41           | Oct 98.02  12.6 ble 5 140.19 5 32.8  0 -78.41 | Nov 98.02 14.71 152.21 32.8 0 -78.41 34.67 | Dec 98.02 15.68 163.5 0 -78.41 36.44 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 11.28            | x | 0.63           | x | 0.7            | =   | 8.59         | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 22.97            | x | 0.63           | x | 0.7            | =   | 17.48        | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 41.38            | x | 0.63           | x | 0.7            | =   | 31.49        | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 67.96            | x | 0.63           | x | 0.7            | =   | 51.71        | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 91.35            | X | 0.63           | x | 0.7            | =   | 69.51        | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 97.38            | x | 0.63           | x | 0.7            | =   | 74.11        | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 91.1             | x | 0.63           | x | 0.7            | =   | 69.33        | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 72.63            | x | 0.63           | x | 0.7            | =   | 55.27        | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 50.42            | x | 0.63           | x | 0.7            | =   | 38.37        | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 28.07            | x | 0.63           | x | 0.7            | =   | 21.36        | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 14.2             | x | 0.63           | x | 0.7            | =   | 10.8         | (75) |
| Northeast 0.9x | 0.77                      | x | 2.49       | x | 9.21             | x | 0.63           | x | 0.7            | =   | 7.01         | (75) |
| Northwest 0.9x | 0.77                      | x | 4.89       | x | 11.28            | x | 0.63           | x | 0.7            | =   | 16.86        | (81) |
| Northwest 0.9x | 0.77                      | x | 1.9        | x | 11.28            | x | 0.63           | x | 0.7            | =   | 6.55         | (81) |
| Northwest 0.9x | 0.77                      | x | 2.58       | x | 11.28            | x | 0.63           | x | 0.7            | =   | 8.9          | (81) |
| Northwest 0.9x | 0.77                      | x | 4.89       | x | 22.97            | x | 0.63           | X | 0.7            | =   | 34.32        | (81) |
| Northwest 0.9x | 0.77                      | x | 1.9        | x | 22.97            | x | 0.63           | X | 0.7            | =   | 13.34        | (81) |
| Northwest 0.9x | 0.77                      | X | 2.58       | x | 22.97            | x | 0.63           | x | 0.7            | =   | 18.11        | (81) |
| Northwest 0.9x | 0.77                      | X | 4.89       | x | 41.38            | x | 0.63           | x | 0.7            | =   | 61.84        | (81) |
| Northwest 0.9x | 0.77                      | x | 1.9        | x | 41.38            | x | 0.63           | X | 0.7            | =   | 24.03        | (81) |
| Northwest 0.9x | 0.77                      | X | 2.58       | x | 41.38            | x | 0.63           | x | 0.7            | =   | 32.63        | (81) |
| Northwest 0.9x | 0.77                      | X | 4.89       | x | 67.96            | x | 0.63           | x | 0.7            | =   | 101.56       | (81) |
| Northwest 0.9x | 0.77                      | x | 1.9        | x | 67.96            | x | 0.63           | x | 0.7            | =   | 39.46        | (81) |
| Northwest 0.9x | 0.77                      | x | 2.58       | x | 67.96            | x | 0.63           | x | 0.7            | =   | 53.58        | (81) |
| Northwest 0.9x | 0.77                      | x | 4.89       | x | 91.35            | X | 0.63           | X | 0.7            | =   | 136.51       | (81) |
| Northwest 0.9x | 0.77                      | x | 1.9        | x | 91.35            | x | 0.63           | x | 0.7            | =   | 53.04        | (81) |
| Northwest 0.9x | 0.77                      | x | 2.58       | x | 91.35            | x | 0.63           | x | 0.7            | =   | 72.02        | (81) |
| Northwest 0.9x | 0.77                      | x | 4.89       | x | 97.38            | x | 0.63           | X | 0.7            | =   | 145.54       | (81) |
| Northwest 0.9x | 0.77                      | x | 1.9        | x | 97.38            | x | 0.63           | x | 0.7            | =   | 56.55        | (81) |
| Northwest 0.9x | 0.77                      | x | 2.58       | x | 97.38            | x | 0.63           | x | 0.7            | =   | 76.79        | (81) |
| Northwest 0.9x | 0.77                      | x | 4.89       | x | 91.1             | x | 0.63           | x | 0.7            | =   | 136.15       | (81) |
| Northwest 0.9x | 0.77                      | X | 1.9        | x | 91.1             | x | 0.63           | x | 0.7            | =   | 52.9         | (81) |
| Northwest 0.9x | 0.77                      | X | 2.58       | x | 91.1             | x | 0.63           | x | 0.7            | =   | 71.83        | (81) |
| Northwest 0.9x | 0.77                      | X | 4.89       | x | 72.63            | x | 0.63           | x | 0.7            | =   | 108.54       | (81) |
| Northwest 0.9x | 0.77                      | x | 1.9        | x | 72.63            | x | 0.63           | x | 0.7            | ] = | 42.17        | (81) |
| Northwest 0.9x | 0.77                      | X | 2.58       | x | 72.63            | x | 0.63           | x | 0.7            | ] = | 57.26        | (81) |
| Northwest 0.9x | 0.77                      | X | 4.89       | x | 50.42            | x | 0.63           | x | 0.7            | ] = | 75.35        | (81) |
| Northwest 0.9x | 0.77                      | X | 1.9        | x | 50.42            | x | 0.63           | х | 0.7            | j = | 29.28        | (81) |
| Northwest 0.9x | 0.77                      | X | 2.58       | x | 50.42            | x | 0.63           | x | 0.7            | j = | 39.76        | (81) |
|                |                           |   |            | - |                  | - |                | • |                | -   |              |      |

|              | st 0.9x       0.77       x       1.9       x       28.07       x       0.63       x       0.7       =       16.3       (81)         st 0.9x       0.77       x       2.58       x       28.07       x       0.63       x       0.7       =       22.13       (81)         st 0.9x       0.77       x       4.89       x       14.2       x       0.63       x       0.7       =       21.22       (81)         st 0.9x       0.77       x       1.9       x       14.2       x       0.63       x       0.7       =       8.24       (81)         st 0.9x       0.77       x       2.58       x       14.2       x       0.63       x       0.7       =       8.24       (81)         st 0.9x       0.77       x       4.89       x       9.21       x       0.63       x       0.7       =       13.77       (81)         st 0.9x       0.77       x       1.9       x       9.21       x       0.63       x       0.7       =       5.35       (81)         st 0.9x       1       x       0.95       x       26       x       0.63       x< |              |          |           |           |               |              |               |              |              |        |               |              |       |             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|-----------|---------------|--------------|---------------|--------------|--------------|--------|---------------|--------------|-------|-------------|
| Northwest    | t <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77         | x        | 4.8       | 39        | X             | 28.07        | ,             | х            | 0.63         | x      | 0.7           | =            | 41.94 | (81)        |
| Northwest    | t <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77         | ×        | 1.9       | 9         | X             | 28.07        | ╡,            | x $ar{\ }$   | 0.63         | ×      | 0.7           | =            | 16.3  | (81)        |
| Northwest    | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.77         | ×        | 2.5       | 58        | X             | 28.07        | = ;           | x =          | 0.63         | x      | 0.7           | <u> </u>     | 22.13 | (81)        |
| Northwest    | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.77         | ×        | 4.8       | 39        | X             | 14.2         | = ;           | x F          | 0.63         | ×      | 0.7           | =            | 21.22 | (81)        |
| Northwest    | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.77         | ×        | 1.9       | 9         | X             | 14.2         | <b>=</b> ,    | x $\bar{\ }$ | 0.63         | X      | 0.7           | <del>-</del> | 8.24  | (81)        |
| Northwest    | t <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77         | ×        | 2.5       | i8        | X             | 14.2         | ╡,            | x            | 0.63         | ×      | 0.7           | =            | 11.19 | (81)        |
| Northwest    | t 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.77         | ×        | 4.8       | 39        | X             | 9.21         | <u> </u>      | x $ar{ar{}}$ | 0.63         | x      | 0.7           | =            | 13.77 | (81)        |
| Northwest    | t <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77         | ×        | 1.9       | 9         | X             | 9.21         | <u> </u>      | x $ar{ar{}}$ | 0.63         | ×      | 0.7           | =            | 5.35  | (81)        |
| Northwest    | t <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77         | ×        | 2.5       | 58        | X             | 9.21         | <u> </u>      | x [          | 0.63         | x      | 0.7           | =            | 7.27  | (81)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | x        | 0.9       | )5        | X             | 26           | ]             | x [          | 0.63         | X      | 0.7           | =            | 9.83  | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | x        | 0.9       | 95        | X             | 54           |               | x            | 0.63         | x      | 0.7           | =            | 20.41 | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | x        | 0.9       | 95        | X             | 96           | ] ;           | x            | 0.63         | x      | 0.7           | =            | 36.29 | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | x        | 0.9       | )5        | X             | 150          | ] ;           | x [          | 0.63         | x      | 0.7           | =            | 56.7  | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | X        | 0.9       | )5        | X             | 192          | ] ;           | x            | 0.63         | X      | 0.7           | =            | 72.57 | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | X        | 0.9       | )5        | X             | 200          | ] ;           | x [          | 0.63         | X      | 0.7           | =            | 75.6  | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | X        | 0.9       | 95        | X             | 189          | ] ;           | x [          | 0.63         | x      | 0.7           | =            | 71.44 | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | X        | 0.9       | 95        | X             | 157          |               | x            | 0.63         | x      | 0.7           | =            | 59.34 | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | X        | 0.9       | 95        | X             | 115          |               | x            | 0.63         | x      | 0.7           | =            | 43.47 | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | X        | 0.9       | 95        | X             | 66           | ] ;           | x [          | 0.63         | x      | 0.7           | =            | 24.95 | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | X        | 0.9       | 95        | X             | 33           |               | x [          | 0.63         | x      | 0.7           | =            | 12.47 | (82)        |
| Rooflights   | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | X        | 0.9       | 95        | X             | 21           |               | x [          | 0.63         | x      | 0.7           | =            | 7.94  | (82)        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          |           |           |               |              |               |              |              |        |               |              |       |             |
| <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          |           |           | _             |              | <u> </u>      |              |              |        |               | Ι            | 1     |             |
| ` ′          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          |           |           |               |              |               | 322.5        | 9 226.22     | 126.68 | 63.93         | 41.34        |       | (83)        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          | ` '       | ·         | <del>-</del>  |              |               |              |              |        | _             | 1            | 1     | (0.1)       |
| (84)m= 3     | 27.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 378.87       | 452      | 553.18    | 637.52    | 6             | 47.09 610.42 | 2   5         | 34.6         | 64 446.47    | 362.61 | 317.93        | 309.36       |       | (84)        |
| 7. Mear      | interna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al tempera   | ature (  | (heating  | seaso     | n)            |              |               |              |              |        |               |              |       |             |
| Temper       | ature d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uring hea    | ting pe  | eriods ir | n the liv | ing           | area from T  | able          | 9,           | Th1 (°C)     |        |               |              | 21    | (85)        |
| Utilisatio   | on facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r for gain   | s for li | ving are  | ea, h1,r  | n (s          | ee Table 9a  | )             |              |              |        |               | 1            | -     |             |
| <u></u>      | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feb          | Mar      | Apr       | May       |               | Jun Jul      |               | Au           | g Sep        | Oct    | Nov           | Dec          |       |             |
| (86)m=       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 (          | ).99     | 0.96      | 0.87      |               | 0.71 0.55    |               | 0.64         | 0.89         | 0.99   | 1             | 1            |       | (86)        |
| Mean ir      | iternal t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | emperatu     | re in I  | iving are | ea T1 (   | follo         | w steps 3 to | 7 ir          | n Ta         | able 9c)     |        |               |              |       |             |
| (87)m=       | 19.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.59 1      | 19.9     | 20.33     | 20.72     | 2             | 20.92        | 1 2           | 20.96        | 6 20.77      | 20.28  | 19.78         | 19.41        |       | (87)        |
| Temper       | ature d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uring hea    | ting pe  | eriods ir | n rest o  | f dw          | elling from  | Table         | e 9,         | Th2 (°C)     |        |               |              |       |             |
| · -          | 19.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 9.79     | 19.8      | 19.8      | $\overline{}$ | 9.81 19.81   | $\overline{}$ | 19.8°        | <del> </del> | 19.8   | 19.8          | 19.8         | ]     | (88)        |
| Utilisatio   | on facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or for gain  | s for r  | est of d  | wellina.  | h2            | m (see Tab   | le 9a         | a)           |              |        | •             |              | •     |             |
| (89)m=       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>`</del> | 0.99     | 0.95      | 0.82      | $\overline{}$ | 0.6 0.41     | $\neg$        | 0.49         | 0.82         | 0.98   | 1             | 1            | ]     | (89)        |
| ∟<br>Mean ir | iternal t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | emperatu     | re in t  | he rest   | of dwel   | lina          | T2 (follow s | tens          | 3 t          | o 7 in Table | 90)    |               |              |       |             |
|              | 18.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 8.84     | 19.27     | 19.62     | Ť             | 9.78 19.81   | <del>-</del>  | 19.8         |              | 19.22  | 18.73         | 18.36        | 1     | (90)        |
| ()           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          | ··        |           |               | 1 .5.5       |               |              |              |        | ing area ÷ (4 | ļ            | 0.47  | (91)        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |          |           |           |               |              |               |              |              |        | - `           |              |       | <b></b> ` ′ |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.03                                         | 19.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.77                                                           | 20.13                                                       | 20.31                                                                       | 20.36                                                                          | 20.35                                                                | 20.19                                             | 19.72                                                          | 19.22                                                             | 18.85                                 |                                    | (92)                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|------------------------------------|----------------------------------------------------------------------|
| Apply adjustr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nent to t                                     | he mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | interna                                                         | tempera                                                     | ature fro                                                                   | m Table                                                                        | 4e, whe                                                              | ere appro                                         | priate                                                         | •                                                                 |                                       |                                    |                                                                      |
| (93)m= 18.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.03                                         | 19.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.77                                                           | 20.13                                                       | 20.31                                                                       | 20.36                                                                          | 20.35                                                                | 20.19                                             | 19.72                                                          | 19.22                                                             | 18.85                                 |                                    | (93)                                                                 |
| 8. Space hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ting requ                                     | uirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                                                             |                                                                             |                                                                                |                                                                      |                                                   |                                                                |                                                                   |                                       |                                    |                                                                      |
| Set Ti to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                             | ed at ste                                                                   | ep 11 of                                                                       | Table 9                                                              | o, so tha                                         | t Ti,m=(                                                       | 76)m an                                                           | d re-calc                             | ulate                              |                                                                      |
| the utilisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                             | or gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | using Ta                                                        | ble 9a                                                      |                                                                             |                                                                                |                                                                      |                                                   |                                                                |                                                                   |                                       |                                    |                                                                      |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                           | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                             | May                                                         | Jun                                                                         | Jul                                                                            | Aug                                                                  | Sep                                               | Oct                                                            | Nov                                                               | Dec                                   |                                    |                                                                      |
| Utilisation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | ains, hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                                                             |                                                                             |                                                                                |                                                                      |                                                   |                                                                |                                                                   |                                       |                                    |                                                                      |
| (94)m= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99                                          | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                                            | 0.84                                                        | 0.65                                                                        | 0.48                                                                           | 0.56                                                                 | 0.85                                              | 0.98                                                           | 1                                                                 | 1                                     |                                    | (94)                                                                 |
| Useful gains,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                        | _                                                           |                                                                             |                                                                                |                                                                      |                                                   |                                                                |                                                                   |                                       |                                    |                                                                      |
| (95)m= 326.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 376.88                                        | 445.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 523.42                                                          | 533.81                                                      | 420.49                                                                      | 291.26                                                                         | 299.8                                                                | 378.46                                            | 354.14                                                         | 316.39                                                            | 308.74                                |                                    | (95)                                                                 |
| Monthly aver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                               |                                                             |                                                                             | 1                                                                              |                                                                      |                                                   |                                                                | 1                                                                 | 1                                     |                                    |                                                                      |
| (96)m= 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.9                                           | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.9                                                             | 11.7                                                        | 14.6                                                                        | 16.6                                                                           | 16.4                                                                 | 14.1                                              | 10.6                                                           | 7.1                                                               | 4.2                                   |                                    | (96)                                                                 |
| Heat loss rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                             | i                                                                           |                                                                                | <del>-``</del>                                                       | ·                                                 | Ī                                                              | 1                                                                 | ı                                     |                                    |                                                                      |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1140.29                                       | 1034.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 868.58                                                          | 672.7                                                       | 452.68                                                                      | 297.56                                                                         | 312.21                                                               | 483.63                                            | 727.39                                                         | 970.34                                                            | 1176.3                                |                                    | (97)                                                                 |
| Space heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del></del>                                   | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                             |                                                                             |                                                                                |                                                                      | ·                                                 | <del></del>                                                    | <del></del>                                                       |                                       |                                    |                                                                      |
| (98)m= 633.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 513.01                                        | 438.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 248.51                                                          | 103.34                                                      | 0                                                                           | 0                                                                              | 0                                                                    | 0                                                 | 277.7                                                          | 470.84                                                            | 645.47                                |                                    | _                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                             |                                                                             |                                                                                | Tota                                                                 | I per year                                        | (kWh/year                                                      | ) = Sum(9                                                         | 8) <sub>15,912</sub> =                | 3330.85                            | (98)                                                                 |
| Space heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g require                                     | ement in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m²                                                          | /year                                                       |                                                                             |                                                                                |                                                                      |                                                   |                                                                |                                                                   |                                       | 56.22                              | (99)                                                                 |
| 8c. Space co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | olina red                                     | uiremen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t                                                               |                                                             |                                                                             |                                                                                |                                                                      |                                                   |                                                                |                                                                   |                                       |                                    |                                                                      |
| Calculated fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ĭ                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | See Tab                                                     | ole 10h                                                                     |                                                                                |                                                                      |                                                   |                                                                |                                                                   |                                       |                                    |                                                                      |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                           | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                             | May                                                         | Jun                                                                         | Jul                                                                            | Aug                                                                  | Sep                                               | Oct                                                            | Nov                                                               | Dec                                   |                                    |                                                                      |
| Heat loss rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                               |                                                             | L                                                                           | l                                                                              |                                                                      |                                                   |                                                                | L                                                                 | able 10)                              |                                    |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                             |                                                                             | Joiataic                                                                       | מווע כאני                                                            | zillai leli                                       | ipcialui                                                       |                                                                   |                                       |                                    |                                                                      |
| (100)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                               | 0                                                           | 744.78                                                                      | 586.32                                                                         | 601.37                                                               | 0                                                 | 0                                                              | 0                                                                 | 0                                     |                                    | (100)                                                                |
| (100)m= 0 Utilisation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                             | · ·                                                                         | 1                                                                              |                                                                      |                                                   | ·                                                              | i e                                                               | ı – í                                 |                                    | (100)                                                                |
| ( 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                             | · ·                                                                         | 1                                                                              |                                                                      |                                                   | ·                                                              | i e                                                               | ı – í                                 |                                    | (100)                                                                |
| Utilisation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>etor for lo                              | 0<br>pss hm<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                               | 0                                                           | 744.78                                                                      | 586.32                                                                         | 601.37                                                               | 0                                                 | 0                                                              | 0                                                                 | 0                                     |                                    | , ,                                                                  |
| Utilisation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>etor for lo                              | 0<br>pss hm<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                               | 0                                                           | 744.78                                                                      | 586.32                                                                         | 0.87                                                                 | 0                                                 | 0                                                              | 0                                                                 | 0                                     |                                    | , ,                                                                  |
| Utilisation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>tor for lo<br>0<br>mLm (V<br>0           | 0<br>pss hm<br>0<br>Vatts) = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>100)m x<br>0                                          | 0<br>0<br>(101)m<br>0                                       | 744.78<br>0.85<br>634.95                                                    | 586.32<br>0.91<br>533.42                                                       | 0.87<br>521.62                                                       | 0 0                                               | 0                                                              | 0                                                                 | 0                                     |                                    | (101)                                                                |
| Utilisation factors (101)m= 0 Useful loss, h (102)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>tor for lo<br>0<br>mLm (V<br>0           | 0<br>pss hm<br>0<br>Vatts) = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>100)m x<br>0                                          | 0<br>0<br>(101)m<br>0                                       | 744.78<br>0.85<br>634.95                                                    | 586.32<br>0.91<br>533.42                                                       | 0.87<br>521.62                                                       | 0 0                                               | 0                                                              | 0                                                                 | 0                                     |                                    | (101)                                                                |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar expression)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 stor for lo                                 | 0 pss hm 0 Vatts) = ( 0 lculated 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>100)m x<br>0<br>for appli                             | 0<br>0<br>(101)m<br>0<br>cable we                           | 744.78  0.85  634.95 eather re 816.85                                       | 586.32<br>0.91<br>533.42<br>egion, se<br>773.25                                | 601.37<br>0.87<br>521.62<br>ee Table<br>687.86                       | 0 0 10) 0                                         | 0 0                                                            | 0 0                                                               | 0 0                                   |                                    | (101)                                                                |
| Utilisation factors (101)m= 0 Useful loss, h (102)m= 0 Gains (solar (103)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 stor for lo 0 mLm (V 0 gains ca 0 g require | 0 pss hm 0 Vatts) = ( 0 lculated 0 ement fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  100)m x  0  for appli  0  r month,                           | 0 0 (101)m 0 cable we 0 whole of                            | 744.78  0.85  634.95 eather re 816.85                                       | 586.32<br>0.91<br>533.42<br>egion, se<br>773.25                                | 601.37<br>0.87<br>521.62<br>ee Table<br>687.86                       | 0 0 10) 0                                         | 0 0                                                            | 0 0                                                               | 0 0                                   |                                    | (101)<br>(102)                                                       |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar (103)m= 0 Space cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 stor for lo 0 mLm (V 0 gains ca 0 g require | 0 pss hm 0 Vatts) = ( 0 lculated 0 ement fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  100)m x  0  for appli  0  r month,                           | 0 0 (101)m 0 cable we 0 whole of                            | 744.78  0.85  634.95 eather re 816.85                                       | 586.32<br>0.91<br>533.42<br>egion, se<br>773.25                                | 601.37<br>0.87<br>521.62<br>ee Table<br>687.86                       | 0 0 10) 0                                         | 0 0                                                            | 0 0                                                               | 0 0                                   |                                    | (101)<br>(102)                                                       |
| Utilisation fact (101)m= 0 Useful loss, h (102)m= 0 Gains (solar of the cooling set (104)m to th | otor for lo                                   | 0 ss hm 0 vatts) = ( 0 lculated 0 ement for 104)m <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>100)m x<br>0<br>for appli<br>0<br>r month,            | 0 (101)m 0 cable we 0 whole o                               | 744.78  0.85  634.95 eather re 816.85                                       | 586.32<br>0.91<br>533.42<br>egion, se<br>773.25<br>continuo                    | 601.37<br>0.87<br>521.62<br>ee Table<br>687.86<br>ous ( kW           | 0 0 10) 0 (h) = 0.0                               | 0 0 0 24 x [(10 0 = Sum(                                       | 0<br>0<br>0<br>0<br>03)m - (<br>0<br>104)                         | 0 0 0 102)m]                          |                                    | (101)<br>(102)                                                       |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar (103)m= 0 Space cooling set (104)m to (104)m= 0 Cooled fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 stor for lo                                 | 0 pss hm 0 Vatts) = ( 0 lculated 0 ement fo. 104)m <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>100)m x<br>0<br>for appli<br>0<br>r month,<br>3 × (98      | 0 (101)m 0 cable we 0 whole o                               | 744.78  0.85  634.95 eather re 816.85                                       | 586.32<br>0.91<br>533.42<br>egion, se<br>773.25<br>continuo                    | 601.37<br>0.87<br>521.62<br>ee Table<br>687.86<br>ous ( kW           | 0 0 10) 0 (h) = 0.0                               | 0 0 0 24 x [(10 0 = Sum(                                       | 0<br>0<br>0<br>0<br>03)m - (                                      | 0 0 0 102)m]                          | x (41)m                            | (101)<br>(102)<br>(103)                                              |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar (103)m= 0 Space cooling set (104)m to (104)m= 0  Cooled fraction Intermittency for the cooled factors (104)m for the cooled fraction (104)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otor for lo                                   | 0 ss hm 0 vatts) = ( 0 lculated 0 ement for 104)m < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>100)m x<br>0<br>for appli<br>0<br>r month,<br>3 x (98 | 0 0 (101)m 0 cable we 0 whole o )m 0                        | 744.78  0.85  634.95 eather re 816.85 dwelling,                             | 586.32<br>0.91<br>533.42<br>egion, se<br>773.25<br>continue                    | 601.37<br>0.87<br>521.62<br>ee Table<br>687.86<br>ous ( kW<br>123.68 | 0<br>0<br>10)<br>0<br>(h) = 0.0<br>Total<br>f C = | 0 0 0 24 x [(10 0 = Sum(                                       | 0<br>0<br>0<br>03)m - (<br>0<br>1,0,4)<br>area ÷ (4               | 0 0 0 102)m];                         | x (41)m<br>433.08                  | (101)<br>(102)<br>(103)                                              |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar (103)m= 0 Space cooling set (104)m to (104)m= 0 Cooled fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 stor for lo                                 | 0 pss hm 0 Vatts) = ( 0 lculated 0 ement fo. 104)m <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>100)m x<br>0<br>for appli<br>0<br>r month,<br>3 × (98      | 0 (101)m 0 cable we 0 whole o                               | 744.78  0.85  634.95 eather re 816.85                                       | 586.32<br>0.91<br>533.42<br>egion, se<br>773.25<br>continuo                    | 601.37<br>0.87<br>521.62<br>ee Table<br>687.86<br>ous ( kW           | 0 0 10) 0 Total f C =                             | 0 0 0 24 x [(10 0 = Sum( cooled                                | 0<br>0<br>0<br>03)m - (<br>0<br>1,0,4)<br>area ÷ (4               | 0 0 0 102)m]                          | x (41)m<br>433.08                  | (101)<br>(102)<br>(103)<br>(104)<br>(105)                            |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar of (103)m= 0 Space cooling set (104)m to (104)m= 0  Cooled fraction Intermittency for (106)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otor for lo                                   | 0 pss hm 0 Vatts) = ( 0 lculated 0 ement for 104)m < 0 able 10b 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  100)m x  0  for appli  0  r month, 3 × (98  0                | 0 0 (101)m 0 cable we 0 whole co )m 0                       | 744.78  0.85  634.95 eather re 816.85 dwelling, 130.97                      | 586.32  0.91  533.42 egion, se 773.25  continue 178.44                         | 0.87  521.62 ee Table 687.86 ous ( kW 123.68                         | 0 0 10) 0 Total f C =                             | 0 0 0 24 x [(10 0 = Sum(                                       | 0<br>0<br>0<br>03)m - (<br>0<br>1,0,4)<br>area ÷ (4               | 0 0 0 102)m];                         | x (41)m<br>433.08                  | (101)<br>(102)<br>(103)                                              |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar of (103)m= 0 Space cooling set (104)m to (104)m= 0  Cooled fraction Intermittency for (106)m= 0  Space cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otor for lo                                   | ops hm op | 0 0 100)m x 0 for appli 0 r month, 3 × (98 0                    | 0<br>0 (101)m<br>0 cable we<br>0 whole of                   | 744.78  0.85  634.95 eather re 816.85 dwelling, 130.97  0.25  × (105)       | 586.32  0.91  533.42 egion, se 773.25  continue  178.44  0.25  × (106)r        | 601.37  0.87  521.62  e Table 687.86  ous ( kW  123.68               | 0 0 10) 0 Total f C =                             | 0 0 0 24 x [(10 0 = Sum( cooled                                | 0 0 0 0 0 03)m - ( 0 1,04) area ÷ (4                              | 0 0 0 102)m];                         | x (41)m<br>433.08<br>1             | (101)<br>(102)<br>(103)<br>(104)<br>(105)                            |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar of (103)m= 0 Space cooling set (104)m to (104)m= 0  Cooled fraction Intermittency for (106)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otor for lo                                   | 0 pss hm 0 Vatts) = ( 0 lculated 0 ement for 104)m < 0 able 10b 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  100)m x  0  for appli  0  r month, 3 × (98  0                | 0 0 (101)m 0 cable we 0 whole co )m 0                       | 744.78  0.85  634.95 eather re 816.85 dwelling, 130.97                      | 586.32  0.91  533.42 egion, se 773.25  continue 178.44                         | 0.87  521.62 ee Table 687.86 ous ( kW 123.68                         | 0 0 10) 0 Total f C = 0 Total                     | 0 0 0 24 x [(10 0 = Sum( cooled to                             | 0<br>0<br>0<br>0<br>0<br>0<br>1,0,4)<br>area ÷ (4<br>0<br>(1,0,4) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | x (41)m<br>433.08<br>1             | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Utilisation fact (101)m= 0 Useful loss, r (102)m= 0 Gains (solar of the set (104)m to the set (104)m to the set (106)m= 0  Cooled fraction Intermittency f (106)m= 0  Space cooling (107)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otor for lo                                   | 0 pss hm 0 Vatts) = ( 0 lculated 0 ement for 104)m < 0 ment for 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  100)m x  0  for appli  0  r month, 3 × (98  0  )  0  month = | 0 0 (104)m 0 0 (104)m 0                                     | 744.78  0.85  634.95 eather re 816.85 dwelling, 130.97  0.25  × (105)       | 586.32  0.91  533.42 egion, se 773.25  continue  178.44  0.25  × (106)r        | 601.37  0.87  521.62  e Table 687.86  ous ( kW  123.68               | 0 0 10) 0 Total 0 Total 0 Total                   | 0 0 0 24 x [(10 0 = Sum( cooled to 0) = Sum( 0 = Sum(          | 0<br>0<br>0<br>0<br>0<br>0<br>1,0,4)<br>area ÷ (4<br>0<br>(1,0,4) | 0 0 0 102)m];                         | x (41)m<br>433.08<br>1             | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar of (103)m= 0 Space cooling set (104)m to (104)m= 0  Cooled fraction Intermittency for (106)m= 0  Space cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otor for lo                                   | 0 pss hm 0 Vatts) = ( 0 lculated 0 ement for 104)m < 0 ment for 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  100)m x  0  for appli  0  r month, 3 × (98  0  )  0  month = | 0 0 (104)m 0 0 (104)m 0                                     | 744.78  0.85  634.95 eather re 816.85 dwelling, 130.97  0.25  × (105)       | 586.32  0.91  533.42 egion, se 773.25  continue  178.44  0.25  × (106)r        | 601.37  0.87  521.62  e Table 687.86  ous ( kW  123.68               | 0 0 10) 0 Total 0 Total 0 Total                   | 0 0 0 24 x [(10 0 = Sum( cooled to                             | 0<br>0<br>0<br>0<br>0<br>0<br>1,0,4)<br>area ÷ (4<br>0<br>(1,0,4) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | x (41)m<br>433.08<br>1             | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Utilisation fact (101)m= 0 Useful loss, r (102)m= 0 Gains (solar of the set (104)m to the set (104)m to the set (106)m= 0  Cooled fraction Intermittency f (106)m= 0  Space cooling (107)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otor for lo                                   | ops hm ovatts) = ( | 0 0 100)m x 0 for appli 0 r month, 3 × (98 0  month = 0         | 0 0 (104)m 0 (104)m 0                                       | 744.78  0.85  634.95 eather re 816.85 dwelling, 130.97  0.25  × (105) 32.74 | 586.32  0.91  533.42 egion, se 773.25  continue  178.44  0.25  × (106)r  44.61 | 0.87  521.62 ee Table 687.86  ous ( kW  123.68  0.25                 | 0 0 10) 0 Total 0 Total (107)                     | 0 0 0 24 x [(10 0 = Sum( cooled : 0 = Sum( 0 = Sum( 0 : (4) =  | 0<br>0<br>0<br>0<br>0<br>0<br>1,0,4)<br>area ÷ (4<br>0<br>(1,0,4) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | x (41)m<br>433.08<br>1             | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Utilisation factors (101)m= 0 Useful loss, r (102)m= 0 Gains (solar of the color of | otor for lo                                   | obss hm obss hm obss hm obss hm obss hm observed and observed above the served above the se | 0 0 100)m x 0 for appli 0 r month, 3 × (98 0  month = 0         | 0 0 (104)m 0 (104)m 0                                       | 744.78  0.85  634.95 eather re 816.85 dwelling, 130.97  0.25  × (105) 32.74 | 586.32  0.91  533.42 egion, se 773.25  continue  178.44  0.25  × (106)r  44.61 | 0.87  521.62 ee Table 687.86  ous ( kW  123.68  0.25                 | 0 0 10) 0 Total f C = 0 Total (107)               | 0 0 0 24 x [(10 0 = Sum( cooled : 0 = Sum( 0 = Sum( 0 : (4) =  | 0 0 0 0 0 0 0 1,0,4) area ÷ (4 0 1,0,7)                           | 0 0 0 0 102)m];                       | x (41)m<br>433.08<br>1             | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Utilisation factors (101)m= 0 Useful loss, horizontal (102)m= 0 Gains (solar (103)m= 0 Space cooling set (104)m to (104)m= 0  Cooled fraction Intermittency for (106)m= 0  Space cooling (107)m= 0  Space cooling (107)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otor for lo                                   | ops hm op | 0  100)m x 0  for appli 0 r month, 3 × (98 0  month = 0         | 0 0 (101)m 0 cable we 0 whole of )m 0 (104)m 0 vear only un | 744.78  0.85  634.95 eather re 816.85 dwelling, 130.97  0.25  × (105) 32.74 | 586.32  0.91  533.42 egion, se 773.25  continue  178.44  0.25  × (106)r  44.61 | 0.87  521.62 ee Table 687.86  ous ( kW  123.68  0.25                 | 0 0 10) 0 Total f C = 0 Total (107)               | 0 0 0 24 x [(10 0 = Sum( cooled b) 0 = Sum( 0 = Sum( 0 + (4) = | 0 0 0 0 0 0 0 1,0,4) area ÷ (4 0 1,0,7)                           | 0 0 0 0 102)m];                       | 433.08<br>1<br>0<br>108.27<br>1.83 | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106)<br>(107)<br>(108) |

|                               |                                                           |               | User D    | otaile:          |                  |            |            |                     |                        |          |
|-------------------------------|-----------------------------------------------------------|---------------|-----------|------------------|------------------|------------|------------|---------------------|------------------------|----------|
| A N                           | Obrida I I a alva all                                     | (             |           |                  | - NI             |            |            | OTDO                | 040000                 |          |
| Assessor Name: Software Name: | Chris Hocknell Stroma FSAP 201                            | 2             |           | Stroma<br>Softwa |                  |            |            |                     | 016363<br>on: 1.0.4.16 |          |
| Software Hame.                | Ottoma 1 O/ ti 201                                        |               |           | Address:         |                  |            |            | VCISIO              | 71. 1.0.4.10           |          |
| Address :                     |                                                           |               | , ,       |                  |                  |            |            |                     |                        |          |
| 1. Overall dwelling dime      | ensions:                                                  |               |           |                  |                  |            |            |                     |                        |          |
| Ground floor                  |                                                           |               |           | a(m²)            | (1-)             |            | ight(m)    | ] <sub>(0=)</sub> = | Volume(m³              | <u>-</u> |
|                               | N. (41 N. (4 N. (4 IN. (4                                 | \.            |           |                  | (1a) x           |            | 2.7        | (2a) =              | 196.69                 | (3a)     |
| Total floor area TFA = (1     | a)+(1b)+(1c)+(1d)+(1e                                     | )+(1n)        | 7:        | 2.85             | (4)              |            |            |                     |                        | _        |
| Dwelling volume               |                                                           |               |           |                  | (3a)+(3b)        | )+(3c)+(3c | l)+(3e)+   | .(3n) =             | 196.69                 | (5)      |
| 2. Ventilation rate:          | main se                                                   | econdary      |           | other            |                  | total      |            |                     | m³ per hou             | r        |
| North an of all large are     | heating h                                                 | eating        | _         |                  | , <sub>-</sub> - |            |            | 40 - 1              | -                      | _        |
| Number of chimneys            | 0 +                                                       | 0             | + _       | 0                | ] = [            | 0          |            | 40 =                | 0                      | (6a)     |
| Number of open flues          | 0 +                                                       | 0             | +         | 0                | ]                | 0          |            | 20 =                | 0                      | (6b)     |
| Number of intermittent fa     |                                                           |               |           |                  | L                | 3          | X '        | 10 =                | 30                     | (7a)     |
| Number of passive vents       | <b>;</b>                                                  |               |           |                  |                  | 0          | X '        | 10 =                | 0                      | (7b)     |
| Number of flueless gas f      | ires                                                      |               |           |                  |                  | 0          | X 4        | 40 =                | 0                      | (7c)     |
|                               |                                                           |               |           |                  |                  |            |            | Air ch              | anges per ho           | our      |
| Infiltration due to chimne    | vs_flues and fans = (6)                                   | a)+(6b)+(7a)  | )+(7b)+(7 | 7c) =            | Г                | 30         |            | ÷ (5) =             | 0.15                   | (8)      |
|                               | peen carried out or is intende                            |               |           |                  | ontinue fr       |            |            | (0)                 | 0.13                   |          |
| Number of storeys in t        | he dwelling (ns)                                          |               |           |                  |                  |            |            |                     | 0                      | (9)      |
| Additional infiltration       |                                                           |               |           |                  |                  |            | [(9)       | -1]x0.1 =           | 0                      | (10)     |
|                               | .25 for steel or timber f                                 |               |           |                  | •                | uction     |            |                     | 0                      | (11)     |
| deducting areas of openi      | resent, use the value corresp<br>ngs); if equal user 0.35 | oonaing to tr | ne great  | er wan are       | a (aner          |            |            |                     |                        |          |
|                               | floor, enter 0.2 (unseal                                  | ed) or 0.1    | (seale    | d), else         | enter 0          |            |            |                     | 0                      | (12)     |
| If no draught lobby, en       | ter 0.05, else enter 0                                    |               |           |                  |                  |            |            |                     | 0                      | (13)     |
| Percentage of window          | s and doors draught st                                    | ripped        |           |                  |                  |            |            |                     | 0                      | (14)     |
| Window infiltration           |                                                           |               |           | 0.25 - [0.2      |                  |            |            |                     | 0                      | (15)     |
| Infiltration rate             |                                                           |               |           | (8) + (10)       | . , , ,          | , , ,      | , ,        |                     | 0                      | (16)     |
| Air permeability value,       | •                                                         |               | •         | •                | •                | etre of e  | envelope   | area                | 5                      | (17)     |
| If based on air permeabil     | -                                                         |               |           |                  |                  | io boing u | and        |                     | 0.4                    | (18)     |
| Number of sides sheltere      |                                                           | s been done   | or a deg  | јгее ан рег      | пеаышу           | is being u | seu        |                     | 3                      | (19)     |
| Shelter factor                |                                                           |               |           | (20) = 1 -       | 0.075 x (1       | 9)] =      |            |                     | 0.78                   | (20)     |
| Infiltration rate incorpora   | ting shelter factor                                       |               |           | (21) = (18)      | x (20) =         |            |            |                     | 0.31                   | (21)     |
| Infiltration rate modified f  | or monthly wind speed                                     |               |           |                  |                  |            |            |                     |                        | _        |
| Jan Feb                       | Mar Apr May                                               | Jun           | Jul       | Aug              | Sep              | Oct        | Nov        | Dec                 |                        |          |
| Monthly average wind sp       | peed from Table 7                                         |               |           |                  |                  |            |            |                     | =                      |          |
| (22)m= 5.1 5                  | 4.9 4.4 4.3                                               | 3.8           | 3.8       | 3.7              | 4                | 4.3        | 4.5        | 4.7                 |                        |          |
| Wind Factor (22a)m = (2       | 2\m ÷ 4                                                   |               |           |                  |                  |            |            |                     |                        |          |
|                               | 2)m ÷ 4<br>1.23   1.1   1.08                              | 0.95          | 0.95      | 0.92             | 1                | 1.08       | 1.12       | 1.18                |                        |          |
| (                             | 1.00                                                      | 3.00          | 0.00      | J.02             | •                |            | L <u>-</u> |                     | I                      |          |

| Adjusted infiltration                             | rate (allow        | ing for sl       | nelter an   | nd wind s      | speed) =    | (21a) x          | (22a)m                                              |                  |              |                       |             |               |
|---------------------------------------------------|--------------------|------------------|-------------|----------------|-------------|------------------|-----------------------------------------------------|------------------|--------------|-----------------------|-------------|---------------|
| 0.4 0.                                            | 39 0.38            | 0.34             | 0.34        | 0.3            | 0.3         | 0.29             | 0.31                                                | 0.34             | 0.35         | 0.37                  |             |               |
| Calculate effective                               | •                  | rate for t       | he appli    | cable ca       | ise         | •                | •                                                   | •                |              | •                     | •           |               |
| If mechanical ve                                  |                    | andiy N. (2      | )2h) = (22a | a) v Emy (     | aguation (  | NEN otho         | nuino (22h                                          | ·\ = (22a)       |              |                       | 0           | (23a          |
| If balanced with hea                              |                    |                  | , ,         | ,              | . `         | ,, .             | •                                                   | )) = (23a)       |              |                       | 0           | (23h          |
|                                                   | -                  | -                | _           |                |             |                  |                                                     | Ola )            | 00-1 [       | 4 (00-)               | 0           | (230          |
| a) If balanced m                                  | ecnanicai v        | entilation 0     | with ne     | at recov       | ery (MV     | HR) (248         | $\frac{1}{1} = \frac{2}{0}$                         | 20)m + (,        | 23b) × [*    | $\frac{1 - (23c)}{0}$ | ÷ 100]<br>I | (24a          |
|                                                   |                    |                  |             |                |             |                  |                                                     |                  |              |                       |             | (240          |
| b) If balanced m (24b)m= 0                        | echanicai v        | entiliation<br>0 | 0 Without   | neat red       |             | VIV) (241<br>1 0 | $\int_{0}^{\infty} \int_{0}^{\infty} dx = (2x)^{2}$ | 20)m + (2<br>  0 | 230)         | 0                     |             | (24)          |
|                                                   | !                  | <u> </u>         | <u> </u>    | ļ              |             |                  |                                                     |                  | U            |                       |             | (24)          |
| c) If whole hous<br>if (22b)m < 0                 |                    |                  | •           | •              |             |                  |                                                     | 5 x (23h         | 1)           |                       |             |               |
| <u> </u>                                          | 0                  | 0                | 0           | 0              | 0           | 0 (22)           | 0                                                   | 0                | 0            | 0                     |             | (24           |
| d) If natural vent                                | ilation or wh      | nole hous        | L           | <u> </u>       | ventilati   | on from          | <u> </u>                                            |                  |              |                       |             |               |
| if (22b)m =                                       |                    |                  | •           | •              |             |                  |                                                     | 0.5]             |              |                       |             |               |
| (24d)m= 0.58 0.                                   | 58 0.57            | 0.56             | 0.56        | 0.54           | 0.54        | 0.54             | 0.55                                                | 0.56             | 0.56         | 0.57                  |             | (240          |
| Effective air cha                                 | nge rate - e       | nter (24a        | n) or (24h  | b) or (24      | c) or (24   | d) in bo         | x (25)                                              | •                |              |                       | •           |               |
| (25)m= 0.58 0.                                    | 58 0.57            | 0.56             | 0.56        | 0.54           | 0.54        | 0.54             | 0.55                                                | 0.56             | 0.56         | 0.57                  |             | (25)          |
| 3. Heat losses ar                                 | d hoat loss        | paramet          | or:         | •              |             | •                | •                                                   |                  |              |                       |             |               |
| ELEMENT                                           | Gross<br>area (m²) | Openin<br>m      | ıgs         | Net Ar<br>A ,r |             | U-val<br>W/m2    |                                                     | A X U<br>(W/F    | <b>(</b> )   | k-value<br>kJ/m²·l    |             | A X k<br>kJ/K |
| Doors                                             |                    |                  |             | 2              | <br>x       | 1                |                                                     | 2                | <del>'</del> |                       | •           | (26)          |
| Windows Type 1                                    |                    |                  |             | 4.25           |             | /[1/( 1.4 )+     | 0.041 =                                             | 5.63             |              |                       |             | (27)          |
| Windows Type 2                                    |                    |                  |             | 5.9            | _           | /[1/( 1.4 )+     |                                                     | 7.82             | =            |                       |             | (27)          |
| Windows Type 3                                    |                    |                  |             | 4.47           | 〓 .         | /[1/( 1.4 )+     |                                                     | 5.93             | =            |                       |             | (27)          |
| Windows Type 4                                    |                    |                  |             | 0.91           | = ,         | /[1/( 1.4 )+     |                                                     | 1.21             |              |                       |             | (27)          |
| Rooflights                                        |                    |                  |             |                | = .         | /[1/(1.7) +      | _                                                   |                  | _            |                       |             |               |
| _                                                 | 10.50              | 45.5             |             | 0.68175        | =           |                  |                                                     | 1.15897          | <u></u>      |                       |             | (27)          |
| Walls Type1                                       | 40.58              | 15.5             | 3           | 25.05          | =           | 0.18             | =                                                   | 4.51             | ᆿ ¦          |                       | ╡           | (29)          |
| Walls Type2                                       | 56.98              | 2                | _           | 54.98          | 3 ×         | 0.18             | =                                                   | 9.9              | <u> </u>     |                       | Ⅎ ⊨         | (29)          |
| Roof                                              | 72.85              | 0.68             | 3           | 72.17          | 7 X         | 0.13             | =                                                   | 9.38             |              |                       |             | (30)          |
| Total area of elem                                | ents, m²           |                  |             | 170.4          | 1           |                  |                                                     |                  |              |                       |             | (31)          |
| Party wall                                        |                    |                  |             | 23.2           | X           | 0                | =                                                   | 0                |              |                       | <u> </u>    | (32           |
| Party floor                                       |                    |                  |             | 72.85          | 5           |                  |                                                     |                  |              |                       |             | (32           |
| * for windows and roof<br>** include the areas on |                    |                  |             |                | lated using | g formula 1      | l/[(1/U-valu                                        | ue)+0.04] a      | s given in   | paragraph             | 3.2         |               |
| Fabric heat loss, V                               | I/K = S(A x)       | ( U)             |             |                |             | (26)(30          | ) + (32) =                                          |                  |              |                       | 47.46       | (33           |
| Heat capacity Cm                                  | $= S(A \times k)$  |                  |             |                |             |                  | ((28).                                              | (30) + (32       | 2) + (32a).  | (32e) =               | 19233.      | 21 (34)       |
| Thermal mass par                                  | ameter (TM         | P = Cm -         | ÷ TFA) ir   | n kJ/m²K       |             |                  | Indica                                              | ative Value      | Medium       |                       | 250         | (35           |
| For design assessmen<br>can be used instead of    |                    |                  | construct   | tion are no    | t known pi  | recisely the     | e indicative                                        | e values of      | TMP in Ta    | able 1f               |             |               |
|                                                   |                    |                  |             |                |             |                  |                                                     |                  |              |                       |             |               |
| Thermal bridges :                                 | S (L x Y) ca       | lculated         | using Ap    | pendix I       | K           |                  |                                                     |                  |              |                       | 12.16       | (36)          |

| Total fabric heat loss                                                                       |                                                    |              |                   |                                         | (33) +           | (36) =                 |                                       | İ        | 59.63   | (37)         |
|----------------------------------------------------------------------------------------------|----------------------------------------------------|--------------|-------------------|-----------------------------------------|------------------|------------------------|---------------------------------------|----------|---------|--------------|
| Ventilation heat loss calculated mont                                                        | nlv                                                |              |                   |                                         | (38)m            |                        | 39.03                                 | (01)     |         |              |
| Jan Feb Mar Ap                                                                               | <del>i                                      </del> | Jun          | Jul               | Aug                                     | Sep              | Oct                    | Nov                                   | Dec      |         |              |
| (38)m= 37.59 37.39 37.19 36.28                                                               | <del></del>                                        | 35.31        | 35.31             | 35.16                                   | 35.61            | 36.1                   | 36.45                                 | 36.82    |         | (38)         |
| Heat transfer coefficient, W/K                                                               |                                                    | ı            |                   | 1                                       | (39)m            | = (37) + (37)          | 38)m                                  |          | l       |              |
| (39)m= 97.21 97.02 96.82 95.9                                                                | 95.73                                              | 94.93        | 94.93             | 94.78                                   | 95.24            | 95.73                  | 96.08                                 | 96.44    |         |              |
| Heat loss parameter (HLP), W/m²K                                                             | •                                                  | •            | •                 | •                                       |                  | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub>                 | 12 /12=  | 95.9    | (39)         |
| (40)m= 1.33 1.33 1.33 1.32                                                                   | 1.31                                               | 1.3          | 1.3               | 1.3                                     | 1.31             | 1.31                   | 1.32                                  | 1.32     |         |              |
| Number of days in month (Table 1a)                                                           | •                                                  |              |                   | •                                       | ,                | Average =              | Sum(40) <sub>1.</sub>                 | 12 /12=  | 1.32    | (40)         |
| Jan Feb Mar Ap                                                                               | May                                                | Jun          | Jul               | Aug                                     | Sep              | Oct                    | Nov                                   | Dec      |         |              |
| (41)m= 31 28 31 30                                                                           | 31                                                 | 30           | 31                | 31                                      | 30               | 31                     | 30                                    | 31       |         | (41)         |
|                                                                                              | •                                                  |              |                   |                                         |                  |                        |                                       |          |         |              |
| 4. Water heating energy requirement                                                          | it:                                                |              |                   |                                         |                  |                        |                                       | kWh/ye   | ear:    |              |
|                                                                                              |                                                    |              |                   |                                         |                  |                        |                                       | ,        |         |              |
| Assumed occupancy, N<br>if TFA > 13.9, N = 1 + 1.76 x [1 - e                                 | m(-0.000                                           | 349 v (TI    | FΔ -13 9          | 1)2)] + 0 (                             | 0013 x (         | TFΔ -13                |                                       | 31       |         | (42)         |
| if TFA £ 13.9, N = 1                                                                         | τρ(-0.000τ                                         | J-J X (11    | A-10.5            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ) X 010 X (      | 11 A - 10.             | .0)                                   |          |         |              |
| Annual average hot water usage in li                                                         |                                                    |              |                   |                                         |                  |                        |                                       | .14      |         | (43)         |
| Reduce the annual average hot water usage in not more that 125 litres per person per day (a. | -                                                  | _            | _                 | to achieve                              | a water us       | se target o            | f                                     |          | •       |              |
|                                                                                              | _                                                  | <del>.</del> | ·                 |                                         |                  |                        |                                       |          | 1       |              |
| Jan   Feb   Mar   Ap                                                                         |                                                    | Jun          | Jul<br>Table 10 v | Aug                                     | Sep              | Oct                    | Nov                                   | Dec      |         |              |
|                                                                                              |                                                    |              |                   |                                         | 07.00            |                        | 04.40                                 | 00.05    | 1       |              |
| (44)m= 98.05 94.49 90.92 87.36                                                               | 83.79                                              | 80.23        | 80.23             | 83.79                                   | 87.36            | 90.92                  | 94.49                                 | 98.05    | 1000.00 | (44)         |
| Energy content of hot water used - calculated                                                | monthly = 4.                                       | .190 x Vd,ı  | m x nm x L        | OTm / 3600                              |                  |                        | m(44) <sub>112</sub> =<br>ables 1b, 1 |          | 1069.69 | (44)         |
| (45)m= 145.41 127.18 131.24 114.4                                                            | 2 109.78                                           | 94.74        | 87.79             | 100.74                                  | 101.94           | 118.8                  | 129.68                                | 140.82   |         |              |
|                                                                                              | · · · · · · · · · · · · · · · · · · ·              |              |                   | h (40                                   |                  | Total = Su             | m(45) <sub>112</sub> =                |          | 1402.53 | (45)         |
| If instantaneous water heating at point of use                                               | no not wate                                        | r storage),  | enter 0 in        | boxes (46)                              | ) to (61)        |                        |                                       |          | Ī       |              |
| (46)m= 0 0 0 0 Water storage loss:                                                           | 0                                                  | 0            | 0                 | 0                                       | 0                | 0                      | 0                                     | 0        |         | (46)         |
| Storage volume (litres) including any                                                        | solar or V                                         | VWHRS        | storane           | within sa                               | ame ves          | ല                      |                                       | 0        |         | (47)         |
| If community heating and no tank in                                                          |                                                    |              | •                 |                                         | ATTIO 100        | 001                    |                                       | <u> </u> |         | (41)         |
| Otherwise if no stored hot water (this                                                       | •                                                  |              |                   | ` '                                     | ers) ente        | er '0' in <i>(</i>     | 47)                                   |          |         |              |
| Water storage loss:                                                                          |                                                    |              |                   |                                         | ,                |                        | ,                                     |          |         |              |
| a) If manufacturer's declared loss fa                                                        | ctor is kno                                        | wn (kWl      | h/day):           |                                         |                  |                        |                                       | 0        |         | (48)         |
| Temperature factor from Table 2b                                                             |                                                    |              |                   |                                         |                  |                        |                                       | 0        |         | (49)         |
| Energy lost from water storage, kWh                                                          | year                                               |              |                   | (48) x (49)                             | ) =              |                        |                                       | 0        |         | (50)         |
| b) If manufacturer's declared cylinder                                                       |                                                    |              |                   |                                         |                  |                        |                                       |          | !<br>   |              |
| Hot water storage loss factor from Ta                                                        | ble 2 (kW                                          | h/litre/da   | ay)               |                                         |                  |                        |                                       | 0        |         | (51)         |
| If community heating see section 4.3 Volume factor from Table 2a                             |                                                    |              |                   |                                         |                  |                        |                                       | n        |         | (52)         |
| Temperature factor from Table 2b                                                             |                                                    |              |                   |                                         |                  |                        |                                       | 0        |         | (52)<br>(53) |
| Energy lost from water storage, kWh                                                          | vear                                               |              |                   | (47) x (51)                             | ) x (52) x (     | 53) =                  |                                       | 0        |         | (54)         |
| Enter (50) or (54) in (55)                                                                   | , 001                                              |              |                   | ( · · ) / · ( • · )                     | , ( <del>=</del> | /                      | -                                     | 0        |         | (55)         |
| . , . , , ,                                                                                  |                                                    |              |                   |                                         |                  |                        |                                       | -        | I       | ` ,          |

| Water storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or each                                                                                              | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                                                | ((56)m = (                                                                          | 55) × (41)ı                                                                      | m                                              |                                               |                                 |               |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------|---------------|----------------------------------------------|
| (56)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (56)                                         |
| If cylinder contain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s dedicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)ı                                                                                          | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                 | H11)] ÷ (5                                                                     | 0), else (5                                                                         | 7)m = (56)                                                                       | m where (                                      | H11) is fro                                   | m Append                        | ix H          |                                              |
| (57)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (57)                                         |
| Primary circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t loss (ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nnual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m Table                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                |                                                                                     |                                                                                  |                                                |                                               | 0                               |               | (58)                                         |
| Primary circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59)m = (                                                                    | (58) ÷ 36                                                                      | 55 × (41)                                                                           | m                                                                                |                                                |                                               |                                 |               |                                              |
| (modified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | factor f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                           | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                   | er heatir                                                                      | ng and a                                                                            | cylinde                                                                          | r thermo                                       | stat)                                         |                                 |               |                                              |
| (59)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (59)                                         |
| Combi loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                              | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                   | 65 × (41)                                                                      | )m                                                                                  |                                                                                  |                                                |                                               |                                 |               |                                              |
| (61)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (61)                                         |
| Total heat req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uired for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                            | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for eac                                                                     | h month                                                                        | (62)m =                                                                             | 0.85 × (                                                                         | (45)m +                                        | (46)m +                                       | (57)m +                         | (59)m + (61)m |                                              |
| (62)m= 123.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.25                                                                                                | 93.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.53                                                                       | 74.62                                                                          | 85.63                                                                               | 86.65                                                                            | 100.98                                         | 110.23                                        | 119.7                           |               | (62)                                         |
| Solar DHW input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                                           | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                   | ve quantity                                                                    | /) (enter '0                                                                        | ' if no sola                                                                     | r contribut                                    | ion to wate                                   | er heating)                     |               |                                              |
| (add additiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al lines if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or V                                                                                             | <b>WHRS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | applies                                                                     | , see Ap                                                                       | pendix (                                                                            | 3)                                                                               |                                                |                                               |                                 |               |                                              |
| (63)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (63)                                         |
| Output from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ater hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                |                                                                                     |                                                                                  |                                                |                                               |                                 |               |                                              |
| (64)m= 123.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.25                                                                                                | 93.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.53                                                                       | 74.62                                                                          | 85.63                                                                               | 86.65                                                                            | 100.98                                         | 110.23                                        | 119.7                           |               |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                | Outp                                                                                | out from wa                                                                      | ater heate                                     | r (annual)₁                                   | 12                              | 1192.15       | (64)                                         |
| Heat gains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/mo                                                                                               | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                   | × (45)m                                                                        | + (61)m                                                                             | n] + 0.8 x                                                                       | ((46)m                                         | + (57)m                                       | + (59)m                         | ]             | _                                            |
| (65)m= 30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.31                                                                                                | 23.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.13                                                                       | 18.65                                                                          | 24.44                                                                               | 24.00                                                                            | 25.25                                          | 07.50                                         | 00.00                           | <u>-</u>      | (65)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.13                                                                       | 10.00                                                                          | 21.41                                                                               | 21.66                                                                            | 25.25                                          | 27.56                                         | 29.93                           |               | (03)                                         |
| include (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m in cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                    | <u> </u>                                                                       |                                                                                     |                                                                                  |                                                | <u> </u>                                      | <u> </u>                        | eating        | (00)                                         |
| include (57) 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m                                                                                             | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                    | <u> </u>                                                                       |                                                                                     |                                                                                  |                                                | <u> </u>                                      | <u> </u>                        | eating        | (03)                                         |
| 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                   | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                    | <u> </u>                                                                       |                                                                                     |                                                                                  |                                                | <u> </u>                                      | <u> </u>                        | eating        | (03)                                         |
| · ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ains (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                   | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                    | <u> </u>                                                                       |                                                                                     | or hot w                                                                         |                                                | <u> </u>                                      | <u> </u>                        | eating        | (03)                                         |
| 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                   | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                   | s in the d                                                                     | dwelling                                                                            |                                                                                  | ater is fr                                     | om com                                        | munity h                        | eating        | (66)                                         |
| 5. Internal games Metabolic gair Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ains (see<br>ns (Table<br>Feb<br>115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Table 5<br>e 5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66                                                            | only if c ):  May 115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun                                                                         | Jul 115.66                                                                     | Aug<br>115.66                                                                       | or hot w<br>Sep<br>115.66                                                        | ater is fr                                     | om com                                        | munity h                        | eating        |                                              |
| 5. Internal games Metabolic gair Jan (66)m= 115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ains (see<br>ns (Table<br>Feb<br>115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Table 5<br>e 5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66                                                            | only if c ):  May 115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun                                                                         | Jul 115.66                                                                     | Aug<br>115.66                                                                       | or hot w<br>Sep<br>115.66                                                        | ater is fr                                     | om com                                        | munity h                        | eating        |                                              |
| 5. Internal games  Metabolic gain  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | res (Table<br>Feb<br>115.66<br>(calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E Table 5 E 5), Wat Mar 115.66 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m and 5a ts Apr 115.66 ppendix 9.94                                                           | May 115.66 L, equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun<br>115.66<br>ion L9 o                                                   | Jul<br>115.66<br>r L9a), a                                                     | Aug<br>115.66<br>Iso see                                                            | Sep<br>115.66<br>Table 5                                                         | Oct 115.66                                     | Nov                                           | Dec                             | eating        | (66)                                         |
| 5. Internal gain  Metabolic gain  Jan  (66)m= 115.66  Lighting gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | res (Table<br>Feb<br>115.66<br>(calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E Table 5 E 5), Wat Mar 115.66 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m and 5a ts Apr 115.66 ppendix 9.94                                                           | May 115.66 L, equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun<br>115.66<br>ion L9 o                                                   | Jul<br>115.66<br>r L9a), a                                                     | Aug<br>115.66<br>Iso see                                                            | Sep<br>115.66<br>Table 5                                                         | Oct 115.66                                     | Nov                                           | Dec                             | eating        | (66)                                         |
| 5. Internal games  Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances games  (68)m= 203.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | res (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>tins (calcula<br>205.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | culation of Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 culated in 200.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Appendix<br>189.29                   | only if controls:  May  115.66  L, equation 7.43  dix L, equation 174.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1:<br>152.51                      | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                       | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta                                      | Oct 115.66 15.01 ble 5 167.07                  | Nov<br>115.66                                 | Dec 115.66                      | eating        | (66)<br>(67)                                 |
| 5. Internal gi Metabolic gair Jan (66)m= 115.66 Lighting gains (67)m= 18.17 Appliances ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | res (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>tins (calcula<br>205.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | culation of Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 culated in 200.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Appendix<br>189.29                   | only if controls:  May  115.66  L, equation 7.43  dix L, equation 174.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1:<br>152.51                      | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                       | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta                                      | Oct 115.66 15.01 ble 5 167.07                  | Nov<br>115.66                                 | Dec 115.66                      | eating        | (66)<br>(67)                                 |
| 5. Internal graph Metabolic gain Jan (66)m= 115.66 Lighting gains (67)m= 18.17 Appliances ga (68)m= 203.86 Cooking gains (69)m= 34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | res (Table Feb 115.66 (calcula 16.14 lins (calcula 205.97 s (calcula 34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | culation of Earlie Solution of Earlie Earlie Solution of Earlie Earlie Solution of Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Ear | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Append<br>189.29<br>opendix<br>34.57 | May 115.66 L, equati 7.43 dix L, equati 174.97 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jun 115.66 ion L9 of 6.27 uation L 161.5                                    | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)           | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39                             | Sep 115.66 Table 5 11.82 see Tall 155.72 ee Table                                | Oct 115.66  15.01 ble 5 167.07                 | Nov<br>115.66<br>17.52                        | Dec 115.66 18.68                | eating        | (66)<br>(67)<br>(68)                         |
| 5. Internal games  Metabolic gain  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances games  (68)m= 203.86  Cooking gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | res (Table Feb 115.66 (calcula 16.14 lins (calcula 205.97 s (calcula 34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | culation of Earlie Solution of Earlie Earlie Solution of Earlie Earlie Solution of Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Ear | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Append<br>189.29<br>opendix<br>34.57 | May 115.66 L, equati 7.43 dix L, equati 174.97 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jun 115.66 ion L9 of 6.27 uation L 161.5                                    | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)           | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39                             | Sep 115.66 Table 5 11.82 see Tall 155.72 ee Table                                | Oct 115.66  15.01 ble 5 167.07                 | Nov<br>115.66<br>17.52                        | Dec 115.66 18.68                | eating        | (66)<br>(67)<br>(68)                         |
| 5. Internal given by the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | res (Table Feb 115.66 (calcula 16.14 ins (calcula 205.97 c (calcula 34.57 ins gains 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0                         | only if controls:  May  115.66  L, equati  7.43  dix L, equati  174.97  L, equati  34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>ion L15<br>34.57 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57       | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86         | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Internal given by Metabolic gain Jan (66)m= 115.66 Lighting gains (67)m= 18.17 Appliances ga (68)m= 203.86 Cooking gains (69)m= 34.57 Pumps and fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | res (Table Feb 115.66 (calcula 16.14 ins (calcula 205.97 c (calcula 34.57 ins gains 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0                         | only if controls:  May  115.66  L, equati  7.43  dix L, equati  174.97  L, equati  34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>ion L15<br>34.57 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57       | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86         | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Internal gives Metabolic gair Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances gains  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 0  Losses e.g. ev  (71)m= -92.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | res (Table Feb 115.66 (calcula 16.14 tins (calcula 34.57 res gains 0 vaporatio -92.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | culation of the Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 culated in 200.64 ated in Ap 34.57 (Table 5 0 on (negation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0 tive value            | only if controls:  May  115.66  L, equation   7.43  dix L, equation   174.97  L, equation   34.57  0  es) (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0                   | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86 34.57   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 0  Losses e.g. ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | res (Table Feb 115.66 (calcula 16.14 tins (calcula 34.57 res gains 0 vaporatio -92.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | culation of the Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 culated in 200.64 ated in Ap 34.57 (Table 5 0 on (negation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0 tive value            | only if controls:  May  115.66  L, equation   7.43  dix L, equation   174.97  L, equation   34.57  0  es) (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0                   | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86 34.57   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 0  Losses e.g. ev  (71)m= -92.53  Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | res (Table Feb 115.66 (calcula 16.14 tins (calcula 34.57 res gains 0 representation of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | culation of the Table 5  2 5), Wat Mar 115.66  ted in Ap 13.13  culated in 200.64  ated in Ap 34.57  (Table 5 0 on (negation of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part o | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29 ppendix 34.57 5a) 0 tive valu -92.53      | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0 le 5) -92.53      | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1:<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57<br>0 | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57<br>0 | Oct 115.66 15.01 ble 5 167.07 5 34.57 0 -92.53 | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>0 | Dec 115.66 18.68 194.86 34.57 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 0  Losses e.g. ev  (71)m= -92.53  Water heating  (72)m= 41.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | res (Table Feb 115.66 (calcula 16.14 tins (calcula 34.57 res gains 0 representation of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | culation of the Table 5  2 5), Wat Mar 115.66  ted in Ap 13.13  culated in 200.64  ated in Ap 34.57  (Table 5 0 on (negation of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part o | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29 ppendix 34.57 5a) 0 tive valu -92.53      | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0 le 5) -92.53      | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57<br>0 | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57<br>0 | Oct 115.66 15.01 ble 5 167.07 5 34.57 0 -92.53 | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>0 | Dec 115.66 18.68 194.86 34.57 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x | 0.77                      | X | 0.91       | x | 11.28            | x | 0.63           | x | 0.7            | ] =      | 3.14         | (75) |
| Northeast 0.9x | 0.77                      | x | 0.91       | x | 22.97            | X | 0.63           | x | 0.7            | =        | 6.39         | (75) |
| Northeast 0.9x | 0.77                      | x | 0.91       | x | 41.38            | x | 0.63           | x | 0.7            | =        | 11.51        | (75) |
| Northeast 0.9x | 0.77                      | x | 0.91       | x | 67.96            | x | 0.63           | x | 0.7            | =        | 18.9         | (75) |
| Northeast 0.9x | 0.77                      | x | 0.91       | x | 91.35            | X | 0.63           | x | 0.7            | =        | 25.4         | (75) |
| Northeast 0.9x | 0.77                      | x | 0.91       | x | 97.38            | x | 0.63           | x | 0.7            | =        | 27.08        | (75) |
| Northeast 0.9x | 0.77                      | x | 0.91       | x | 91.1             | x | 0.63           | x | 0.7            | <b>=</b> | 25.34        | (75) |
| Northeast 0.9x | 0.77                      | X | 0.91       | x | 72.63            | x | 0.63           | x | 0.7            | =        | 20.2         | (75) |
| Northeast 0.9x | 0.77                      | x | 0.91       | x | 50.42            | x | 0.63           | x | 0.7            | =        | 14.02        | (75) |
| Northeast 0.9x | 0.77                      | x | 0.91       | x | 28.07            | x | 0.63           | x | 0.7            | =        | 7.81         | (75) |
| Northeast 0.9x | 0.77                      | X | 0.91       | x | 14.2             | X | 0.63           | X | 0.7            | =        | 3.95         | (75) |
| Northeast 0.9x | 0.77                      | x | 0.91       | x | 9.21             | x | 0.63           | x | 0.7            | =        | 2.56         | (75) |
| Southeast 0.9x | 0.77                      | x | 4.25       | x | 36.79            | x | 0.63           | x | 0.7            | =        | 47.79        | (77) |
| Southeast 0.9x | 0.77                      | x | 5.9        | x | 36.79            | x | 0.63           | x | 0.7            | =        | 66.34        | (77) |
| Southeast 0.9x | 0.77                      | X | 4.47       | x | 36.79            | x | 0.63           | x | 0.7            | =        | 50.26        | (77) |
| Southeast 0.9x | 0.77                      | X | 4.25       | x | 62.67            | x | 0.63           | x | 0.7            | =        | 81.4         | (77) |
| Southeast 0.9x | 0.77                      | X | 5.9        | x | 62.67            | X | 0.63           | x | 0.7            | =        | 113.01       | (77) |
| Southeast 0.9x | 0.77                      | x | 4.47       | x | 62.67            | x | 0.63           | x | 0.7            | =        | 85.62        | (77) |
| Southeast 0.9x | 0.77                      | X | 4.25       | x | 85.75            | x | 0.63           | X | 0.7            | =        | 111.38       | (77) |
| Southeast 0.9x | 0.77                      | X | 5.9        | x | 85.75            | x | 0.63           | x | 0.7            | =        | 154.62       | (77) |
| Southeast 0.9x | 0.77                      | X | 4.47       | x | 85.75            | x | 0.63           | x | 0.7            | =        | 117.15       | (77) |
| Southeast 0.9x | 0.77                      | X | 4.25       | x | 106.25           | x | 0.63           | X | 0.7            | =        | 138.01       | (77) |
| Southeast 0.9x | 0.77                      | x | 5.9        | x | 106.25           | x | 0.63           | x | 0.7            | =        | 191.58       | (77) |
| Southeast 0.9x | 0.77                      | x | 4.47       | x | 106.25           | x | 0.63           | x | 0.7            | =        | 145.15       | (77) |
| Southeast 0.9x | 0.77                      | x | 4.25       | x | 119.01           | X | 0.63           | x | 0.7            | =        | 154.58       | (77) |
| Southeast 0.9x | 0.77                      | X | 5.9        | x | 119.01           | x | 0.63           | X | 0.7            | =        | 214.59       | (77) |
| Southeast 0.9x | 0.77                      | x | 4.47       | x | 119.01           | x | 0.63           | x | 0.7            | =        | 162.58       | (77) |
| Southeast 0.9x | 0.77                      | X | 4.25       | x | 118.15           | x | 0.63           | x | 0.7            | =        | 153.46       | (77) |
| Southeast 0.9x | 0.77                      | X | 5.9        | x | 118.15           | x | 0.63           | X | 0.7            | =        | 213.04       | (77) |
| Southeast 0.9x | 0.77                      | X | 4.47       | x | 118.15           | x | 0.63           | x | 0.7            | =        | 161.4        | (77) |
| Southeast 0.9x | 0.77                      | x | 4.25       | x | 113.91           | X | 0.63           | x | 0.7            | =        | 147.95       | (77) |
| Southeast 0.9x | 0.77                      | x | 5.9        | x | 113.91           | x | 0.63           | x | 0.7            | =        | 205.39       | (77) |
| Southeast 0.9x | 0.77                      | x | 4.47       | x | 113.91           | x | 0.63           | x | 0.7            | <b>=</b> | 155.61       | (77) |
| Southeast 0.9x | 0.77                      | x | 4.25       | x | 104.39           | x | 0.63           | x | 0.7            | =        | 135.59       | (77) |
| Southeast 0.9x | 0.77                      | X | 5.9        | x | 104.39           | x | 0.63           | x | 0.7            | =        | 188.23       | (77) |
| Southeast 0.9x | 0.77                      | X | 4.47       | x | 104.39           | x | 0.63           | x | 0.7            | ] =      | 142.61       | (77) |
| Southeast 0.9x | 0.77                      | X | 4.25       | x | 92.85            | x | 0.63           | x | 0.7            | ] =      | 120.6        | (77) |
| Southeast 0.9x | 0.77                      | X | 5.9        | x | 92.85            | x | 0.63           | x | 0.7            | ] =      | 167.42       | (77) |
| Southeast 0.9x | 0.77                      | X | 4.47       | x | 92.85            | x | 0.63           | x | 0.7            | ] =      | 126.84       | (77) |
|                |                           |   |            | - |                  | - |                | • |                | -        |              | _    |

| Southoost o o             |               | _              |           |          |               |                | 1     |                | _        |                |        |       | <b>—</b> , |
|---------------------------|---------------|----------------|-----------|----------|---------------|----------------|-------|----------------|----------|----------------|--------|-------|------------|
| Southeast 0.9x            | 0.77          | ×              | 4.25      | =        | X             | 69.27          | X     | 0.63           | ×        | 0.7            | =      | 89.97 | (77)       |
| Southeast 0.9x            | 0.77          | ×              | 5.9       |          | X             | 69.27          | X     | 0.63           | ×        | 0.7            | =      | 124.9 | (77)       |
| Southeast 0.9x            | 0.77          | ×              | 4.47      | 7        | X             | 69.27          | X     | 0.63           | X        | 0.7            | =      | 94.63 | (77)       |
| Southeast 0.9x            | 0.77          | ×              | 4.25      | 5        | X             | 44.07          | X     | 0.63           | ×        | 0.7            | =      | 57.24 | (77)       |
| Southeast 0.9x            | 0.77          | X              | 5.9       |          | X             | 44.07          | X     | 0.63           | X        | 0.7            | =      | 79.46 | (77)       |
| Southeast <sub>0.9x</sub> | 0.77          | X              | 4.47      | 7        | X             | 44.07          | X     | 0.63           | X        | 0.7            | =      | 60.2  | (77)       |
| Southeast 0.9x            | 0.77          | X              | 4.25      | 5        | X             | 31.49          | X     | 0.63           | X        | 0.7            | =      | 40.9  | (77)       |
| Southeast <sub>0.9x</sub> | 0.77          | x              | 5.9       |          | X             | 31.49          | X     | 0.63           | X        | 0.7            | =      | 56.78 | (77)       |
| Southeast <sub>0.9x</sub> | 0.77          | X              | 4.47      | 7        | X             | 31.49          | X     | 0.63           | X        | 0.7            | =      | 43.02 | (77)       |
| Rooflights 0.9x           | 1             | X              | 0.68      | 3        | x             | 26             | X     | 0.63           | X        | 0.7            | =      | 7.04  | (82)       |
| Rooflights 0.9x           | 1             | x              | 0.68      | 3        | x             | 54             | x     | 0.63           | X        | 0.7            | =      | 14.61 | (82)       |
| Rooflights 0.9x           | 1             | x              | 0.68      | 3        | x             | 96             | X     | 0.63           | X        | 0.7            | =      | 25.98 | (82)       |
| Rooflights 0.9x           | 1             | x              | 0.68      | 3        | x             | 150            | x     | 0.63           | x        | 0.7            | =      | 40.59 | (82)       |
| Rooflights 0.9x           | 1             | x              | 0.68      | 3        | x             | 192            | x     | 0.63           | x        | 0.7            | =      | 51.95 | (82)       |
| Rooflights 0.9x           | 1             | ×              | 0.68      | 3        | x             | 200            | x     | 0.63           | x        | 0.7            | =      | 54.12 | (82)       |
| Rooflights 0.9x           | 1             | ×              | 0.68      | 3        | x             | 189            | x     | 0.63           | X        | 0.7            | =      | 51.14 | (82)       |
| Rooflights 0.9x           | 1             | x              | 0.68      | 3        | x             | 157            | x     | 0.63           | x        | 0.7            | =      | 42.48 | (82)       |
| Rooflights 0.9x           | 1             | x              | 0.68      | 3        | x             | 115            | x     | 0.63           | x        | 0.7            | =      | 31.12 | (82)       |
| Rooflights 0.9x           | 1             | ×              | 0.68      | 3        | x             | 66             | x     | 0.63           | x        | 0.7            | =      | 17.86 | (82)       |
| Rooflights 0.9x           | 1             | ×              | 0.68      | 3        | x             | 33             | x     | 0.63           | x        | 0.7            | = =    | 8.93  | (82)       |
| Rooflights 0.9x           | 1             | ×              | 0.68      | 3        | x             | 21             | x     | 0.63           | ×        | 0.7            | =      | 5.68  | (82)       |
| L                         |               |                |           |          |               |                | ,     |                |          |                |        |       |            |
| Solar gains in            | watts calcu   | ılated         | for each  | month    | 1             |                | (83)m | n = Sum(74)m . | (82)m    |                |        |       |            |
| (83)m= 174.57             | · I           | 20.63          | 534.23    | 609.1    | $\overline{}$ | 09.1 585.43    | 529   |                | 335.10   | 3 209.79       | 148.93 |       | (83)       |
| Total gains – ir          | nternal and   | solar          | (84)m =   | (73)m    | + (8          | 33)m , watts   |       |                |          |                |        |       |            |
| (84)m= 495.83             | 621.05 72     | 9.58           | 824.92    | 880.55   | 86            | 62.54 827.49   | 774   | .77 715.34     | 608.8    | 7 504.68       | 460.39 |       | (84)       |
| 7. Mean inter             | nal tempera   | ature (        | heating   | seasor   | 1)            | ·              |       |                |          |                |        |       |            |
| Temperature               |               |                |           |          |               | area from Tal  | ble 9 | Th1 (°C)       |          |                |        | 21    | (85)       |
| Utilisation fac           | •             | •              |           |          | -             |                |       | ( )            |          |                |        |       | (22)       |
| Jan                       |               | Mar            | Apr       | May      | ì             | Jun Jul        | Α     | ug Sep         | Oct      | Nov            | Dec    |       |            |
| (86)m= 1                  |               | .97            | 0.93      | 0.82     | +             | 0.66 0.49      | 0.5   | <del></del>    | 0.96     | 0.99           | 1      |       | (86)       |
|                           |               |                |           |          |               |                |       |                |          |                |        |       |            |
| Mean internal             | <u> </u>      | re in i        | 20.5      | 20.79    | $\overline{}$ | 0.95 20.99     | 20.   | <u> </u>       | 20.48    | 19.96          | 19.55  |       | (87)       |
| ` '                       | ļ             |                |           |          |               | !              |       | <u> </u>       | 20.40    | 19.90          | 19.55  |       | (07)       |
| Temperature               |               | <del>~~`</del> |           |          | _             | <del></del>    | _     | · · · · ·      |          | 1              |        | I     | (00)       |
| (88)m= 19.81              | 19.82         | 9.82           | 19.83     | 19.83    | 1             | 9.84 19.84     | 19.   | 84 19.84       | 19.83    | 19.83          | 19.82  |       | (88)       |
| Utilisation fac           | tor for gains | s for r        | est of dw | elling,  | h2,           | m (see Table   | 9a)   |                |          |                |        | •     |            |
| (89)m= 1                  | 0.99 0        | .96            | 0.9       | 0.77     |               | 0.56 0.37      | 0.4   | 0.7            | 0.93     | 0.99           | 1      |       | (89)       |
| Mean internal             | temperatu     | re in t        | he rest c | of dwell | ing           | T2 (follow ste | eps 3 | to 7 in Tabl   | e 9c)    |                |        |       |            |
| (90)m= 18.55              | 18.78         | 9.09           | 19.45     | 19.7     | 1             | 9.82 19.84     | 19.   | 84 19.77       | 19.44    | 18.92          | 18.51  |       | (90)       |
|                           | •             |                |           |          | •             | •              |       | ·              | LA = Liv | ving area ÷ (4 | 4) =   | 0.45  | (91)       |
|                           |               |                |           |          |               |                |       |                |          |                |        |       |            |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 19.02                                                                                                                                                       | 19.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.56                                                                           | 19.92                                                         | 20.19                                                     | 20.32                                                        | 20.35                                                         | 20.35                                                 | 20.27                                             | 19.9                                                                       | 19.38                                          | 18.98                                      |                                    | (92)                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------|-------------------------------------------------------------|
| Apply adjus                                                                                                                                                        | tment to t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he mear                                                                         | internal                                                      | tempera                                                   | ture fro                                                     | m Table                                                       | 4e, whe                                               | re appro                                          | priate                                                                     |                                                |                                            |                                    |                                                             |
| (93)m= 19.02                                                                                                                                                       | 19.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.56                                                                           | 19.92                                                         | 20.19                                                     | 20.32                                                        | 20.35                                                         | 20.35                                                 | 20.27                                             | 19.9                                                                       | 19.38                                          | 18.98                                      |                                    | (93)                                                        |
| 8. Space he                                                                                                                                                        | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                               |                                                           |                                                              |                                                               |                                                       |                                                   |                                                                            |                                                |                                            |                                    |                                                             |
| Set Ti to the                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | •                                                             |                                                           | ed at ste                                                    | ep 11 of                                                      | Table 9b                                              | o, so tha                                         | t Ti,m=(                                                                   | 76)m an                                        | d re-calc                                  | ulate                              |                                                             |
| the utilisation                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                               |                                                           | lun                                                          | led                                                           | ۸۰۰۰                                                  | Con                                               | Oot                                                                        | Nov                                            | Doo                                        |                                    |                                                             |
| Jan Utilisation fa                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mar                                                                             | Apr                                                           | May                                                       | Jun                                                          | Jul                                                           | Aug                                                   | Sep                                               | Oct                                                                        | Nov                                            | Dec                                        |                                    |                                                             |
| (94)m= 0.99                                                                                                                                                        | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.96                                                                            | 0.9                                                           | 0.78                                                      | 0.6                                                          | 0.43                                                          | 0.47                                                  | 0.73                                              | 0.94                                                                       | 0.99                                           | 1                                          |                                    | (94)                                                        |
| Useful gains                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                               |                                                           | 0.0                                                          | 0.10                                                          | 0.17                                                  | 0.10                                              | 0.01                                                                       | 0.00                                           | •                                          |                                    | ( )                                                         |
| (95)m= 492.98                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 701.98                                                                          | 745.58                                                        | 690.88                                                    | 516.65                                                       | 351.72                                                        | 367.1                                                 | 522.81                                            | 569.58                                                                     | 498.36                                         | 458.45                                     |                                    | (95)                                                        |
| Monthly ave                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | perature                                                      | from Ta                                                   |                                                              |                                                               |                                                       |                                                   |                                                                            |                                                |                                            |                                    |                                                             |
| (96)m= 4.3                                                                                                                                                         | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                                                                             | 8.9                                                           | 11.7                                                      | 14.6                                                         | 16.6                                                          | 16.4                                                  | 14.1                                              | 10.6                                                                       | 7.1                                            | 4.2                                        |                                    | (96)                                                        |
| Heat loss ra                                                                                                                                                       | ite for me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | an intern                                                                       | al tempe                                                      | erature, L                                                | <br>_m , W =                                                 | =[(39)m :                                                     | x [(93)m                                              | – (96)m                                           | ]                                                                          |                                                |                                            |                                    |                                                             |
| (97)m= 1430.5                                                                                                                                                      | 3 1391.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1264.05                                                                         | 1056.89                                                       | 812.61                                                    | 543.18                                                       | 356.13                                                        | 374.24                                                | 587.45                                            | 890.64                                                                     | 1180.24                                        | 1425.08                                    |                                    | (97)                                                        |
| Space heat                                                                                                                                                         | ing require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ement fo                                                                        | r each n                                                      | nonth, kV                                                 | Vh/mont                                                      | h = 0.02                                                      | 4 x [(97)                                             | m – (95                                           | )m] x (4                                                                   | 1)m                                            |                                            |                                    |                                                             |
| (98)m= 697.54                                                                                                                                                      | 523.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 418.18                                                                          | 224.14                                                        | 90.57                                                     | 0                                                            | 0                                                             | 0                                                     | 0                                                 | 238.87                                                                     | 490.96                                         | 719.17                                     |                                    |                                                             |
|                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                               |                                                               |                                                           |                                                              |                                                               | Tota                                                  | l per year                                        | (kWh/year                                                                  | ) = Sum(9                                      | 8)15,912 =                                 | 3403.41                            | (98)                                                        |
| Space heat                                                                                                                                                         | ina reauir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ement in                                                                        | kWh/m²                                                        | /vear                                                     |                                                              |                                                               |                                                       |                                                   |                                                                            |                                                |                                            | 46.72                              | (99)                                                        |
| 8c. Space c                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                               | ,                                                         |                                                              |                                                               |                                                       |                                                   |                                                                            |                                                |                                            |                                    |                                                             |
| Calculated t                                                                                                                                                       | Ĭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                               | See Tab                                                   | la 10h                                                       |                                                               |                                                       |                                                   |                                                                            |                                                |                                            |                                    |                                                             |
| Jan                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mar                                                                             | Apr                                                           | May                                                       | Jun                                                          | Jul                                                           | Aug                                                   | Sep                                               | Oct                                                                        | Nov                                            | Dec                                        |                                    |                                                             |
| Heat loss ra                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | •                                                             |                                                           |                                                              |                                                               |                                                       | •                                                 |                                                                            |                                                |                                            |                                    |                                                             |
| (100)m= 0                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                               | 0                                                             | 0                                                         | 892.35                                                       | 702.49                                                        | 720.35                                                | 0                                                 | 0                                                                          | 0                                              | 0                                          |                                    | (100)                                                       |
| Utilisation fa                                                                                                                                                     | actor for lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · .                                                                             |                                                               |                                                           |                                                              |                                                               |                                                       |                                                   |                                                                            |                                                |                                            |                                    |                                                             |
|                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oss hm                                                                          |                                                               |                                                           |                                                              |                                                               |                                                       |                                                   |                                                                            |                                                |                                            |                                    |                                                             |
| (101)m= 0                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oss hm                                                                          | 0                                                             | 0                                                         | 0.89                                                         | 0.94                                                          | 0.92                                                  | 0                                                 | 0                                                                          | 0                                              | 0                                          |                                    | (101)                                                       |
| $\begin{array}{c} \text{(101)m=} & 0\\ \text{Useful loss,} \end{array}$                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                               |                                                               |                                                           | 0.89                                                         | 0.94                                                          | 0.92                                                  | 0                                                 | 0                                                                          | 0                                              | 0                                          |                                    | (101)                                                       |
|                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                               |                                                               |                                                           | 0.89<br>794.08                                               | 0.94                                                          |                                                       | 0                                                 | 0                                                                          | 0                                              | 0                                          |                                    | (101)<br>(102)                                              |
| Useful loss,                                                                                                                                                       | 0<br>hmLm (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>Vatts) = (                                                                 | 100)m x                                                       | (101)m                                                    | 794.08                                                       | 659.76                                                        | 663.78                                                | 0                                                 |                                                                            |                                                |                                            |                                    | , ,                                                         |
| Useful loss,<br>(102)m= 0                                                                                                                                          | 0<br>hmLm (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>Vatts) = (                                                                 | 100)m x                                                       | (101)m                                                    | 794.08<br>ather re                                           | 659.76                                                        | 663.78<br>e Table                                     | 0                                                 |                                                                            |                                                |                                            |                                    | , ,                                                         |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space cools                                                                                                           | hmLm (V<br>0<br>r gains ca<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 Vatts) = ( 0 Iculated 0 ement fo                                              | 100)m x 0 for appli 0 r month,                                | (101)m<br>0<br>cable we<br>0                              | 794.08<br>ather re<br>1084.95                                | 659.76<br>egion, se<br>1042.73                                | 663.78<br>ee Table<br>983.98                          | 0<br>10)<br>0                                     | 0                                                                          | 0                                              | 0                                          | x (41)m                            | (102)                                                       |
| Useful loss, (102)m= 0  Gains (sola (103)m= 0  Space cools set (104)m                                                                                              | o hmLm (V o r gains can o ing require to zero if (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 Vatts) = ( 0 Iculated 0 ement fo 104)m <                                      | 100)m x 0 for appli 0 r month, 3 × (98                        | (101)m<br>0<br>cable we<br>0<br>whole do                  | 794.08<br>eather re<br>1084.95<br>welling,                   | 659.76<br>egion, se<br>1042.73<br>continue                    | 663.78<br>ee Table<br>983.98<br>ous ( kW              | 0<br>10)<br>0<br>(h) = 0.0                        | 0<br>0<br>24 x [(10                                                        | 0<br>0<br>03)m – (                             | 0<br>0<br>102)m];                          | x (41)m                            | (102)                                                       |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space cools                                                                                                           | hmLm (V<br>0<br>r gains ca<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 Vatts) = ( 0 Iculated 0 ement fo                                              | 100)m x 0 for appli 0 r month,                                | (101)m<br>0<br>cable we<br>0                              | 794.08<br>ather re<br>1084.95                                | 659.76<br>egion, se<br>1042.73                                | 663.78<br>ee Table<br>983.98                          | 0<br>10)<br>0<br>(h) = 0.0                        | 0<br>0<br>24 x [(10                                                        | 0<br>0<br>03)m – (                             | 0<br>0<br>102)m];                          |                                    | (102)                                                       |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space cools set (104)m= 0                                                                                             | o hmLm (V o r gains ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 Vatts) = ( 0 Iculated 0 ement fo 104)m <                                      | 100)m x 0 for appli 0 r month, 3 × (98                        | (101)m<br>0<br>cable we<br>0<br>whole do                  | 794.08<br>eather re<br>1084.95<br>welling,                   | 659.76<br>egion, se<br>1042.73<br>continue                    | 663.78<br>ee Table<br>983.98<br>ous ( kW              | 0 $10)$ $0$ $(h) = 0.0$ $0$ $Total$               | 0  24 x [(10  0  = Sum(                                                    | 0 03)m - ( 0 104)                              | 0<br>0<br>102)m] 2<br>0                    | 732.58                             | (102)                                                       |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space cools set (104)m (104)m= 0  Cooled fracti                                                                       | o hmLm (V o o r gains car o o o o o o o o o o o o o o o o o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 Vatts) = ( 0 Iculated 0 ement fo (104)m < 0                                   | 100)m x 0 for appli 0 r month, 3 × (98                        | (101)m<br>0<br>cable we<br>0<br>whole do                  | 794.08<br>eather re<br>1084.95<br>welling,                   | 659.76<br>egion, se<br>1042.73<br>continue                    | 663.78<br>ee Table<br>983.98<br>ous ( kW              | 0 $10)$ $0$ $(h) = 0.0$ $0$ $Total$               | 0  24 x [(10  0  = Sum(                                                    | 0<br>0<br>03)m – (                             | 0<br>0<br>102)m] 2<br>0                    |                                    | (102)                                                       |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space cools set (104)m= 0                                                                                             | o hmLm (V o o r gains car o o o o o o o o o o o o o o o o o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 Vatts) = ( 0 Iculated 0 ement fo (104)m < 0                                   | 100)m x 0 for appli 0 r month, 3 × (98                        | (101)m<br>0<br>cable we<br>0<br>whole do                  | 794.08<br>eather re<br>1084.95<br>welling,                   | 659.76<br>egion, se<br>1042.73<br>continue                    | 663.78<br>ee Table<br>983.98<br>ous ( kW              | 0 $10)$ $0$ $(h) = 0.0$ $0$ $Total$               | 0  24 x [(10  0  = Sum(                                                    | 0 03)m - ( 0 104)                              | 0<br>0<br>102)m] 2<br>0                    | 732.58                             | (102)                                                       |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space cools set (104)m= 0  Cooled fracti Intermittency                                                                | o hmLm (V o r gains can o ing require to zero if o o o o o factor (Tates)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 Vatts) = ( 0 Iculated 0 ement fo (104)m < 0                                   | 100)m x 0 for appli 0 r month, 3 × (98 0                      | cable we  o  whole do  m  o                               | 794.08<br>eather re<br>1084.95<br>welling,<br>209.42         | 659.76<br>egion, se<br>1042.73<br>continuo<br>284.93          | 663.78<br>ee Table<br>983.98<br>ous ( kW<br>238.23    | 0<br>10)<br>0<br>(h) = 0.0<br>0<br>Total<br>f C = | 0 24 x [(10 0 = Sum( cooled :                                              | 0 03)m - ( 0 104) area ÷ (4                    | 0<br>102)m];<br>0<br>=<br>1) =             | 732.58                             | (102)                                                       |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space cools set (104)m= 0  Cooled fracti Intermittency                                                                | hmLm (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Vatts) = ( 0 lculated 0 ement for (104)m < 0 able 10b 0                       | 100)m x 0 for appli 0 r month, 3 × (98 0                      | cable we  whole de  o  o  o  o  o  o  o  o  o  o  o  o  o | 794.08 eather re 1084.95 welling, 209.42                     | 659.76<br>egion, se<br>1042.73<br>continuo<br>284.93          | 663.78<br>ee Table<br>983.98<br>ous ( kW<br>238.23    | 0<br>10)<br>0<br>(h) = 0.0<br>0<br>Total<br>f C = | 0 24 x [(10 0 = Sum( cooled a                                              | 0 03)m - ( 0 104) area ÷ (4                    | 0<br>0<br>102)m] ><br>0<br>=<br>4) =       | 732.58<br>1                        | (102)<br>(103)<br>(104)<br>(105)                            |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space cools set (104)m= 0  Cooled fracti Intermittency (106)m= 0                                                      | hmLm (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Vatts) = ( 0 lculated 0 ement for (104)m < 0 able 10b 0                       | 100)m x 0 for appli 0 r month, 3 × (98 0                      | cable we  whole de  o  o  o  o  o  o  o  o  o  o  o  o  o | 794.08 eather re 1084.95 welling, 209.42                     | 659.76<br>egion, se<br>1042.73<br>continuo<br>284.93          | 663.78<br>ee Table<br>983.98<br>ous ( kW<br>238.23    | 0<br>10)<br>0<br>(h) = 0.0<br>0<br>Total<br>f C = | 0 24 x [(10 0 = Sum( cooled a                                              | 0 03)m - ( 0 104) area ÷ (4                    | 0<br>0<br>102)m] ><br>0<br>=<br>4) =       | 732.58<br>1                        | (102)<br>(103)<br>(104)<br>(105)                            |
| Useful loss, (102)m= 0  Gains (sola (103)m= 0  Space cooliset (104)m= 0  Cooled fracti Intermittency (106)m= 0  Space coolin                                       | o hmLm (V o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r gains can o r ga | 0 Vatts) = ( 0 Iculated 0 ement fo 104)m < 0 able 10b 0 ment for                | 100)m x 0 for appli 0 r month, 3 × (98 0                      | (101)m 0 cable we 0 whole delaym 0                        | 794.08 eather re 1084.95 welling, 209.42  0.25 × (105)       | 659.76 egion, se 1042.73 continue 284.93  0.25 × (106)r       | 663.78 ee Table 983.98 ous ( kW 238.23                | 0 10) 0 Total f C =  0 Total                      | 0 24 x [(10 0 = Sum( cooled :                                              | 0 03)m - ( 0 1,04) area ÷ (4 0 (1,04)          | 0<br>102)m] 2<br>0<br>=<br>1) =            | 732.58<br>1                        | (102)<br>(103)<br>(104)<br>(105)                            |
| Useful loss, (102)m= 0  Gains (sola (103)m= 0  Space cooliset (104)m= 0  Cooled fracti Intermittency (106)m= 0  Space coolin                                       | o hmLm (V o o r gains can o o o o o o o o o o o o o o o o o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 Vatts) = ( 0 Iculated 0 ement for (104)m < 0 able 10b 0 ment for              | 100)m x 0 for appli 0 r month, 3 × (98 0 ) 0                  | (101)m 0 cable we 0 whole di )m 0 (104)m                  | 794.08 eather re 1084.95 welling, 209.42  0.25 × (105)       | 659.76 egion, se 1042.73 continue 284.93  0.25 × (106)r       | 663.78 ee Table 983.98 ous ( kW 238.23                | 0 10) 0 Total f C =  0 Total 0 Total              | 0 24 x [(10 0 = Sum( cooled :                                              | 0 03)m - ( 0 1,04) area ÷ (4 0 (1,04)          | 0<br>0<br>102)m ] 2<br>0<br>=<br>4) =<br>0 | 732.58                             | (102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space cools set (104)m= 0  Cooled fracti Intermittency (106)m= 0  Space coolin (107)m= 0                              | on g required 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 Vatts) = ( 0 Iculated 0 ement fo 104)m < 0 ment for 0 ment in k               | 100)m x 0 for appli 0 r month, 3 × (98 0 ) 0 month = 0        | (101)m 0 cable we 0 whole delaym 0 (104)m 0               | 794.08 eather re 1084.95 welling, 209.42  0.25 × (105) 52.36 | 659.76 egion, se 1042.73 continue 284.93  0.25 × (106)r 71.23 | 663.78 ee Table 983.98 ous ( kW 238.23  0.25  m 59.56 | 0 10) 0 Total f C =  0 Total (107)                | 0 24 x [(10 0 = Sum( cooled : 0 = Sum( 0 = Sum( 0 + Sum( 0 + (4) =         | 0 03)m - ( 0 1,04) area ÷ (4 0 (1,04)          | 0<br>0<br>102)m ] 2<br>0<br>=<br>4) =<br>0 | 732.58<br>1<br>0                   | (102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Useful loss,  (102)m= 0  Gains (sola  (103)m= 0  Space coolin  (104)m= 0  Cooled fracti Intermittency  (106)m= 0  Space coolin  (107)m= 0  Space coolin            | hmLm (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Vatts) = ( 0 Iculated 0 ement for 0 able 10b 0 ment for 0 ment in k iency (ca | 100)m x 0 for appli 0 r month, 3 × (98 0 ) 0 month = 0        | (101)m 0 cable we 0 whole delaym 0 (104)m 0               | 794.08 eather re 1084.95 welling, 209.42  0.25 × (105) 52.36 | 659.76 egion, se 1042.73 continue 284.93  0.25 × (106)r 71.23 | 663.78 ee Table 983.98 ous ( kW 238.23  0.25  m 59.56 | 0 10) 0 Total f C =  0 Total (107)                | 0 24 x [(10 0 = Sum( cooled : 0 = Sum( 0 = Sum( 0 + Sum( 0 + (4) =         | 0 0 03)m - ( 0 1,04) area ÷ (4 0 1,04) 0 1,07) | 0<br>0<br>102)m ] 2<br>0<br>=<br>4) =<br>0 | 732.58<br>1<br>0                   | (102)<br>(103)<br>(104)<br>(105)<br>(106)                   |
| Useful loss, (102)m= 0 Gains (sola (103)m= 0 Space coolin set (104)m= 0  Cooled fracti Intermittency (106)m= 0  Space coolin (107)m= 0  Space coolin 8f. Fabric En | o hmLm (V o r gains ca o ing require to zero if ( o o factor (Ta o g require o g require ergy Efficien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 Vatts) = ( 0 Iculated 0 ement for 104)m < 0 ment for 0 ment in k iency (cancy | 100)m x 0 for appli 0 r month, 3 × (98 0  month = 0  wwh/m²/y | (101)m 0 cable we 0 whole di )m 0 (104)m 0 /ear           | 794.08 eather re 1084.95 welling, 209.42  0.25 × (105) 52.36 | 659.76 egion, se 1042.73 continue 284.93  0.25 × (106)r 71.23 | 663.78 ee Table 983.98 ous ( kW 238.23  0.25  m 59.56 | 0 10) 0 Total f C =  0 Total (107)                | 0  24 x [(10)  0  = Sum( cooled a  0  = Sum( 0  = Sum( 0  = Sum( 0 + (4) = | 0 0 03)m - ( 0 1,04) area ÷ (4 0 1,04) 0 1,07) | 0<br>0<br>102)m ] 2<br>0<br>=<br>4) =<br>0 | 732.58<br>1<br>0<br>183.14<br>2.51 | (102)<br>(103)<br>(104)<br>(105)<br>(106)<br>(107)<br>(108) |

|                                                          |                                                                                 | I I a a a B   | N - 4 - 11   |             |            |          |           |               |          |
|----------------------------------------------------------|---------------------------------------------------------------------------------|---------------|--------------|-------------|------------|----------|-----------|---------------|----------|
|                                                          |                                                                                 | User D        | etails:      |             |            |          |           |               |          |
| Assessor Name:                                           | Chris Hocknell                                                                  |               | Strom        |             |            |          |           | 016363        |          |
| Software Name:                                           | Stroma FSAP 2012                                                                | Property A    |              | are Ve      |            |          | versic    | on: 1.0.4.16  |          |
| Address :                                                | ,                                                                               | Toperty I     | Addiess      | . Apartir   | iciil 4    |          |           |               |          |
| 1. Overall dwelling dime                                 | nsions:                                                                         |               |              |             |            |          |           |               |          |
|                                                          |                                                                                 | Area          | a(m²)        | _           | Av. He     | ight(m)  | _         | Volume(m³)    | <u> </u> |
| Ground floor                                             |                                                                                 |               | 61.4         | (1a) x      | 2          | 2.7      | (2a) =    | 165.78        | (3a)     |
| Total floor area TFA = (1a                               | a)+(1b)+(1c)+(1d)+(1e)+(1                                                       | n) (          | 61.4         | (4)         |            |          |           |               |          |
| Dwelling volume                                          |                                                                                 |               |              | (3a)+(3b    | )+(3c)+(3c | d)+(3e)+ | .(3n) =   | 165.78        | (5)      |
| 2. Ventilation rate:                                     |                                                                                 |               |              |             |            |          |           |               |          |
|                                                          | main seconda<br>heating heating                                                 | ry            | other        |             | total      |          |           | m³ per hou    | r        |
| Number of chimneys                                       | 0 + 0                                                                           | +             | 0            | = [         | 0          | X 4      | 40 =      | 0             | (6a)     |
| Number of open flues                                     | 0 + 0                                                                           | 7 + 7         | 0            | Ī = [       | 0          | x 2      | 20 =      | 0             | (6b)     |
| Number of intermittent fa                                | ns                                                                              |               |              | _ [         | 2          | x -      | 10 =      | 20            | (7a)     |
| Number of passive vents                                  |                                                                                 |               |              | Ē           | 0          | x -      | 10 =      | 0             | (7b)     |
| Number of flueless gas fi                                | res                                                                             |               |              | F           | 0          | x        | 40 =      | 0             | (7c)     |
|                                                          |                                                                                 |               |              | L           |            |          |           |               |          |
|                                                          |                                                                                 |               |              |             |            |          | Air ch    | nanges per ho | ur       |
| •                                                        | ys, flues and fans = $(6a)+(6b)+($                                              |               |              |             | 20         |          | ÷ (5) =   | 0.12          | (8)      |
| If a pressurisation test has b  Number of storeys in the | een carried out or is intended, procee                                          | ed to (17), o | otherwise (  | continue fi | om (9) to  | (16)     |           | 0             | (9)      |
| Additional infiltration                                  | ic dwelling (113)                                                               |               |              |             |            | [(9)     | -1]x0.1 = | 0             | (10)     |
| Structural infiltration: 0                               | .25 for steel or timber frame o                                                 | r 0.35 fo     | r masoni     | ry consti   | uction     |          |           | 0             | (11)     |
| • • • • • • • • • • • • • • • • • • • •                  | resent, use the value corresponding t                                           | o the great   | ter wall are | ea (after   |            |          | '         |               | _        |
| deducting areas of openir  If suspended wooden f         | igs); if equal user 0.35<br>iloor, enter 0.2 (unsealed) or 0                    | .1 (seale     | ed), else    | enter 0     |            |          |           | 0             | (12)     |
| If no draught lobby, en                                  | · · · · · ·                                                                     | •             | ,            |             |            |          |           | 0             | (13)     |
| Percentage of windows                                    | s and doors draught stripped                                                    |               |              |             |            |          |           | 0             | (14)     |
| Window infiltration                                      |                                                                                 |               | 0.25 - [0.2  |             | _          |          |           | 0             | (15)     |
| Infiltration rate                                        | 250                                                                             |               | (8) + (10)   |             |            |          |           | 0             | (16)     |
| •                                                        | q50, expressed in cubic metro<br>ity value, then $(18) = [(17) \div 20] + (18)$ | •             | •            | •           | etre ot e  | envelope | area      | 5             | (17)     |
| •                                                        | s if a pressurisation test has been do                                          |               |              |             | is being u | sed      |           | 0.37          | (18)     |
| Number of sides sheltere                                 | d                                                                               |               |              |             |            |          |           | 2             | (19)     |
| Shelter factor                                           |                                                                                 |               | ` '          | [0.075 x (  | 19)] =     |          |           | 0.85          | (20)     |
| Infiltration rate incorporat                             | _                                                                               |               | (21) = (18   | 3) x (20) = |            |          |           | 0.32          | (21)     |
| Infiltration rate modified for                           | <del></del>                                                                     | Jul           | Δυα          | Sep         | Oct        | Nov      | Doo       | 1             |          |
| L I                                                      |                                                                                 | Jui           | Aug          | l Seb       | Oct        | Nov      | Dec       | ]             |          |
| Monthly average wind sp (22)m= 5.1 5                     | 4.9 4.4 4.3 3.8                                                                 | 3.8           | 3.7          | 4           | 4.3        | 4.5      | 4.7       | 1             |          |
| , , , , ,                                                | 1 1 1                                                                           |               |              | <u> </u>    | <u> </u>   | L,       |           | J             |          |
| Wind Factor (22a)m = (22                                 | <del>'                                    </del>                                | ı             | _            |             |            | •        |           | 1             |          |
| (22a)m= 1.27 1.25                                        | 1.23 1.1 1.08 0.95                                                              | 0.95          | 0.92         | 1           | 1.08       | 1.12     | 1.18      | ]             |          |

| Adjusted infiltration                                                                                                                   | n rate (allow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing for sh                               | nelter an   | d wind s               | peed) =                                          | (21a) x                                          | (22a)m                                          |                            |                     |                  |                |               |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|----------------------------|---------------------|------------------|----------------|---------------|
| 0.4 0                                                                                                                                   | .39 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.35                                     | 0.34        | 0.3                    | 0.3                                              | 0.29                                             | 0.32                                            | 0.34                       | 0.35                | 0.37             | ]              |               |
| Calculate effective                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rate for t                               | he appli    | cable ca               | se                                               |                                                  | !                                               |                            |                     |                  |                |               |
| If mechanical vo                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | andis N. (O                              | 2h) - (22-  | ·                      |                                                  | NIT\\ atha                                       | i (22h                                          | \                          |                     |                  | 0              | (23a)         |
| If exhaust air heat p                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | , ,         | , ,                    | . `                                              | ,, .                                             | ,                                               | ) = (23a)                  |                     |                  | 0              | (23b)         |
| If balanced with hea                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                        | _           |                        |                                                  |                                                  |                                                 | <b>51.</b> \ (1)           |                     | 4 (00)           | 0              | (23c)         |
| a) If balanced n                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                        |             |                        | <del>,                                    </del> | <del>,                                    </del> | ŕ                                               | <del> </del>               | <del>-</del>        | <del>' ' '</del> | ) ÷ 100]<br>1  | (240)         |
| (24a)m= 0                                                                                                                               | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                        | 0           | 0                      | 0                                                | 0                                                | 0                                               | 0                          | 0                   | 0                | J              | (24a)         |
| b) If balanced n (24b)m= 0                                                                                                              | nechanicai ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | entilation<br>0                          | without     | neat red               | covery (r                                        | VIV) (24b                                        | $\int_{0}^{\infty} \int_{0}^{\infty} dt = (22)$ | 2b)m + (2<br>0             | 23b)<br>0           | 0                | 1              | (24b)         |
|                                                                                                                                         | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |             | <u> </u>               |                                                  | <u> </u>                                         |                                                 | U                          | U                   | 0                | J              | (240)         |
| c) If whole hous                                                                                                                        | e extract ver<br>0.5 × (23b), t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | •           | •                      |                                                  |                                                  |                                                 | 5 × (23h                   | )                   |                  |                |               |
| (24c)m= 0                                                                                                                               | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                        | 0           | 0                      | 0                                                | 0                                                | 0                                               | 0                          | 0                   | 0                | 1              | (24c)         |
| d) If natural ven                                                                                                                       | tilation or wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıole hous                                | e positiv   | /e input               | ventilati                                        | on from I                                        | oft                                             |                            |                     |                  | J              |               |
| ,                                                                                                                                       | 1, then (24d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | •           | •                      |                                                  |                                                  |                                                 | 0.5]                       |                     |                  |                |               |
| (24d)m= 0.58 0                                                                                                                          | .58 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.56                                     | 0.56        | 0.54                   | 0.54                                             | 0.54                                             | 0.55                                            | 0.56                       | 0.56                | 0.57             | ]              | (24d)         |
| Effective air cha                                                                                                                       | inge rate - ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nter (24a                                | ) or (24b   | o) or (24              | c) or (24                                        | ld) in box                                       | (25)                                            | -                          |                     | -                | _              |               |
| (25)m= 0.58 0                                                                                                                           | .58 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.56                                     | 0.56        | 0.54                   | 0.54                                             | 0.54                                             | 0.55                                            | 0.56                       | 0.56                | 0.57             | ]              | (25)          |
| 3. Heat losses a                                                                                                                        | nd heat loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | naramete                                 | zr.         |                        |                                                  |                                                  |                                                 |                            |                     |                  | _              |               |
| ELEMENT                                                                                                                                 | Gross<br>area (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Openin<br>m                              | gs          | Net Ar<br>A ,r         |                                                  | U-valı<br>W/m2                                   |                                                 | A X U<br>(W/ł              | <b>(</b> )          | k-value          |                | A X k<br>kJ/K |
| Doors                                                                                                                                   | area (m )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •••                                      |             | 2                      | <br>x                                            | 1                                                | <br>=                                           | 2                          | ,<br>               | KO/III           |                | (26)          |
| Windows Type 1                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             | 1.69                   | _                                                | /[1/( 1.4 )+                                     | !                                               | 2.24                       | =                   |                  |                | (27)          |
| Windows Type 2                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             | 0.42                   | <del>_</del>                                     | /[1/( 1.4 )+                                     |                                                 | 0.56                       | =                   |                  |                | (27)          |
| Windows Type 3                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             | 2.87                   | _                                                | /[1/( 1.4 )+                                     |                                                 | 3.8                        | ᠆                   |                  |                | (27)          |
| Windows Type 4                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             | 3.82                   | <del>_</del>                                     | /[1/( 1.4 )+                                     |                                                 | 5.06                       | 믐                   |                  |                | (27)          |
| Windows Type 5                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             |                        | <del>_</del>                                     | /[1/( 1.4 )+                                     |                                                 |                            | ╡                   |                  |                | , ,           |
| Walls Type 1                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                     |             | 2.87                   | =                                                |                                                  |                                                 | 3.8                        | 륵 ,                 |                  |                | (27)          |
| · _                                                                                                                                     | 51.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.36                                    |             | 38.07                  | =                                                | 0.18                                             | =                                               | 6.85                       | 닠 ¦                 |                  | ╡              | (29)          |
| Walls Type2                                                                                                                             | 35.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                        |             | 33.95                  | 5 X                                              | 0.18                                             | _  -                                            | 6.11                       | 닠 !                 |                  |                | (29)          |
| Roof                                                                                                                                    | 61.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                        |             | 61.4                   | X                                                | 0.13                                             | =                                               | 7.98                       |                     |                  |                | (30)          |
| Total area of elem                                                                                                                      | ents, m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |             | 148.7                  | 8                                                |                                                  |                                                 |                            |                     |                  |                | (31)          |
| Party wall                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             | 17.92                  | <u>X</u>                                         | 0                                                | =                                               | 0                          | يا ك                |                  |                | (32)          |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             | 61.4                   |                                                  |                                                  |                                                 |                            |                     |                  |                | (32a)         |
| Party floor                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             | -11- 1                 | ated using                                       | g formula 1                                      | /[(1/U-valu                                     | ıe)+0.04] a                | s given in          | n paragrapi      | h 3.2          |               |
| Party floor  * for windows and roo.  ** include the areas or                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             |                        |                                                  |                                                  |                                                 |                            |                     |                  |                |               |
| * for windows and roo                                                                                                                   | n both sides of in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nternal wall                             |             |                        |                                                  | (26)(30)                                         | ) + (32) =                                      |                            |                     |                  | 40.66          | (33)          |
| * for windows and roo<br>** include the areas or                                                                                        | n both sides of in<br>N/K = S (A x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nternal wall                             |             |                        |                                                  | (26)(30)                                         |                                                 | .(30) + (32                | <u>2</u> ) + (32a). | (32e) =          | 40.66<br>17050 |               |
| * for windows and roo<br>** include the areas of<br>Fabric heat loss, \                                                                 | both sides of in<br>$N/K = S(A \times X)$<br>$= S(A \times X)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nternal wall<br>: U)                     | ls and pari | titions                |                                                  | (26)(30)                                         | ((28).                                          | .(30) + (32<br>tive Value: | , , ,               | (32e) =          |                |               |
| * for windows and roo. ** include the areas of Fabric heat loss, \text{\text{Heat capacity Cm}}                                         | n both sides of in<br>N/K = S (A x<br>= S(A x k )<br>rameter (TMI<br>nts where the de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nternal wall  U)  P = Cm ÷ etails of the | ls and pari | n kJ/m²K               |                                                  |                                                  | ((28).                                          | tive Value:                | Medium              | , ,              | 17050          | .8 (34)       |
| * for windows and roo. ** include the areas of Fabric heat loss, \text{\text{N}} Heat capacity Cm Thermal mass pa For design assessment | n both sides of in<br>N/K = S (A x x ) = S(A x k )<br>rameter (TMI )<br>ats where the defined calculates and the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of interesting the sides of int | nternal wall U) P = Cm ÷ etails of the   | s and pan   | n kJ/m²K<br>ion are no | t known pi                                       |                                                  | ((28).                                          | tive Value:                | Medium              | , ,              | 17050          | (34)          |

| Ventilation   heat   loss calculated monthly   (38)m = 0.33 * (25)m x (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total fabric he    | eat loss                  |                       |             |                |            |            |             | (33) +       | (36) =             |                        | İ       | 53.18   | (37) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|-----------------------|-------------|----------------|------------|------------|-------------|--------------|--------------------|------------------------|---------|---------|------|
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Jan    |                    |                           | alculated             | l monthl    | V              |            |            |             | • ,          | ,                  | 25)m x (5)             |         | 33.10   |      |
| (38)me 31.77 31.6 31.43 30.64 30.49 29.8 29.8 29.8 30.07 30.49 30.79 31.1 (38)  Heat transfer coefficient, W/K  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (40)me (30)me (4) m  (41)me (30)me (4) m  (42)me (30)me (4) m  (43)me (31)me (4) m  (44)me (30)me (4) m  (45)me (30)me (4) m  (46)me (30)me (4) m  (47)me (30)me (4) m  (48)me (31)me (4) m  (49)me (31)me (4) m  (40)me (30)me (40)me (4) m  (40)me (30)me (40)me (4) m  (41)me (30)me (40)me (4) m  (42)me (30)me (40)me (4) m  (43)me (30)me (40)me (4 |                    | т —                       |                       |             | <u> </u>       | Jun        | Jul        | Aug         |              |                    |                        |         |         |      |
| (39)   84.95   84.77   84.61   83.82   83.67   82.98   82.98   82.98   82.85   83.25   83.87   83.97   84.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                           |                       |             | <del>-</del>   |            |            | Ť           |              | _                  |                        |         |         | (38) |
| (30)ms 84.95 84.77 84.61 83.82 83.67 82.98 82.98 82.98 82.85 83.25 83.67 83.97 84.28  Average * Sum(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heat transfer      | coefficie                 | nt, W/K               | <u> </u>    | Į              | <u> </u>   | <b>!</b>   |             | (39)m        | = (37) + (37)      | <br>38)m               |         |         |      |
| Heat loss parameter (HLP), W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                           | <del>É</del>          | 83.82       | 83.67          | 82.98      | 82.98      | 82.85       |              |                    |                        | 84.28   |         |      |
| Average = Sum(40)r; /12=   1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat loss para     | ameter (F                 | HLP), W               | m²K         | Į              | Į.         |            |             |              | _                  |                        | 12 /12= | 83.82   | (39) |
| Number of days in month (Table 1a)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (40)m= 1.38        | 1.38                      | 1.38                  | 1.37        | 1.36           | 1.35       | 1.35       | 1.35        | 1.36         | 1.36               | 1.37                   | 1.37    |         |      |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number of day      | ys in mo                  | nth (Tab              | le 1a)      | !              |            | !          | •           | ,            | Average =          | Sum(40) <sub>1.</sub>  | 12 /12= | 1.37    | (40) |
| 4. Water heating energy requirement:  **Note: That is a sumed occupancy, N if TFA > 13,9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA f 13,9, N = 1  **Annual average hot water usage in litres per day Vd, average = (25 x N) + 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | _                         |                       | · ·         | May            | Jun        | Jul        | Aug         | Sep          | Oct                | Nov                    | Dec     |         |      |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2)] + 0.0013 x (TFA - 13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Below the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m= 90.42 87.13 83.84 80.55 77.27 73.98 73.98 77.27 80.55 83.84 87.13 90.42  Total = Sum(44): = 986.36 44)  Energy content of hot water used - calculated monthly = 4.190 x Vd.m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 134.09 117.27 121.01 105.5 101.23 87.36 80.95 92.89 94 109.55 119.58 129.85  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | +                         |                       |             | <del></del>    | 30         | -          | Ť           |              | 31                 | 30                     | 31      |         | (41) |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2)] + 0.0013 x (TFA - 13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Below the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m= 90.42 87.13 83.84 80.55 77.27 73.98 73.98 77.27 80.55 83.84 87.13 90.42  Total = Sum(44): = 986.36 44)  Energy content of hot water used - calculated monthly = 4.190 x Vd.m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 134.09 117.27 121.01 105.5 101.23 87.36 80.95 92.89 94 109.55 119.58 129.85  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                           |                       |             |                |            |            |             |              |                    |                        |         |         |      |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m= 90.42 87.13 83.84 80.55 77.27 73.98 73.98 77.27 80.55 83.84 87.13 90.42  Total = Sum(44): := 986.36 44)  Energy content of hot water used - calculated monthly = 4.190 x Vd.m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 134.09 117.27 121.01 105.5 101.23 87.36 80.95 92.89 94 109.55 119.58 129.85  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4. Water hea       | tina ene                  | rav reau              | irement:    |                |            |            |             |              |                    |                        | kWh/ve  | ear:    |      |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                           | . 9 <i>)</i> . 9 q a. |             |                |            |            |             |              |                    |                        |         |         |      |
| If TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                           |                       | [1 ove      | ./ 0 0003      | )40 v /TI  | -A 12 O    | \2\1 + 0 (  | 0012 v /     | TEA 12             |                        | 02      |         | (42) |
| Annual average hot water usage in litres per day Vd, average = (25 x N) + 36   Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per person per day (all water use, hot and cold)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                           | + 1.76 X              | [i - exp    | (-0.0003       | 949 X (11  | -A -13.9   | )2)] + 0.0  | JU 13 X (    | IFA - 13.          | 9)                     |         |         |      |
| Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note      |                    | •                         | ater usag             | ge in litre | es per da      | ay Vd,av   | erage =    | (25 x N)    | + 36         |                    | 82                     | 2.2     |         | (43) |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | _                         |                       |             |                | -          | -          | to achieve  | a water us   | se target o        | f                      |         |         |      |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m= 90.42 87.13 83.84 80.55 77.27 73.98 73.98 77.27 80.55 83.84 87.13 90.42  Total = Sum(44)v = 986.36 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 134.09 117.27 121.01 105.5 101.23 87.36 80.95 92.89 94 109.55 119.58 129.85  Total = Sum(45)v = 1293.28 (45)  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | not more that 125  | litres per <sub>l</sub>   | person pei            | day (all w  | ater use, I    | not and co | ia)        |             |              |                    |                        |         |         |      |
| (44)m= 90.42 87.13 83.84 80.55 77.27 73.98 73.98 77.27 80.55 83.84 87.13 90.42    Total = Sum(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                           |                       |             |                | l .        |            |             | Sep          | Oct                | Nov                    | Dec     |         |      |
| Total = Sum(44): 12 =   986.36   (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hot water usage    | in litres per             | r day for ea          | ach month   | Vd,m = fa      | ctor from  | Table 1c x | (43)        |              |                    |                        |         |         |      |
| Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (44)m= 90.42       | 87.13                     | 83.84                 | 80.55       | 77.27          | 73.98      | 73.98      | 77.27       | 80.55        | 83.84              | 87.13                  | 90.42   |         | _    |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Energy content of  | f hot water               | used - cal            | culated mo  | onthly $= 4$ . | 190 x Vd,r | m x nm x E | OTm / 3600  |              |                    | . ,                    |         | 986.36  | (44) |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (45)m= 134.09      | 117.27                    | 121.01                | 105.5       | 101.23         | 87.36      | 80.95      | 92.89       | 94           | 109.55             | 119.58                 | 129.85  |         |      |
| Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) × (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)  Temperature factor from Table 2b 0 (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                           |                       |             |                |            |            |             |              | Total = Su         | m(45) <sub>112</sub> = |         | 1293.28 | (45) |
| Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  o  (50)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  o  (52)  Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | If instantaneous v | vater heati               | ng at point           | of use (no  | hot water      | storage),  | enter 0 in | boxes (46,  | ) to (61)    |                    |                        |         |         |      |
| Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)  Temperature factor from Table 2b 0 (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (10)               | 1 *                       | 0                     | 0           | 0              | 0          | 0          | 0           | 0            | 0                  | 0                      | 0       |         | (46) |
| If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  0  (52)  Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                  |                           | \ includir            | a ony o     | olor or M      | WHDC       | otorogo    | within or   | mo voo       | sol                |                        |         |         | (47) |
| Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  (52)  Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                  | ` ′                       |                       | •           |                |            | _          |             | anie ves     | SEI                |                        | 0       |         | (47) |
| Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  (48) × (49) =  0  (50)  (51)  (52)  Temperature factor from Table 2b  (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                  | _                         |                       |             | _              |            |            | . ,         | are) ant     | ar 'O' in <i>(</i> | <b>47</b> )            |         |         |      |
| a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  o  (50)  (51)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  (52)  (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                           | not wate              | , (tili3 li | iciuues i      | nstantai   | ieous cc   | JITIDI DON  | cra) crit    | 51 0 111 (         | <del>-</del> '')       |         |         |      |
| Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  o  (50)  (50)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  o  (52)  (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                  |                           | eclared I             | oss facto   | or is kno      | wn (kWł    | n/day):    |             |              |                    |                        | 0       |         | (48) |
| Energy lost from water storage, kWh/year (48) x (49) = 0 (50) b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) If community heating see section 4.3 Volume factor from Table 2a 0 (52) Temperature factor from Table 2b (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temperature f      | factor fro                | m Table               | 2b          |                |            |            |             |              |                    |                        | 0       |         | (49) |
| b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  0 (52)  (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  |                           |                       |             | ear            |            |            | (48) x (49) | ) =          |                    |                        |         |         |      |
| If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  0 (52)  0 (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •••                |                           | -                     | -           |                | or is not  | known:     |             |              |                    |                        |         |         | (==) |
| Volume factor from Table 2a  Temperature factor from Table 2b  0 (52) 0 (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | •                         |                       |             | le 2 (kW       | h/litre/da | ay)        |             |              |                    |                        | 0       |         | (51) |
| Temperature factor from Table 2b 0 (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  | •                         |                       | on 4.3      |                |            |            |             |              |                    |                        |         |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                           |                       | 2h          |                |            |            |             |              |                    |                        |         |         |      |
| Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) = 0$ (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                  |                           |                       |             |                |            |            | , _ · · · · | :            |                    |                        | U       |         | ` '  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                           | _                     | , KWh/ye    | ear            |            |            | (47) x (51) | ) x (52) x ( | 53) =              | -                      |         |         | (54) |
| Enter (50) or (54) in (55) 0 (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LINGI (30) 01      | ( <del>) +</del> ) III (5 | ))                    |             |                |            |            |             |              |                    |                        | U       |         | (၁၁) |

| Water storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | loss cal                                                                                      | culated f                                                                                                                       | or each                                                                                              | month                                                                            |                                                                                                     |                                                                               | ((56)m = (                                                                    | 55) × (41)ı                                                                    | m                                                      |                                               |                                       |               |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|---------------------------------------|---------------|--------------------------------------|
| (56)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                             | 0                                                                                                                               | 0                                                                                                    | 0                                                                                | 0                                                                                                   | 0                                                                             | 0                                                                             | 0                                                                              | 0                                                      | 0                                             | 0                                     |               | (56)                                 |
| If cylinder contain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s dedicate                                                                                    | d solar sto                                                                                                                     | rage, (57)ı                                                                                          | m = (56)m                                                                        | x [(50) – (                                                                                         | H11)] ÷ (5                                                                    | 0), else (5                                                                   | 7)m = (56)                                                                     | m where (                                              | H11) is fro                                   | m Append                              | ix H          |                                      |
| (57)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                             | 0                                                                                                                               | 0                                                                                                    | 0                                                                                | 0                                                                                                   | 0                                                                             | 0                                                                             | 0                                                                              | 0                                                      | 0                                             | 0                                     |               | (57)                                 |
| Primary circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t loss (ar                                                                                    | nual) fro                                                                                                                       | m Table                                                                                              | 3                                                                                |                                                                                                     |                                                                               |                                                                               |                                                                                |                                                        |                                               | 0                                     |               | (58)                                 |
| Primary circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | loss cal                                                                                      | culated t                                                                                                                       | for each                                                                                             | month (                                                                          | 59)m = (                                                                                            | (58) ÷ 36                                                                     | 65 × (41)                                                                     | m                                                                              |                                                        |                                               |                                       | •             |                                      |
| (modified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | / factor fi                                                                                   | rom Tabl                                                                                                                        | le H5 if t                                                                                           | here is s                                                                        | solar wat                                                                                           | ter heatir                                                                    | ng and a                                                                      | cylinde                                                                        | r thermo                                               | stat)                                         |                                       |               |                                      |
| (59)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                             | 0                                                                                                                               | 0                                                                                                    | 0                                                                                | 0                                                                                                   | 0                                                                             | 0                                                                             | 0                                                                              | 0                                                      | 0                                             | 0                                     |               | (59)                                 |
| Combi loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lculated                                                                                      | for each                                                                                                                        | month (                                                                                              | (61)m =                                                                          | (60) ÷ 36                                                                                           | 65 × (41)                                                                     | )m                                                                            |                                                                                |                                                        |                                               |                                       |               |                                      |
| (61)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                             | 0                                                                                                                               | 0                                                                                                    | 0                                                                                | 0                                                                                                   | 0                                                                             | 0                                                                             | 0                                                                              | 0                                                      | 0                                             | 0                                     |               | (61)                                 |
| Total heat req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uired for                                                                                     | water he                                                                                                                        | eating ca                                                                                            | alculated                                                                        | for eac                                                                                             | h month                                                                       | (62)m =                                                                       | 0.85 × (                                                                       | (45)m +                                                | (46)m +                                       | (57)m +                               | (59)m + (61)m |                                      |
| (62)m= 113.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.68                                                                                         | 102.86                                                                                                                          | 89.68                                                                                                | 86.05                                                                            | 74.25                                                                                               | 68.81                                                                         | 78.96                                                                         | 79.9                                                                           | 93.11                                                  | 101.64                                        | 110.38                                |               | (62)                                 |
| Solar DHW input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | calculated                                                                                    | using App                                                                                                                       | endix G or                                                                                           | Appendix                                                                         | H (negati                                                                                           | ve quantity                                                                   | /) (enter '0                                                                  | if no sola                                                                     | r contribut                                            | ion to wate                                   | er heating)                           | '             |                                      |
| (add additiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I lines if                                                                                    | FGHRS                                                                                                                           | and/or V                                                                                             | <b>WHRS</b>                                                                      | applies                                                                                             | , see Ap                                                                      | pendix (                                                                      | 3)                                                                             |                                                        |                                               |                                       |               |                                      |
| (63)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                             | 0                                                                                                                               | 0                                                                                                    | 0                                                                                | 0                                                                                                   | 0                                                                             | 0                                                                             | 0                                                                              | 0                                                      | 0                                             | 0                                     |               | (63)                                 |
| Output from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ater hea                                                                                      | ter                                                                                                                             |                                                                                                      |                                                                                  |                                                                                                     |                                                                               |                                                                               |                                                                                |                                                        |                                               |                                       | •             |                                      |
| (64)m= 113.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.68                                                                                         | 102.86                                                                                                                          | 89.68                                                                                                | 86.05                                                                            | 74.25                                                                                               | 68.81                                                                         | 78.96                                                                         | 79.9                                                                           | 93.11                                                  | 101.64                                        | 110.38                                |               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                 |                                                                                                      |                                                                                  |                                                                                                     |                                                                               | Outp                                                                          | out from wa                                                                    | ater heate                                             | r (annual)₁                                   | 12                                    | 1099.29       | (64)                                 |
| Heat gains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m water                                                                                       | heating,                                                                                                                        | kWh/mo                                                                                               | onth 0.2                                                                         | 5 ′ [0.85                                                                                           | × (45)m                                                                       | + (61)m                                                                       | n] + 0.8 x                                                                     | ((46)m                                                 | + (57)m                                       | + (59)m                               | ]             | _                                    |
| (65)m= 28.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.92                                                                                         | 25.72                                                                                                                           | 22.42                                                                                                | 21.51                                                                            | 18.56                                                                                               | 17.2                                                                          | 19.74                                                                         | 19.97                                                                          | 23.28                                                  | 25.41                                         | 27.59                                 | _             | (65)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                 |                                                                                                      |                                                                                  |                                                                                                     |                                                                               |                                                                               |                                                                                |                                                        |                                               |                                       |               |                                      |
| include (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m in cald                                                                                     | culation of                                                                                                                     | of (65)m                                                                                             | only if c                                                                        | ylinder i                                                                                           | s in the o                                                                    | dwelling                                                                      | or hot w                                                                       | ater is fr                                             | om com                                        | nunity h                              | l<br>eating   |                                      |
| include (57) 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                                                                                                                 | ` '                                                                                                  | •                                                                                | ylinder i                                                                                           | s in the o                                                                    | dwelling                                                                      | or hot w                                                                       | ater is fr                                             | om com                                        | munity h                              | eating        |                                      |
| 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see                                                                                     | e Table 5                                                                                                                       | and 5a                                                                                               | •                                                                                | ylinder i                                                                                           | s in the d                                                                    | dwelling                                                                      | or hot w                                                                       | ater is fr                                             | om com                                        | munity h                              | eating        |                                      |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ains (see                                                                                     | e Table 5                                                                                                                       | and 5a                                                                                               | •                                                                                | ylinder is                                                                                          | s in the o                                                                    | dwelling                                                                      | or hot w                                                                       | ater is fr                                             | rom com                                       | munity h                              | eating        |                                      |
| 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see                                                                                     | Table 5                                                                                                                         | and 5a                                                                                               | ):                                                                               |                                                                                                     |                                                                               |                                                                               |                                                                                |                                                        | ı                                             | ı                                     | eating        | (66)                                 |
| 5. Internal games Metabolic gair Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rs (Table<br>Feb                                                                              | 2 Table 5<br>2 5), Wat<br>Mar<br>101.05                                                                                         | and 5a<br>ts<br>Apr<br>101.05                                                                        | May                                                                              | Jun<br>101.05                                                                                       | Jul<br>101.05                                                                 | Aug<br>101.05                                                                 | Sep<br>101.05                                                                  | Oct                                                    | Nov                                           | Dec                                   | eating        | (66)                                 |
| 5. Internal games Metabolic gair Jan (66)m= 101.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rs (Table<br>Feb                                                                              | 2 Table 5<br>2 5), Wat<br>Mar<br>101.05                                                                                         | and 5a<br>ts<br>Apr<br>101.05                                                                        | May                                                                              | Jun<br>101.05                                                                                       | Jul<br>101.05                                                                 | Aug<br>101.05                                                                 | Sep<br>101.05                                                                  | Oct                                                    | Nov                                           | Dec                                   | eating        | (66)<br>(67)                         |
| 5. Internal games  Metabolic gain  Jan  (66)m= 101.05  Lighting gains  (67)m= 15.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | res (Table Feb 101.05 (calcula 13.98                                                          | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.37                                                                                  | ts Apr 101.05 ppendix 8.61                                                                           | May<br>101.05<br>L, equati                                                       | Jun<br>101.05<br>ion L9 oi<br>5.43                                                                  | Jul<br>101.05<br>r L9a), a<br>5.87                                            | Aug<br>101.05<br>Iso see                                                      | Sep<br>101.05<br>Table 5                                                       | Oct<br>101.05                                          | Nov<br>101.05                                 | Dec 101.05                            | eating        | ` ,                                  |
| 5. Internal gain  Metabolic gain  Jan  (66)m= 101.05  Lighting gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | res (Table Feb 101.05 (calcula 13.98                                                          | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.37                                                                                  | ts Apr 101.05 ppendix 8.61                                                                           | May<br>101.05<br>L, equati                                                       | Jun<br>101.05<br>ion L9 oi<br>5.43                                                                  | Jul<br>101.05<br>r L9a), a<br>5.87                                            | Aug<br>101.05<br>Iso see                                                      | Sep<br>101.05<br>Table 5                                                       | Oct<br>101.05                                          | Nov<br>101.05                                 | Dec 101.05                            | eating        | ` ,                                  |
| 5. Internal games  Metabolic gair  Jan  (66)m= 101.05  Lighting gains  (67)m= 15.74  Appliances games  (68)m= 176.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | res (Table<br>Feb<br>101.05<br>(calcula<br>13.98<br>ins (calcula<br>178.29                    | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68                                                                 | ts Apr 101.05 ppendix 8.61 Appendix 163.86                                                           | May 101.05 L, equati 6.44 dix L, eq                                              | Jun<br>101.05<br>ion L9 o<br>5.43<br>uation L<br>139.8                                              | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1                                | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also                                 | Sep<br>101.05<br>Table 5<br>10.24<br>see Ta<br>134.8                           | Oct<br>101.05<br>13.01<br>ble 5<br>144.62              | Nov<br>101.05                                 | Dec 101.05                            | eating        | (67)                                 |
| 5. Internal gi Metabolic gair Jan (66)m= 101.05 Lighting gains (67)m= 15.74 Appliances ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | res (Table<br>Feb<br>101.05<br>(calcula<br>13.98<br>ins (calcula<br>178.29                    | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68                                                                 | ts Apr 101.05 ppendix 8.61 Appendix 163.86                                                           | May 101.05 L, equati 6.44 dix L, eq                                              | Jun<br>101.05<br>ion L9 o<br>5.43<br>uation L<br>139.8                                              | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1                                | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also                                 | Sep<br>101.05<br>Table 5<br>10.24<br>see Ta<br>134.8                           | Oct<br>101.05<br>13.01<br>ble 5<br>144.62              | Nov<br>101.05                                 | Dec 101.05                            | eating        | (67)                                 |
| Metabolic gair  Jan  (66)m= 101.05  Lighting gains  (67)m= 15.74  Appliances ga  (68)m= 176.46  Cooking gains  (69)m= 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | res (Table Feb 101.05 (calcula 13.98 ins (calcula 178.29 c (calcula 33.1                      | e Table 5 e 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68 ited in Ap 33.1                                                 | ts Apr 101.05 ppendix 8.61 Appendix 163.86 ppendix 33.1                                              | May 101.05 L, equati 6.44 dix L, equati 151.46 L, equat                          | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15                                  | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)          | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18                       | Sep<br>101.05<br>Table 5<br>10.24<br>see Tale<br>ee Table                      | Oct<br>101.05<br>13.01<br>ble 5<br>144.62<br>5         | Nov<br>101.05<br>15.18                        | Dec 101.05 16.18 168.68               | eating        | (67)<br>(68)                         |
| 5. Internal games  Metabolic gain  Jan  (66)m= 101.05  Lighting gains  (67)m= 15.74  Appliances games  (68)m= 176.46  Cooking gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | res (Table Feb 101.05 (calcula 13.98 ins (calcula 178.29 c (calcula 33.1                      | e Table 5 e 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68 ited in Ap 33.1                                                 | ts Apr 101.05 ppendix 8.61 Appendix 163.86 ppendix 33.1                                              | May 101.05 L, equati 6.44 dix L, equati 151.46 L, equat                          | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15                                  | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)          | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18                       | Sep<br>101.05<br>Table 5<br>10.24<br>see Tale<br>ee Table                      | Oct<br>101.05<br>13.01<br>ble 5<br>144.62<br>5         | Nov<br>101.05<br>15.18                        | Dec 101.05 16.18 168.68               | eating        | (67)<br>(68)                         |
| 5. Internal given by the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | res (Table Feb 101.05 (calcula 13.98 ins (calcula 33.1 rs gains 0                             | 2 Table 5 2 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68 tted in Ap 33.1 (Table 5                                        | Apr<br>101.05<br>ppendix<br>8.61<br>Appendix<br>163.86<br>ppendix<br>33.1<br>5a)                     | May<br>101.05<br>L, equati<br>6.44<br>dix L, equat<br>151.46<br>L, equat<br>33.1 | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1                          | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1 | Sep<br>101.05<br>Table 5<br>10.24<br>see Ta<br>134.8<br>ee Table<br>33.1       | Oct<br>101.05<br>13.01<br>ble 5<br>144.62<br>5<br>33.1 | Nov<br>101.05<br>15.18<br>157.02              | Dec 101.05 16.18 168.68 33.1          | eating        | (67)<br>(68)<br>(69)                 |
| 5. Internal games  Metabolic gain  Jan  (66)m= 101.05  Lighting gains  (67)m= 15.74  Appliances games  (68)m= 176.46  Cooking gains  (69)m= 33.1  Pumps and fames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | res (Table Feb 101.05 (calcula 13.98 ins (calcula 33.1 rs gains 0                             | 2 Table 5 2 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68 tted in Ap 33.1 (Table 5                                        | Apr<br>101.05<br>ppendix<br>8.61<br>Appendix<br>163.86<br>ppendix<br>33.1<br>5a)                     | May<br>101.05<br>L, equati<br>6.44<br>dix L, equat<br>151.46<br>L, equat<br>33.1 | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>tion L15<br>33.1                         | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1 | Sep<br>101.05<br>Table 5<br>10.24<br>see Ta<br>134.8<br>ee Table<br>33.1       | Oct<br>101.05<br>13.01<br>ble 5<br>144.62<br>5<br>33.1 | Nov<br>101.05<br>15.18<br>157.02              | Dec 101.05 16.18 168.68 33.1          | eating        | (67)<br>(68)<br>(69)                 |
| Metabolic gair  Jan  (66)m= 101.05  Lighting gains  (67)m= 15.74  Appliances ga  (68)m= 176.46  Cooking gains  (69)m= 33.1  Pumps and fa  (70)m= 0  Losses e.g. ev  (71)m= -80.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | res (Table Feb 101.05 (calcula 13.98 ins (calcula 178.29 c (calcula 33.1 ns gains 0 raporatio | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68 ated in Ap 33.1 (Table 5 0 on (negat                            | ts Apr 101.05 ppendix 8.61 Appendix 163.86 ppendix 33.1 5a) 0 tive value                             | May 101.05 L, equati 6.44 dix L, equati 151.46 L, equati 33.1 0 es) (Tab         | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1                          | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1  | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>0, also se<br>33.1 | Sep<br>101.05<br>Table 5<br>10.24<br>see Tale<br>33.1                          | Oct<br>101.05<br>13.01<br>ble 5<br>144.62<br>5<br>33.1 | Nov<br>101.05<br>15.18<br>157.02<br>33.1      | Dec 101.05 16.18 168.68 33.1          | eating        | (67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gair  Jan  (66)m= 101.05  Lighting gains  (67)m= 15.74  Appliances ga  (68)m= 176.46  Cooking gains  (69)m= 33.1  Pumps and fa  (70)m= 0  Losses e.g. ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | res (Table Feb 101.05 (calcula 13.98 ins (calcula 178.29 c (calcula 33.1 ns gains 0 raporatio | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68 ated in Ap 33.1 (Table 5 0 on (negat                            | ts Apr 101.05 ppendix 8.61 Appendix 163.86 ppendix 33.1 5a) 0 tive value                             | May 101.05 L, equati 6.44 dix L, equati 151.46 L, equati 33.1 0 es) (Tab         | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1                          | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1  | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>0, also se<br>33.1 | Sep<br>101.05<br>Table 5<br>10.24<br>see Tale<br>33.1                          | Oct<br>101.05<br>13.01<br>ble 5<br>144.62<br>5<br>33.1 | Nov<br>101.05<br>15.18<br>157.02<br>33.1      | Dec 101.05 16.18 168.68 33.1          | eating        | (67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gair  Jan  (66)m= 101.05  Lighting gains  (67)m= 15.74  Appliances ga  (68)m= 176.46  Cooking gains  (69)m= 33.1  Pumps and fa  (70)m= 0  Losses e.g. ev  (71)m= -80.84  Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | res (Table Feb 101.05 (calcula 13.98 ins (calcula 33.1 res gains 0 vaporatio 37.08            | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68 ited in Ap 33.1 (Table 5 0 in (negation 1.80.84) Table 5) 34.56 | s and 5a<br>ts Apr<br>101.05<br>opendix<br>8.61<br>Appendix<br>163.86<br>opendix<br>33.1<br>5a)<br>0 | May 101.05 L, equati 6.44 dix L, equati 151.46 L, equati 33.1  0 es) (Tab        | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1<br>0<br>lle 5)<br>-80.84 | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>0, also se<br>33.1 | Sep<br>101.05<br>Table 5<br>10.24<br>see Tal<br>134.8<br>ee Table<br>33.1<br>0 | Oct 101.05  13.01 ble 5 144.62 5 33.1  0 -80.84        | Nov<br>101.05<br>15.18<br>157.02<br>33.1<br>0 | Dec 101.05 16.18 168.68 33.1 0 -80.84 | eating        | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Metabolic gair  Jan  (66)m= 101.05  Lighting gains  (67)m= 15.74  Appliances ga  (68)m= 176.46  Cooking gains  (69)m= 33.1  Pumps and fa  (70)m= 0  Losses e.g. ev  (71)m= -80.84  Water heating  (72)m= 38.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | res (Table Feb 101.05 (calcula 13.98 ins (calcula 33.1 res gains 0 vaporatio 37.08            | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.37 ulated in 173.68 ited in Ap 33.1 (Table 5 0 in (negation 1.80.84) Table 5) 34.56 | s and 5a<br>ts Apr<br>101.05<br>opendix<br>8.61<br>Appendix<br>163.86<br>opendix<br>33.1<br>5a)<br>0 | May 101.05 L, equati 6.44 dix L, equati 151.46 L, equati 33.1  0 es) (Tab        | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1<br>0<br>lle 5)<br>-80.84 | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1  | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>0, also se<br>33.1 | Sep<br>101.05<br>Table 5<br>10.24<br>see Tal<br>134.8<br>ee Table<br>33.1<br>0 | Oct 101.05  13.01 ble 5 144.62 5 33.1  0 -80.84        | Nov<br>101.05<br>15.18<br>157.02<br>33.1<br>0 | Dec 101.05 16.18 168.68 33.1 0 -80.84 | eating        | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|---------------------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Southwest <sub>0.9x</sub> | 0.77                      | X | 3.82       | x | 36.79            |   | 0.63           | x | 0.7            | =        | 42.95        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 2.87       | x | 36.79            |   | 0.63           | x | 0.7            | =        | 32.27        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 3.82       | x | 62.67            |   | 0.63           | x | 0.7            | =        | 73.17        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 2.87       | x | 62.67            |   | 0.63           | x | 0.7            | =        | 54.97        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 3.82       | X | 85.75            |   | 0.63           | X | 0.7            | =        | 100.11       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 2.87       | x | 85.75            |   | 0.63           | x | 0.7            | =        | 75.21        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 3.82       | x | 106.25           |   | 0.63           | x | 0.7            | =        | 124.04       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 2.87       | x | 106.25           |   | 0.63           | x | 0.7            | =        | 93.19        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 3.82       | x | 119.01           |   | 0.63           | x | 0.7            | =        | 138.94       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 2.87       | x | 119.01           |   | 0.63           | x | 0.7            | <b>=</b> | 104.39       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 3.82       | x | 118.15           |   | 0.63           | x | 0.7            | =        | 137.93       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 2.87       | x | 118.15           |   | 0.63           | x | 0.7            | =        | 103.63       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 3.82       | x | 113.91           |   | 0.63           | x | 0.7            | =        | 132.98       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 2.87       | x | 113.91           |   | 0.63           | x | 0.7            | =        | 99.91        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 3.82       | x | 104.39           |   | 0.63           | x | 0.7            | =        | 121.87       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 2.87       | x | 104.39           |   | 0.63           | X | 0.7            | =        | 91.56        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 3.82       | x | 92.85            |   | 0.63           | x | 0.7            | =        | 108.4        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 2.87       | x | 92.85            |   | 0.63           | x | 0.7            | =        | 81.44        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 3.82       | x | 69.27            |   | 0.63           | x | 0.7            | =        | 80.87        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 2.87       | x | 69.27            |   | 0.63           | x | 0.7            | =        | 60.76        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 3.82       | x | 44.07            |   | 0.63           | x | 0.7            | =        | 51.45        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 2.87       | X | 44.07            |   | 0.63           | x | 0.7            | =        | 38.65        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 3.82       | X | 31.49            |   | 0.63           | X | 0.7            | =        | 36.76        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 2.87       | X | 31.49            |   | 0.63           | X | 0.7            | =        | 27.62        | (79) |
| Northwest 0.9x            | 0.77                      | X | 1.69       | X | 11.28            | X | 0.63           | X | 0.7            | =        | 11.65        | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.42       | X | 11.28            | X | 0.63           | X | 0.7            | =        | 1.45         | (81) |
| Northwest 0.9x            | 0.77                      | X | 2.87       | X | 11.28            | X | 0.63           | X | 0.7            | =        | 9.9          | (81) |
| Northwest 0.9x            | 0.77                      | X | 1.69       | X | 22.97            | X | 0.63           | X | 0.7            | =        | 23.72        | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.42       | x | 22.97            | x | 0.63           | x | 0.7            | =        | 2.95         | (81) |
| Northwest 0.9x            | 0.77                      | X | 2.87       | X | 22.97            | X | 0.63           | X | 0.7            | =        | 20.14        | (81) |
| Northwest 0.9x            | 0.77                      | X | 1.69       | X | 41.38            | X | 0.63           | X | 0.7            | =        | 42.74        | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.42       | X | 41.38            | X | 0.63           | X | 0.7            | =        | 5.31         | (81) |
| Northwest 0.9x            | 0.77                      | X | 2.87       | X | 41.38            | X | 0.63           | X | 0.7            | =        | 36.29        | (81) |
| Northwest 0.9x            | 0.77                      | X | 1.69       | X | 67.96            | X | 0.63           | X | 0.7            | =        | 70.2         | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.42       | x | 67.96            | x | 0.63           | x | 0.7            | =        | 8.72         | (81) |
| Northwest 0.9x            | 0.77                      | X | 2.87       | x | 67.96            | x | 0.63           | x | 0.7            | =        | 59.6         | (81) |
| Northwest 0.9x            | 0.77                      | X | 1.69       | x | 91.35            | x | 0.63           | x | 0.7            | =        | 94.36        | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.42       | x | 91.35            | x | 0.63           | x | 0.7            | ] =      | 11.72        | (81) |
| Northwest 0.9x            | 0.77                      | X | 2.87       | x | 91.35            | x | 0.63           | X | 0.7            | =        | 80.12        | (81) |
|                           |                           |   |            |   |                  |   |                |   |                |          |              |      |

| Northwest 0.9x            | 0.77          | X         | 1.69                                              | >            |         | 97.38      | x      | 0.63         | X      | 0.7            | =      | 100.6 | (81)     |
|---------------------------|---------------|-----------|---------------------------------------------------|--------------|---------|------------|--------|--------------|--------|----------------|--------|-------|----------|
| Northwest 0.9x            | 0.77          | x         | 0.42                                              | <u> </u>     |         | 97.38      | x      | 0.63         | x      | 0.7            | =      | 12.5  | (81)     |
| Northwest 0.9x            | 0.77          | X         | 2.87                                              | <b>—</b>     |         | 97.38      | x      | 0.63         | X      | 0.7            | =      | 85.42 | (81)     |
| Northwest 0.9x            | 0.77          | X         | 1.69                                              | <b>)</b>     |         | 91.1       | x      | 0.63         | x      | 0.7            | =      | 94.1  | (81)     |
| Northwest 0.9x            | 0.77          | X         | 0.42                                              | <u> </u>     |         | 91.1       | x      | 0.63         | x      | 0.7            | =      | 11.69 | (81)     |
| Northwest 0.9x            | 0.77          | X         | 2.87                                              | <b>—</b>     |         | 91.1       | x      | 0.63         | X      | 0.7            | =      | 79.91 | (81)     |
| Northwest 0.9x            | 0.77          | X         | 1.69                                              | <b>)</b>     |         | 72.63      | x      | 0.63         | x      | 0.7            | =      | 75.02 | (81)     |
| Northwest 0.9x            | 0.77          | X         | 0.42                                              | <b>)</b>     |         | 72.63      | x      | 0.63         | x      | 0.7            | =      | 9.32  | (81)     |
| Northwest <sub>0.9x</sub> | 0.77          | X         | 2.87                                              | <b>)</b>     |         | 72.63      | X      | 0.63         | x      | 0.7            | _      | 63.7  | (81)     |
| Northwest 0.9x            | 0.77          | X         | 1.69                                              | <b>)</b>     |         | 50.42      | x      | 0.63         | x      | 0.7            | =      | 52.08 | (81)     |
| Northwest <sub>0.9x</sub> | 0.77          | X         | 0.42                                              | <b>)</b>     |         | 50.42      | x      | 0.63         | x      | 0.7            | _      | 6.47  | (81)     |
| Northwest <sub>0.9x</sub> | 0.77          | X         | 2.87                                              | <b>)</b>     |         | 50.42      | x      | 0.63         | X      | 0.7            | =      | 44.22 | (81)     |
| Northwest 0.9x            | 0.77          | X         | 1.69                                              | <b>)</b>     |         | 28.07      | x      | 0.63         | X      | 0.7            | =      | 28.99 | (81)     |
| Northwest <sub>0.9x</sub> | 0.77          | X         | 0.42                                              | <b>)</b>     |         | 28.07      | x      | 0.63         | X      | 0.7            | =      | 3.6   | (81)     |
| Northwest 0.9x            | 0.77          | X         | 2.87                                              | <b>)</b>     |         | 28.07      | x      | 0.63         | X      | 0.7            | =      | 24.62 | (81)     |
| Northwest 0.9x            | 0.77          | X         | 1.69                                              | <b>)</b>     |         | 14.2       | x      | 0.63         | X      | 0.7            | =      | 14.66 | (81)     |
| Northwest 0.9x            | 0.77          | X         | 0.42                                              | <b>)</b>     |         | 14.2       | X      | 0.63         | X      | 0.7            | =      | 1.82  | (81)     |
| Northwest 0.9x            | 0.77          | X         | 2.87                                              | <b>,</b>     |         | 14.2       | X      | 0.63         | X      | 0.7            | =      | 12.45 | (81)     |
| Northwest 0.9x            | 0.77          | X         | 1.69                                              | <b>)</b>     |         | 9.21       | X      | 0.63         | X      | 0.7            | =      | 9.52  | (81)     |
| Northwest 0.9x            | 0.77          | X         | 0.42                                              | >            |         | 9.21       | X      | 0.63         | X      | 0.7            | =      | 1.18  | (81)     |
| Northwest 0.9x            | 0.77          | X         | 2.87                                              | <b>)</b>     |         | 9.21       | X      | 0.63         | X      | 0.7            | =      | 8.08  | (81)     |
|                           |               |           |                                                   |              |         |            |        |              |        |                |        |       |          |
| Solar gains in            | watts, calc   | ulated    | for each m                                        | onth         |         |            | (83)m  | = Sum(74)m . | (82)m  |                |        | i     |          |
| (83)m= 98.23              |               | 259.67    |                                                   | 9.53         | 440.08  | 418.6      | 361    | .48 292.62   | 198.83 | 3 119.04       | 83.16  |       | (83)     |
| Total gains –             |               |           | <del>` '                                   </del> | <del>.</del> |         | 1          | 1 .    | .            |        |                |        | 1     | (0.4)    |
| (84)m= 382.04             | 457.63        | 532.6     | 612.68 66                                         | 9.65         | 664.41  | 632.92     | 579    | .14 518.72   | 441.06 | 379.85         | 358.42 |       | (84)     |
| 7. Mean inte              | rnal temper   | rature (  | heating se                                        | ason)        |         |            |        |              |        |                |        |       | _        |
| Temperature               | during hea    | ating pe  | eriods in the                                     | e livin      | g area  | from Tal   | ble 9  | Th1 (°C)     |        |                |        | 21    | (85)     |
| Utilisation fa            | ctor for gair | ns for li | ving area,                                        | h1,m         | (see T  | able 9a)   | •      |              |        |                |        | 1     |          |
| Jan                       | Feb           | Mar       | Apr I                                             | May          | Jun     | Jul        | Α      | ug Sep       | Oct    | Nov            | Dec    |       |          |
| (86)m= 1                  | 0.99          | 0.98      | 0.95 0                                            | .87          | 0.71    | 0.55       | 0.6    | 0.85         | 0.97   | 1              | 1      |       | (86)     |
| Mean interna              | al temperati  | ure in li | iving area                                        | T1 (fol      | low ste | eps 3 to 7 | 7 in T | able 9c)     |        | _              |        |       |          |
| (87)m= 19.48              | 19.66         | 19.97     | 20.37 20                                          | 0.71         | 20.92   | 20.98      | 20.    | 97 20.81     | 20.35  | 19.84          | 19.44  |       | (87)     |
| Temperature               | during hea    | ating pe  | eriods in re                                      | st of c      | welling | g from Ta  | able 9 | 9, Th2 (°C)  |        |                |        |       |          |
| (88)m= 19.78              | 19.78         | 19.78     | 19.79 19                                          | 9.79         | 19.8    | 19.8       | 19     | .8 19.8      | 19.79  | 19.79          | 19.78  |       | (88)     |
| Utilisation fa            | ctor for gair | ns for re | est of dwel                                       | lina. h      | 2.m (s  | ee Table   | 9a)    |              |        | -              |        | •     |          |
| (89)m= 1                  | <del></del> - | 0.98      |                                                   | .82          | 0.61    | 0.41       | 0.4    | 8 0.78       | 0.96   | 0.99           | 1      |       | (89)     |
| Mean interna              | al temperati  | ure in t  | he rest of o                                      | lwellir      | na T2 ( | follow sta | ens 3  | to 7 in Tabl | le 9c) |                |        | 1     |          |
| (90)m= 18.41              | <del></del>   | 18.9      |                                                   | 9.6          | 19.76   | 19.8       | 19.    |              | 19.28  | 18.78          | 18.38  |       | (90)     |
| . ,                       |               |           |                                                   |              | -       |            | -      |              |        | ving area ÷ (4 |        | 0.5   | (91)     |
|                           |               |           |                                                   |              |         |            |        |              |        |                |        |       | <b>_</b> |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m=    | 18.94       | 19.13                   | 19.43                      | 19.83               | 20.16          | 20.34     | 20.38    | 20.38     | 20.25                       | 19.82                                 | 19.3       | 18.91                  |         | (92)  |
|-----------|-------------|-------------------------|----------------------------|---------------------|----------------|-----------|----------|-----------|-----------------------------|---------------------------------------|------------|------------------------|---------|-------|
| Apply     | / adjustn   | nent to t               | he mean                    | internal            | temper         | ature fro | m Table  | 4e, whe   | ere appro                   | opriate                               |            |                        |         |       |
| (93)m=    | 18.94       | 19.13                   | 19.43                      | 19.83               | 20.16          | 20.34     | 20.38    | 20.38     | 20.25                       | 19.82                                 | 19.3       | 18.91                  |         | (93)  |
| 8. Sp     | ace hea     | ting requ               | uirement                   |                     |                |           |          |           |                             |                                       |            |                        |         |       |
|           |             |                         | ernal ter                  |                     |                | ed at ste | ep 11 of | Table 9   | b, so tha                   | t Ti,m=(                              | 76)m an    | d re-calc              | ulate   |       |
| the u     |             |                         | or gains u                 |                     |                |           |          | Ι.        | I -                         |                                       |            |                        |         |       |
|           | Jan         | Feb                     | Mar                        | Apr                 | May            | Jun       | Jul      | Aug       | Sep                         | Oct                                   | Nov        | Dec                    |         |       |
|           |             |                         | ains, hm                   |                     | 0.04           | 0.00      | 0.40     |           | 0.04                        |                                       | 0.00       |                        |         | (04)  |
| (94)m=    | 1           | 0.99                    | 0.98                       | 0.94                | 0.84           | 0.66      | 0.48     | 0.55      | 0.81                        | 0.96                                  | 0.99       | 1                      |         | (94)  |
|           | 380.48      | 453.43                  | W = (94)                   | 1)M X (84<br>573.48 | 4)m<br>560.07  | 439.2     | 306.78   | 317.28    | 420.02                      | 424.04                                | 276.76     | 257.2                  |         | (95)  |
| (95)m=    |             |                         |                            |                     |                |           | 300.78   | 317.28    | 420.02                      | 424.04                                | 376.76     | 357.3                  |         | (95)  |
| (96)m=    | 4.3         | 4.9                     | rnal tem                   | 8.9                 | 11.7           | 14.6      | 16.6     | 16.4      | 14.1                        | 10.6                                  | 7.1        | 4.2                    |         | (96)  |
|           |             |                         |                            |                     |                | <u> </u>  |          | l         | l                           | <u> </u>                              | 7.1        | 4.2                    |         | (90)  |
|           | 1243.55     |                         | an intern<br>1093.96       | 915.8               | 707.43         | 476.15    | 314.06   | 329.53    | - (96)III<br>511.71         | 771.03                                | 1024.82    | 1239.71                |         | (97)  |
| • •       |             |                         |                            |                     |                |           |          |           |                             |                                       |            | 1239.71                |         | (37)  |
| •         | 642.13      | 505.75                  | ement fo<br>426.65         | 246.47              | 109.63         | 0         | n = 0.02 | 24 X [(97 | )m = (95<br>0               | 258.16                                | 466.6      | 656.52                 |         |       |
| (98)m=    | 042.13      | 303.73                  | 420.05                     | 240.47              | 109.03         | U         | U        |           |                             |                                       |            |                        | 0044.00 | (08)  |
|           |             |                         |                            |                     |                |           |          | Tota      | ıl per year                 | (kwn/year                             | ') = Sum(9 | 8) <sub>15,912</sub> = | 3311.92 | (98)  |
| Spac      | e heating   | g require               | ement in                   | kWh/m <sup>2</sup>  | /year          |           |          |           |                             |                                       |            |                        | 53.94   | (99)  |
| 8c. S     | pace co     | oling red               | luiremen                   | t                   |                |           |          |           |                             |                                       |            |                        |         |       |
| Calcu     | ulated for  | r June, c               | luly and                   | August.             | See Tal        | ole 10b   |          |           |                             |                                       |            |                        |         |       |
|           | Jan         | Feb                     | Mar                        | Apr                 | May            | Jun       | Jul      | Aug       | Sep                         | Oct                                   | Nov        | Dec                    |         |       |
| Heat      | loss rate   | Lm (ca                  | lculated                   | using 2             | °C inter       | nal temp  | perature | and ext   | ernal ten                   | nperatur                              | e from T   | able 10)               | ı       |       |
| (100)m=   | 0           | 0                       | 0                          | 0                   | 0              | 780.03    | 614.07   | 629.7     | 0                           | 0                                     | 0          | 0                      |         | (100) |
| Utilisa   | ation fac   | tor for Ic              | ss hm                      |                     |                |           |          |           |                             | •                                     |            |                        | ı       |       |
| (101)m=   | 0           | 0                       | 0                          | 0                   | 0              | 0.85      | 0.91     | 0.88      | 0                           | 0                                     | 0          | 0                      |         | (101) |
|           |             | mLm (V                  | /atts) = (                 | 100)m x             | (101)m         |           |          |           |                             | ,                                     |            |                        | l       |       |
| (102)m=   | 0           | 0                       | 0                          | 0                   | 0              | 662.84    | 558.69   | 554.29    | 0                           | 0                                     | 0          | 0                      |         | (102) |
|           |             | gains ca                | culated                    | for appli           | cable we       |           | _        | i         | 10)                         | 1                                     |            |                        | l       |       |
| (103)m=   |             | 0                       | 0                          | 0                   | 0              | 851.96    | 813.67   | 751.98    | 0                           | 0                                     | 0          | 0                      |         | (103) |
|           |             |                         | <i>ment foi</i><br>104)m < |                     |                | lwelling, | continuo | ous ( kW  | h = 0.0                     | 24 x [(10                             | 03)m – (°  | 102)m ] x              | x (41)m |       |
| (104)m=   |             | 0                       | 0                          | 0                   | 0              | 136.17    | 189.7    | 147.08    | 0                           | 0                                     | 0          | 0                      |         |       |
|           |             |                         |                            |                     |                |           |          |           | Total                       | = Sum(                                | 104)       | =                      | 472.96  | (104) |
| Cooled    | d fractior  | 1                       |                            |                     |                |           |          |           | f C =                       | cooled                                | area ÷ (4  | 1) =                   | 1       | (105) |
| Interm    | ittency fa  | actor (Ta               | able 10b                   | )                   |                |           |          |           |                             |                                       |            |                        |         |       |
| (106)m=   | 0           | 0                       | 0                          | 0                   | 0              | 0.25      | 0.25     | 0.25      | 0                           | 0                                     | 0          | 0                      |         |       |
|           |             |                         |                            |                     |                |           |          |           | Total                       | l = Sum(                              | 104)       | =                      | 0       | (106) |
| Space     | cooling     | requirer                | nent for                   | month =             | (104)m         | × (105)   | × (106)r | n         |                             |                                       |            |                        |         | _     |
| (107)m=   | 0           | 0                       | 0                          | ^                   | _              | 1 04 04   | 47.43    | 26.77     | 0                           | 0                                     | 0          | 0                      |         |       |
|           |             |                         | Ŭ                          | 0                   | 0              | 34.04     | 47.45    | 36.77     | U                           |                                       | Ů          | ŭ                      |         |       |
|           |             |                         |                            | U                   | 0              | 34.04     | 47.45    | 30.77     |                             | = Sum(                                |            | =                      | 118.24  | (107) |
| Space     | cooling     | requirer                | nent in k                  | -                   |                | 34.04     | 47.43    | 30.77     | Total                       |                                       |            |                        | 118.24  | (107) |
| •         |             | •                       | -                          | :Wh/m²/y            | /ear           |           |          |           | Total                       | <br>  = Sum(<br>  ÷ (4) =             |            |                        |         | =     |
| 8f. Fat   |             | gy Effici               | ment in k                  | :Wh/m²/y            | /ear           |           |          |           | Total<br>(107)<br>ee sectio | <br>  = Sum(<br> ) ÷ (4) =<br> on 11) | 107)       |                        |         | =     |
| 8f. Fabri | oric Energy | gy Effici<br>/ Efficier | ment in k                  | :Wh/m²/y            | ear<br>only un |           |          |           | Total<br>(107)<br>ee sectio | <br>  = Sum(<br>  ÷ (4) =             | 107)       |                        | 1.93    | (108) |

|                                |                                                                                  | l lsor F       | Details:        |              |                  |              |           |                        |       |
|--------------------------------|----------------------------------------------------------------------------------|----------------|-----------------|--------------|------------------|--------------|-----------|------------------------|-------|
| Access Nows                    | Chris Hestrall                                                                   | – USEFL        |                 | _ NI         | . <b>.</b>       |              | OTD A     | 016262                 |       |
| Assessor Name: Software Name:  | Chris Hocknell<br>Stroma FSAP 2012                                               |                | Strom<br>Softwa |              |                  |              |           | 016363<br>on: 1.0.4.16 |       |
| Contware Hame.                 |                                                                                  | Property       | Address         |              |                  |              | V 01010   | 71. 1.0.1.10           |       |
| Address :                      |                                                                                  | į              |                 | ·            |                  |              |           |                        |       |
| 1. Overall dwelling dime       | nsions:                                                                          |                |                 |              |                  |              |           |                        |       |
| Ground floor                   |                                                                                  |                | a(m²)           | (1a) x       |                  | ight(m)      | (2a) =    | Volume(m <sup>3</sup>  | (3a)  |
|                                | a) ( (                                                                           |                |                 | ]<br>•       | 4                | 2.7          | (2a) -    | 203.58                 | (Ja)  |
| •                              | a)+(1b)+(1c)+(1d)+(1e)+(1                                                        | <sup>11)</sup> | 75.4            | (4)          | ) . (O -) . (O - | 4) . (0 -) . | (0)       |                        | _     |
| Dwelling volume                |                                                                                  |                |                 | (3a)+(3b     | )+(3C)+(3C       | d)+(3e)+     | .(3n) =   | 203.58                 | (5)   |
| 2. Ventilation rate:           | main seconda                                                                     | rv             | other           |              | total            |              |           | m³ per hou             | ır    |
| Number of chimneye             | heating heating                                                                  | -,<br>□ + □    |                 | 7 = 6        |                  |              | 40 =      | -                      | _     |
| Number of chimneys             |                                                                                  | ╛┊┝            | 0               | 」            | 0                |              | 20 =      | 0                      | (6a)  |
| Number of open flues           |                                                                                  | ' L            | 0               | ┚╶┟          | 0                |              |           | 0                      | (6b)  |
| Number of intermittent fa      |                                                                                  |                |                 | Ļ            | 3                |              | 10 =      | 30                     | (7a)  |
| Number of passive vents        |                                                                                  |                |                 | Ĺ            | 0                |              | 10 =      | 0                      | (7b)  |
| Number of flueless gas fi      | res                                                                              |                |                 |              | 0                | X 4          | 40 =      | 0                      | (7c)  |
|                                |                                                                                  |                |                 |              |                  |              | Air ch    | nanges per ho          | our   |
| Infiltration due to chimne     | ys, flues and fans = (6a)+(6b)+(                                                 | 7a)+(7b)+(     | (7c) =          | Г            | 30               |              | ÷ (5) =   | 0.15                   | (8)   |
| If a pressurisation test has b | een carried out or is intended, proced                                           | ed to (17),    | otherwise o     | continue fr  | rom (9) to       |              |           |                        | ``    |
| Number of storeys in the       | ne dwelling (ns)                                                                 |                |                 |              |                  |              |           | 0                      | (9)   |
| Additional infiltration: 0     | .25 for steel or timber frame o                                                  | r 0 35 fo      | r masoni        | ny consti    | ruction          | [(9)         | -1]x0.1 = | 0                      | (10)  |
|                                | resent, use the value corresponding t                                            |                |                 | •            | uction           |              |           | 0                      | (11)  |
| deducting areas of openir      | ngs); if equal user 0.35<br>loor, enter 0.2 (unsealed) or 0                      | 1 (200)        | ad) alaa        | ontor O      |                  |              |           |                        | 7(40) |
| If no draught lobby, en        | ,                                                                                | i (Scale       | eu), eise       | enter 0      |                  |              |           | 0                      | (12)  |
| • •                            | s and doors draught stripped                                                     |                |                 |              |                  |              |           | 0                      | (14)  |
| Window infiltration            |                                                                                  |                | 0.25 - [0.2     | 2 x (14) ÷ 1 | 100] =           |              |           | 0                      | (15)  |
| Infiltration rate              |                                                                                  |                | (8) + (10)      | + (11) + (1  | 12) + (13)       | + (15) =     |           | 0                      | (16)  |
| •                              | q50, expressed in cubic metr                                                     | •              | •               | •            | etre of e        | envelope     | area      | 5                      | (17)  |
| •                              | ity value, then $(18) = [(17) \div 20] +$ s if a pressurisation test has been do |                |                 |              | is heina u       | sed          |           | 0.4                    | (18)  |
| Number of sides sheltere       | ·                                                                                | ne or a de     | gree an pe      | тисарту      | is being u       | 300          |           | 1                      | (19)  |
| Shelter factor                 |                                                                                  |                | (20) = 1 -      | [0.075 x (   | 19)] =           |              |           | 0.92                   | (20)  |
| Infiltration rate incorporat   | _                                                                                |                | (21) = (18      | s) x (20) =  |                  |              |           | 0.37                   | (21)  |
| Infiltration rate modified for |                                                                                  | 1              |                 |              |                  |              | ı         | 1                      |       |
| Jan Feb                        | Mar   Apr   May   Jun                                                            | Jul            | Aug             | Sep          | Oct              | Nov          | Dec       |                        |       |
| Monthly average wind sp        |                                                                                  | 1 00           | 1 0 7           |              | 1 40             | 1 45         | 1.7       | 1                      |       |
| (22)m= 5.1 5                   | 4.9 4.4 4.3 3.8                                                                  | 3.8            | 3.7             | 4            | 4.3              | 4.5          | 4.7       |                        |       |
| Wind Factor (22a)m = (22       | 2)m ÷ 4                                                                          |                |                 |              |                  |              |           |                        |       |
| (22a)m= 1.27 1.25              | 1.23 1.1 1.08 0.95                                                               | 0.95           | 0.92            | 1            | 1.08             | 1.12         | 1.18      |                        |       |

| 0.47                                                                                                                                                                        | tion rate (allow<br>0.46 0.45                                                         | o.4              | eiter an<br>0.4 | a wina s                                                                    | o.35                                                                       | (21a) x                                                                                          | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4                                                     | 0.41          | 0.43      | 1        |                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|-----------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------|-----------|----------|--------------------------------------------------------------------------------|
| 1 1                                                                                                                                                                         | tive air change                                                                       | 1 1              |                 |                                                                             |                                                                            | 0.34                                                                                             | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4                                                     | 0.41          | 0.43      |          |                                                                                |
| If mechanical                                                                                                                                                               | -                                                                                     |                  | ,,              |                                                                             |                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |               |           | 0        | (2                                                                             |
| If exhaust air hea                                                                                                                                                          | at pump using App                                                                     | endix N, (2      | 3b) = (23a      | a) × Fmv (e                                                                 | equation (N                                                                | N5)) , other                                                                                     | wise (23b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) = (23a)                                               |               |           | 0        | (2                                                                             |
| If balanced with                                                                                                                                                            | heat recovery: effic                                                                  | ciency in %      | allowing f      | or in-use f                                                                 | actor (fron                                                                | n Table 4h                                                                                       | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |               |           | 0        | (2                                                                             |
| a) If balanced                                                                                                                                                              | d mechanical vo                                                                       | entilation       | with he         | at recove                                                                   | ery (MVI                                                                   | HR) (24a                                                                                         | )m = (22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2b)m + (2                                               | 23b) × [´     | 1 – (23c) | ÷ 100]   |                                                                                |
| 24a)m= 0                                                                                                                                                                    | 0 0                                                                                   | 0                | 0               | 0                                                                           | 0                                                                          | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                       | 0             | 0         |          | (2                                                                             |
| b) If balanced                                                                                                                                                              | d mechanical ve                                                                       | entilation       | without         | heat rec                                                                    | overy (N                                                                   | ИV) (24b                                                                                         | )m = (22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2b)m + (2                                               | 23b)          | ī         |          |                                                                                |
| 24b)m= 0                                                                                                                                                                    | 0 0                                                                                   | 0                | 0               | 0                                                                           | 0                                                                          | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                       | 0             | 0         |          | (2                                                                             |
| ,                                                                                                                                                                           | ouse extract ver                                                                      |                  | •               | •                                                                           |                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - (00)                                                  | ,             |           |          |                                                                                |
| <u> </u>                                                                                                                                                                    | < 0.5 × (23b),                                                                        | <del>, ` ,</del> | , ,             |                                                                             | <u> </u>                                                                   | r `                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                | ,             | ١ ,       | I        | (2                                                                             |
| 24c)m= 0                                                                                                                                                                    | 0 0                                                                                   | 0                | 0               | 0                                                                           | 0                                                                          | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                       | 0             | 0         |          | (2                                                                             |
| ,                                                                                                                                                                           | entilation or wh<br>= 1, then (24d                                                    |                  | •               | •                                                                           |                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.51                                                    |               |           |          |                                                                                |
| 24d)m= 0.61                                                                                                                                                                 | 0.61 0.6                                                                              | 0.58             | 0.58            | 0.56                                                                        | 0.56                                                                       | 0.56                                                                                             | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.58                                                    | 0.59          | 0.59      |          | (2                                                                             |
| Effective air of                                                                                                                                                            | change rate - e                                                                       | nter (24a        | or (24k         | o) or (24                                                                   | c) or (24                                                                  | d) in box                                                                                        | (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |               |           | •        |                                                                                |
| 25)m= 0.61                                                                                                                                                                  | 0.61 0.6                                                                              | 0.58             | 0.58            | 0.56                                                                        | 0.56                                                                       | 0.56                                                                                             | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.58                                                    | 0.59          | 0.59      |          | (2                                                                             |
| 2 Heat leases                                                                                                                                                               | and hoat loop                                                                         | paramata         | \r.             |                                                                             |                                                                            | •                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |               |           |          |                                                                                |
| LEMENT                                                                                                                                                                      | and heat loss<br>Gross                                                                | Opening          |                 | Net Ar                                                                      | 22                                                                         | U-valı                                                                                           | ام                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AXU                                                     |               | k-value   | <u> </u> | ΑXk                                                                            |
| LEWENI                                                                                                                                                                      | area (m²)                                                                             | m                |                 | A,r                                                                         |                                                                            | W/m2                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (W/ł                                                    | <)            | kJ/m²·l   |          | kJ/K                                                                           |
| oors (                                                                                                                                                                      |                                                                                       |                  |                 | 2                                                                           | X                                                                          | 1                                                                                                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                       |               |           |          | (2                                                                             |
| Vindows Type                                                                                                                                                                | 1                                                                                     |                  |                 | 0.93                                                                        | x1                                                                         | /[1/( 1.4 )+                                                                                     | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.23                                                    |               |           |          | (2                                                                             |
| Vindows Type                                                                                                                                                                | 2                                                                                     |                  |                 | 1.98                                                                        | x1                                                                         | /[1/( 1.4 )+                                                                                     | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.62                                                    | $\overline{}$ |           |          | (2                                                                             |
| Vindows Type                                                                                                                                                                | 3                                                                                     |                  |                 | 1.63                                                                        | x1                                                                         | /[1/( 1.4 )+                                                                                     | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.16                                                    |               |           |          | (2                                                                             |
|                                                                                                                                                                             |                                                                                       |                  |                 |                                                                             |                                                                            |                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |               |           |          |                                                                                |
| Vindows Type                                                                                                                                                                | 4                                                                                     |                  |                 | 2.04                                                                        | x1.                                                                        | /[1/( 1.4 )+                                                                                     | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.7                                                     |               |           |          |                                                                                |
|                                                                                                                                                                             |                                                                                       |                  |                 | 2.04                                                                        | ╡ .                                                                        | /[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                     | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7<br>7.54                                             |               |           |          | (2                                                                             |
| Vindows Type                                                                                                                                                                | 5                                                                                     |                  |                 |                                                                             | x1.                                                                        | - ' '                                                                                            | 0.04] = [<br>0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |               |           |          | (2                                                                             |
| Vindows Type<br>Vindows Type                                                                                                                                                | 5<br>6                                                                                |                  |                 | 5.69                                                                        | x1.                                                                        | /[1/( 1.4 )+                                                                                     | 0.04] = [ $0.04$ ] = [ $0.04$ ] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.54                                                    |               |           |          | (2                                                                             |
| Vindows Type<br>Vindows Type<br>Vindows Type                                                                                                                                | 5<br>6                                                                                |                  |                 | 5.69                                                                        | x1.                                                                        | /[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                     | 0.04] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.54<br>1.15                                            |               |           |          | (;<br>(;<br>(;                                                                 |
| Vindows Type Vindows Type Vindows Type Rooflights                                                                                                                           | 5<br>6<br>7                                                                           | 16.08            | 3               | 5.69<br>0.87<br>1.47<br>0.77057                                             | x1. x1. x1. x1. x1.                                                        | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/(1.7) +                                      | 0.04] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.54<br>1.15<br>1.95<br>1.30998                         |               |           | <b>-</b> | (;<br>(;<br>(;                                                                 |
| Vindows Type Vindows Type Vindows Type Vindows Type Rooflights Valls Type1 Valls Type2                                                                                      | 5<br>6<br>7<br>68.45                                                                  | 16.08            |                 | 5.69<br>0.87<br>1.47<br>0.77057<br>52.37                                    | x1. x1. x1. x1. x2. x2. x3. x3. x4. x4. x4. x4. x4. x4. x4. x4.            | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.7 ) +                                    | 0.04] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.54<br>1.15<br>1.95<br>1.309988<br>9.43                |               |           | ]        | (3)                                                                            |
| Vindows Type Vindows Type Vindows Type Rooflights                                                                                                                           | 5<br>6<br>7<br>68.45<br>4.03                                                          | 2                |                 | 5.69<br>0.87<br>1.47<br>0.77057<br>52.37<br>2.03                            | x1. x1. x1. x2. x2. x3. x4. x4. x4. x4. x4. x4. x4. x4. x4.                | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.7 ) +<br>0.18                            | $0.04$ ] = $\begin{bmatrix} 0.04 \end{bmatrix}$ = $\begin{bmatrix} 0.04 \end{bmatrix}$ = $\begin{bmatrix} 0.04 \end{bmatrix}$ = $\begin{bmatrix} 0.04 \end{bmatrix}$ = $\begin{bmatrix} 0.04 \end{bmatrix}$ = $\begin{bmatrix} 0.04 \end{bmatrix}$ = $\begin{bmatrix} 0.04 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.54<br>1.15<br>1.95<br>1.309989<br>9.43<br>0.37        |               |           |          | (2)                                                                            |
| Vindows Type Vindows Type Vindows Type Rooflights Valls Type1 Valls Type2 Roof                                                                                              | 5<br>6<br>7<br>68.45<br>4.03<br>75.4                                                  |                  |                 | 5.69<br>0.87<br>1.47<br>0.77057<br>52.37<br>2.03<br>74.63                   | x1. x1. x1. x1. x1. x2. x2. x3. x4. x4. x4. x4. x4. x4. x4. x4. x4. x4     | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.7 ) +                                    | 0.04] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.54<br>1.15<br>1.95<br>1.309988<br>9.43                |               |           |          | (3)                                                                            |
| Vindows Type Vindows Type Vindows Type Rooflights Valls Type1 Valls Type2 Roof Total area of ele                                                                            | 5<br>6<br>7<br>68.45<br>4.03<br>75.4                                                  | 2                |                 | 5.69<br>0.87<br>1.47<br>0.77057<br>52.37<br>2.03<br>74.63<br>147.8          | x1. x1. x1. x2. x2. x3. x4. x4. x4. x4. x4. x4. x4. x4. x4. x4             | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.7 ) +<br>0.18<br>0.18                    | 0.04] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.54<br>1.15<br>1.95<br>1.309988<br>9.43<br>0.37<br>9.7 |               |           |          | (3)                                                                            |
| Vindows Type Vindows Type Vindows Type Rooflights Valls Type1 Valls Type2 Roof Total area of electory                                                                       | 5<br>6<br>7<br>68.45<br>4.03<br>75.4                                                  | 2                |                 | 5.69<br>0.87<br>1.47<br>0.77057<br>52.37<br>2.03<br>74.63<br>147.8<br>42.95 | x1. x1. x1. x2. x2. x3. x4. x4. x4. x4. x4. x4. x4. x4. x4. x4             | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.7 ) +<br>0.18                            | 0.04] = [<br>0.04] = [<br>0.04] = [<br>0.04] = [<br>0.04] = [<br>= [<br>= = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.54<br>1.15<br>1.95<br>1.309989<br>9.43<br>0.37        |               |           |          | (2) (2) (2) (2) (3) (4) (5) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7 |
| Vindows Type Vindows Type Vindows Type Vindows Type Rooflights Valls Type1 Valls Type2 Roof Total area of ele Party wall Party floor for windows and r                      | 5<br>6<br>7<br>68.45<br>4.03<br>75.4<br>ements, m <sup>2</sup>                        | 2<br>0.77        | ndow U-va       | 5.69 0.87 1.47 0.77057 52.37 2.03 74.63 147.8 42.95 75.4 alue calculations  | x1. x1. x1. x2. x2. x3. x4. x4. x4. x4. x4. x4. x4. x4. x4. x4             | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.7 ) +<br>0.18<br>0.13                    | 0.04] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.54<br>1.15<br>1.95<br>1.309988<br>9.43<br>0.37<br>9.7 |               | paragraph |          | (3)                                                                            |
| Vindows Type Vindows Type Vindows Type Vindows Type Rooflights Valls Type1 Valls Type2 Roof Total area of ele Party wall Party floor for windows and re * include the areas | 5<br>6<br>7<br>68.45<br>4.03<br>75.4<br>ements, m <sup>2</sup>                        | 2<br>0.77        | ndow U-va       | 5.69 0.87 1.47 0.77057 52.37 2.03 74.63 147.8 42.95 75.4 alue calculations  | x1. x1. x1. x1. x1. x2. x2. x2. x3. x4. x4. x4. x4. x4. x4. x4. x4. x4. x4 | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.7 ) +<br>0.18<br>0.13                    | 0.04] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ | 7.54<br>1.15<br>1.95<br>1.309988<br>9.43<br>0.37<br>9.7 |               | paragraph | 3.2      | (2 (2 (2 (2 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3                             |
| Vindows Type Vindows Type Vindows Type Vindows Type Rooflights Valls Type1 Valls Type2 Roof Total area of ele Party wall Party floor for windows and re * include the areas | 68.45 4.03 75.4 ements, m² roof windows, use of so no both sides of its, W/K = S (A x | 2<br>0.77        | ndow U-va       | 5.69 0.87 1.47 0.77057 52.37 2.03 74.63 147.8 42.95 75.4 alue calculations  | x1. x1. x1. x1. x1. x2. x2. x2. x3. x4. x4. x4. x4. x4. x4. x4. x4. x4. x4 | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.7 ) +<br>0.18<br>0.13<br>0 of formula 1. | 0.04] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ ] = [ $0.04$ | 7.54<br>1.15<br>1.95<br>1.309988<br>9.43<br>0.37<br>9.7 | s given in    |           |          | (2) (2) (2) (3) (3) (3) (4) (5)                                                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ısed instea                                                                                                                        | au oi a u <del>e</del> i                                                                                                                    | iaii <del>e</del> u caici                                                               | ılation.                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                      |                                                                           |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                    |                    |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|--------------------|----------------------------------------------------------------------|
| Therma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al bridge                                                                                                                          | s : S (L                                                                                                                                    | x Y) cal                                                                                | culated ı                                                                                                                     | using Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pendix I                                                                                 | K                                                                                                    |                                                                           |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                    | 14.96              | (36)                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>of therma</i><br>abric hea                                                                                                      |                                                                                                                                             | are not kn                                                                              | own (36) =                                                                                                                    | = 0.15 x (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1)                                                                                       |                                                                                                      |                                                                           | (33) ±                                                     | (36) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                                    |                    | 7,07                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                                                                                                             | alculated                                                                               | monthly                                                                                                                       | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                                                                      |                                                                           | • ,                                                        | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25)m x (5)                                                                              |                                    | 59                 | (37)                                                                 |
| Ventua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jan                                                                                                                                | Feb                                                                                                                                         | Mar                                                                                     | Apr                                                                                                                           | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                                                      | Jul                                                                                                  | Aug                                                                       | Sep                                                        | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov                                                                                     | Dec                                |                    |                                                                      |
| (38)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.97                                                                                                                              | 40.68                                                                                                                                       | 40.4                                                                                    | 39.08                                                                                                                         | 38.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.69                                                                                    | 37.69                                                                                                | 37.47                                                                     | 38.13                                                      | 38.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.33                                                                                   | 39.86                              |                    | (38                                                                  |
| l<br>Heat tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ansfer c                                                                                                                           | oefficier                                                                                                                                   | nt W/K                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                 | <u> </u>                                                                                             | <u> </u>                                                                  | (39)m                                                      | = (37) + (37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>38)m                                                                               |                                    | l                  |                                                                      |
| (39)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.96                                                                                                                              | 99.68                                                                                                                                       | 99.4                                                                                    | 98.08                                                                                                                         | 97.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96.68                                                                                    | 96.68                                                                                                | 96.47                                                                     | 97.12                                                      | 97.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.33                                                                                   | 98.85                              |                    |                                                                      |
| ı<br>Heat Ic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oss para                                                                                                                           | meter (H                                                                                                                                    | HLP), W/                                                                                | m²K                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                                                                        | I                                                                                                    | I                                                                         |                                                            | Average =<br>= (39)m ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sum(39) <sub>1.</sub>                                                                   | 12 /12=                            | 98.08              | (39                                                                  |
| 40)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.33                                                                                                                               | 1.32                                                                                                                                        | 1.32                                                                                    | 1.3                                                                                                                           | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.28                                                                                     | 1.28                                                                                                 | 1.28                                                                      | 1.29                                                       | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3                                                                                     | 1.31                               |                    |                                                                      |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                                                                                             |                                                                                         |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı                                                                                        |                                                                                                      |                                                                           | ,                                                          | Average =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sum(40) <sub>1</sub> .                                                                  | 12 /12=                            | 1.3                | (40                                                                  |
| Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                    |                                                                                                                                             | nth (Tabl                                                                               |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                      | l .                                                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                    | 1                  |                                                                      |
| (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jan                                                                                                                                | Feb                                                                                                                                         | Mar                                                                                     | Apr                                                                                                                           | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                                                      | Jul                                                                                                  | Aug                                                                       | Sep                                                        | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov                                                                                     | Dec                                |                    | (41                                                                  |
| (41)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                                                                                                                 | 28                                                                                                                                          | 31                                                                                      | 30                                                                                                                            | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                       | 31                                                                                                   | 31                                                                        | 30                                                         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                      | 31                                 |                    | (41                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                                                                                                             |                                                                                         |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                      |                                                                           |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                    |                    |                                                                      |
| 4. Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iter heat                                                                                                                          | ing ener                                                                                                                                    | gy requi                                                                                | rement:                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                      |                                                                           |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         | kWh/ye                             | ear:               |                                                                      |
| if TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed occu<br>A > 13.9<br>A £ 13.9                                                                                                    | ), N = 1                                                                                                                                    |                                                                                         | [1 - exp                                                                                                                      | (-0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 349 x (TF                                                                                | FA -13.9                                                                                             | )2)] + 0.0                                                                | 0013 x (¯                                                  | ΓFA -13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | 37                                 |                    | (42                                                                  |
| Reduce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the annua                                                                                                                          | l average                                                                                                                                   |                                                                                         | usage by                                                                                                                      | 5% if the a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lwelling is                                                                              | designed                                                                                             | (25 x N)<br>to achieve                                                    |                                                            | se target o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         | .48                                |                    | (43                                                                  |
| ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                                                                                             |                                                                                         | ~~, (~ ·.                                                                                                                     | aici acc, i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ioi ariu co                                                                              | ld)                                                                                                  |                                                                           |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                    |                    |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jan                                                                                                                                | Feb                                                                                                                                         | Mar                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun                                                                                      | Jul                                                                                                  | Aug                                                                       | Sep                                                        | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov                                                                                     | Dec                                |                    |                                                                      |
| lot wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                                                                                                             | Mar<br>day for ea                                                                       | Apr                                                                                                                           | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                                                      | Jul                                                                                                  | Aug (43)                                                                  | Sep                                                        | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov                                                                                     | Dec                                |                    |                                                                      |
| ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                                                                                             |                                                                                         | Apr                                                                                                                           | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                                                      | Jul                                                                                                  |                                                                           | Sep<br>88.67                                               | Oct 92.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nov<br>95.91                                                                            | Dec 99.53                          |                    |                                                                      |
| 44)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er usage ir<br>99.53                                                                                                               | 95.91                                                                                                                                       | 92.29                                                                                   | Apr<br>ach month<br>88.67                                                                                                     | May<br>Vd,m = fa<br>85.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun<br>ctor from                                                                         | Jul<br>Table 1c x<br>81.43                                                                           | (43)                                                                      | 88.67                                                      | 92.29<br>Total = Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95.91<br>m(44) <sub>112</sub> =                                                         | 99.53                              | 1085.79            | (44                                                                  |
| 44)m= [<br>Energy c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er usage ir<br>99.53                                                                                                               | 95.91                                                                                                                                       | 92.29                                                                                   | Apr<br>ach month<br>88.67                                                                                                     | May<br>Vd,m = fa<br>85.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun<br>ctor from                                                                         | Jul<br>Table 1c x<br>81.43                                                                           | (43)<br>85.05                                                             | 88.67                                                      | 92.29<br>Total = Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95.91<br>m(44) <sub>112</sub> =                                                         | 99.53                              | 1085.79            | (4-                                                                  |
| 44)m=<br>Energy o<br>45)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99.53 content of                                                                                                                   | 95.91<br>hot water                                                                                                                          | 92.29<br>used - calc<br>133.21                                                          | Apr<br>ach month<br>88.67<br>culated mo                                                                                       | May $Vd,m = fa$ $85.05$ $onthly = 4.$ $111.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun ctor from 7 81.43 190 x Vd,r 96.16                                                   | Jul Table 1c x 81.43 m x nm x E 89.11                                                                | (43)<br>85.05<br>07m / 3600<br>102.25                                     | 88.67<br>kWh/mor<br>103.47                                 | 92.29  Total = Su  tth (see Ta  120.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.91<br>m(44) <sub>112</sub> =<br>ables 1b, 1                                          | 99.53<br>= c, 1d)<br>142.94        | 1085.79<br>1423.64 | <u> </u>                                                             |
| 44)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.53 content of 147.6 taneous w                                                                                                   | 95.91<br>hot water<br>129.09<br>ater heatin                                                                                                 | 92.29  used - calc  133.21  ng at point                                                 | Apr<br>ach month<br>88.67<br>culated mo<br>116.14                                                                             | May $Vd,m = fa$ $85.05$ $onthly = 4.$ $111.44$ $o hot water$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jun<br>ctor from 7<br>81.43<br>190 x Vd,r<br>96.16                                       | Jul Table 1c x 81.43 m x nm x L 89.11 enter 0 in                                                     | (43)<br>85.05<br>DTm / 3600<br>102.25<br>boxes (46)                       | 88.67<br>) kWh/mor<br>103.47<br>) to (61)                  | 92.29 Total = Sunth (see Tail 120.59 Total = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = Sunth I = S | 95.91<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> =      | 99.53<br>= c, 1d)<br>142.94        |                    | (4!                                                                  |
| 44)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.53 content of 147.6 taneous w                                                                                                   | 95.91  hot water 129.09  ater heatii                                                                                                        | 92.29<br>used - calc<br>133.21                                                          | Apr<br>ach month<br>88.67<br>culated mo                                                                                       | May $Vd,m = fa$ $85.05$ $onthly = 4.$ $111.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun ctor from 7 81.43 190 x Vd,r 96.16                                                   | Jul Table 1c x 81.43 m x nm x E 89.11                                                                | (43)<br>85.05<br>07m / 3600<br>102.25                                     | 88.67<br>kWh/mor<br>103.47                                 | 92.29  Total = Su  tth (see Ta  120.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.91<br>m(44) <sub>112</sub> =<br>ables 1b, 1                                          | 99.53<br>= c, 1d)<br>142.94        |                    | (4                                                                   |
| 44)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.53 content of 147.6 taneous w 0 storage                                                                                         | 95.91 hot water 129.09 ater heatin 0 loss:                                                                                                  | 92.29  used - calc 133.21  ng at point 0                                                | Apr<br>ach month<br>88.67<br>culated mo<br>116.14<br>of use (no                                                               | May $Vd,m = fa$ $85.05$ $onthly = 4.$ $111.44$ $o hot water$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jun ctor from 7 81.43  190 x Vd,r  96.16  r storage),                                    | Jul Table 1c x 81.43 m x nm x E 89.11 enter 0 in 0                                                   | (43)<br>85.05<br>DTm / 3600<br>102.25<br>boxes (46)                       | 88.67<br>0 kWh/mor<br>103.47<br>0 to (61)                  | 92.29  Total = Su  th (see Ta  120.59  Total = Su  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.91<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> =      | 99.53<br>= c, 1d)<br>142.94        |                    | (4<br>(4                                                             |
| finergy of the first anti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99.53 content of 147.6 taneous w 0 storage e volume                                                                                | 95.91  hot water 129.09  ater heatin 0  loss: e (litres)                                                                                    | 92.29  used - calc 133.21  ng at point 0                                                | Apr ach month 88.67  culated mo 116.14  of use (no                                                                            | May  Vd,m = fac  85.05  onthly = 4.  111.44  o hot water  0  olar or W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jun ctor from 7 81.43  190 x Vd,r 96.16  r storage),  0                                  | Jul Table 1c x 81.43  m x nm x E 89.11  enter 0 in 0  storage                                        | (43)<br>85.05<br>27m / 3600<br>102.25<br>boxes (46)<br>0                  | 88.67<br>0 kWh/mor<br>103.47<br>0 to (61)                  | 92.29  Total = Su  th (see Ta  120.59  Total = Su  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.91<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> =      | 99.53<br>= c, 1d)<br>142.94<br>=   |                    | (4<br>(4                                                             |
| 44)m= [ finergy contact   145)m= [ finstant   146)m= [ Vater solution   99.53 content of 147.6 taneous w 0 storage e volumemunity h                                                                        | 95.91  hot water 129.09  ater heatin 0 loss: e (litres) eating a                                                                            | 92.29  used - calc 133.21  ng at point 0  includin                                      | Apr<br>ach month<br>88.67<br>culated mo<br>116.14<br>of use (no<br>0                                                          | May $Vd,m = fa$ $85.05$ $onthly = 4.$ $111.44$ $o hot water$ $0$ $olar or W$ $velling, e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun ctor from 7 81.43  190 x Vd,r 96.16  r storage), 0  /WHRS                            | Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  0  storage                                     | (43)<br>85.05<br>27m / 3600<br>102.25<br>boxes (46)<br>0                  | 88.67<br>0 kWh/mor<br>103.47<br>0 to (61)<br>0             | 92.29 Total = Sunth (see Tail 120.59 Total = Sunth 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.91<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> =      | 99.53<br>= c, 1d)<br>142.94<br>=   |                    | (4<br>(4                                                             |
| 44)m= [ Finergy of 45)m= [ Finstant 46)m= [ Vater s Storage F comm Otherw Vater s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.53 content of 147.6 taneous w 0 storage e volume munity h vise if no                                                            | hot water 129.09 ater heatin 0 loss: e (litres) eating a stored loss:                                                                       | 92.29  used - calc 133.21  ng at point 0  includin nd no ta hot wate                    | Apr<br>ach month<br>88.67<br>culated mo<br>116.14<br>of use (no<br>0<br>g any so<br>nk in dw                                  | May $Vd,m = fa$ $85.05$ $0nthly = 4.$ $111.44$ $0 hot water$ $0$ $0 velling, e$ $acludes i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jun ctor from 7 81.43  190 x Vd,r 96.16  r storage), 0  /WHRS enter 110 nstantar         | Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  0  storage 0 litres in neous co                | (43)  85.05  0Tm / 3600  102.25  boxes (46)  0  within sa (47)            | 88.67<br>0 kWh/mor<br>103.47<br>0 to (61)<br>0             | 92.29 Total = Sunth (see Tail 120.59 Total = Sunth 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.91<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> =<br>0 | 99.53<br>= c, 1d)<br>142.94<br>= 0 |                    | (4<br>(4<br>(4                                                       |
| 44)m= [ Energy of 45)m= [ f instant 46)m= [ Water s Storage f comm Otherw Water s a) If m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.53 content of 147.6 taneous w 0 storage e volume munity h vise if no storage tanufacti                                          | n litres per 95.91  hot water 129.09  ater heatin 0 loss: e (litres) eating a o stored loss: urer's de                                      | 92.29  used - calc 133.21  ng at point 0  including and no talchot water                | Apr sch month 88.67  culated mo 116.14  of use (no 0  g any so nk in dw er (this in                                           | May $Vd,m = fa$ $85.05$ $0nthly = 4.$ $111.44$ $0 hot water$ $0$ $0 velling, e$ $acludes i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jun ctor from 7 81.43  190 x Vd,r 96.16  r storage), 0  /WHRS enter 110 nstantar         | Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  0  storage 0 litres in neous co                | (43)  85.05  0Tm / 3600  102.25  boxes (46)  0  within sa (47)            | 88.67<br>0 kWh/mor<br>103.47<br>0 to (61)<br>0             | 92.29 Total = Sunth (see Tail 120.59 Total = Sunth 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.91<br>m(44) <sub>112</sub> = ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> = 0       | 99.53<br>= c, 1d)<br>142.94<br>= 0 |                    | (4)                                                                  |
| 44)m= [ Energy of 45)m= [ finstants 46)m= [ Water s Storage f comm Otherw Water s a) If m Fempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.53 content of 147.6 taneous w 0 storage e volume munity h vise if no storage anufaction                                         | hot water 129.09 ater heatin 0 loss: e (litres) eating a stored loss: urer's de                                                             | gat point  o includin nd no ta hot wate eclared le                                      | Apr sch month 88.67  culated mo 116.14  of use (no 0  g any so nk in dw er (this in coss facto 2b                             | May $Vd,m = fa$ $85.05$ $onthly = 4.$ $111.44$ $o hot water$ $0$ $velling, e$ $or is known$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jun ctor from 7 81.43  190 x Vd,r 96.16  r storage), 0  /WHRS enter 110 nstantar         | Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  o  storage litres in neous con/day):           | (43)  85.05  0Tm / 3600  102.25  boxes (46)  0  within sa (47)  ombi boil | 88.67  0 kWh/mor  103.47  0 to (61)  0  ame vessers) enter | 92.29 Total = Sunth (see Tail 120.59 Total = Sunth 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.91<br>m(44) <sub>112</sub> = 131.63<br>m(45) <sub>112</sub> = 0                      | 99.53<br>= c, 1d)<br>142.94<br>= 0 |                    | (44)                                                                 |
| 44)m= [ Energy c 45)m= [ finstant 46)m= [ Water s Storage f comn Otherw Water s a) If m Fempe Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.53 content of 147.6 taneous w ostorage e volume munity h vise if no storage tanufaction erature factors v lost fro              | n litres per 95.91  hot water 129.09  ater heatin 0 loss: e (litres) eating a o stored loss: urer's de actor fro m water                    | 92.29  used - calc 133.21  ng at point 0  including and no talchot water                | Apr sch month 88.67  culated mo 116.14  of use (no 0  g any so nk in dw er (this in coss facto 2b , kWh/ye                    | May $Vd,m = fa$ $85.05$ $onthly = 4.$ $111.44$ $o hot water$ $0$ $olar or Water is known in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the$ | Jun ctor from 7 81.43  190 x Vd,r 96.16  r storage), 0  /WHRS enter 110 nstantar wn (kWh | Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  0  storage 0 litres in neous con/day):         | (43)  85.05  0Tm / 3600  102.25  boxes (46)  0  within sa (47)            | 88.67  0 kWh/mor  103.47  0 to (61)  0  ame vessers) enter | 92.29 Total = Sunth (see Tail 120.59 Total = Sunth 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.91<br>m(44) <sub>112</sub> = 131.63<br>m(45) <sub>112</sub> = 0                      | 99.53<br>= c, 1d)<br>142.94<br>= 0 |                    | (44)<br>(44)<br>(44)<br>(44)                                         |
| Energy of 45)m= [ If instant: 46)m= [ Water so therw Water so a) If m Tempe Energy b) If m Hot wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.53 content of 147.6 taneous w storage e volume munity h vise if no storage tanufacti rature fa v lost fro tanufacti ter storage | n litres per 95.91  hot water 129.09  ater heatin 0 loss: e (litres) eating a o stored loss: urer's de actor fro m water urer's de age loss | gat point o including the twater eclared learning at storage                            | Apr sch month 88.67  culated mo 116.14  of use (no 0  g any so nk in dw er (this in coss facto 2b , kWh/ye cylinder I om Tabl | May $Vd,m = fa$ $85.05$ $onthly = 4.$ $111.44$ $o hot water$ $0$ $olar or Water older or Water older or Water older or Water older or Water older or Water older older or San San San San San San San San San San$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jun ctor from 1 81.43  190 x Vd,r 96.16  r storage), 0  /WHRS enter 110 nstantar wn (kWh | Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  0  storage 0 litres in neous con/day):  known: | (43)  85.05  0Tm / 3600  102.25  boxes (46)  0  within sa (47)  ombi boil | 88.67  0 kWh/mor  103.47  0 to (61)  0  ame vessers) enter | 92.29 Total = Sunth (see Tail 120.59 Total = Sunth 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.91 m(44) <sub>112</sub> = ables 1b, 1 131.63 m(45) <sub>112</sub> = 0                | 99.53<br>= c, 1d)<br>142.94<br>= 0 |                    | (45)<br>(46)<br>(47)<br>(48)<br>(49)<br>(50)                         |
| (44)m= [ Energy c (45)m= [ If instant (46)m= [ Water s Storage If comm Otherw Water s a) If m Tempe Energy b) If m Hot wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.53 content of 147.6 taneous w storage e volume munity h vise if no storage tanufacti rature fa v lost fro tanufacti ter storage | ater heating a stored loss: urer's de actor fro m water urer's de age loss eating s                                                         | used - calconding at point of the colored least or age eclared of factor free sections. | Apr sch month 88.67  culated mo 116.14  of use (no 0  g any so nk in dw er (this in coss facto 2b , kWh/ye cylinder I om Tabl | May $Vd,m = fa$ $85.05$ $onthly = 4.$ $111.44$ $o hot water$ $0$ $olar or Water older or Water older or Water older or Water older or Water older or Water older older or San San San San San San San San San San$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jun ctor from 1 81.43  190 x Vd,r 96.16  r storage), 0  /WHRS enter 110 nstantar wn (kWh | Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  0  storage 0 litres in neous con/day):  known: | (43)  85.05  0Tm / 3600  102.25  boxes (46)  0  within sa (47)  ombi boil | 88.67  0 kWh/mor  103.47  0 to (61)  0  ame vessers) enter | 92.29 Total = Sunth (see Tail 120.59 Total = Sunth 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.91 m(44) <sub>112</sub> = ables 1b, 1 131.63 m(45) <sub>112</sub> = 0                | 99.53<br>= c, 1d)<br>142.94<br>= 0 |                    | (444<br>(45)<br>(46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51)<br>(52) |

| Energy lost from                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , kWh/ye                                                                                                          | ear                                                                                               |                                                                                                           |                                                                                    | (47) x (51                                                                                          | ) x (52) x (                                                                                           | 53) =                                                                                  |                                                                              | 0                                                                 |               | (54)                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|----------------------------------------------|
| Enter (50) or (<br>Water storage                                                                                                                                                                                                                                  | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or oach                                                                                                           | month                                                                                             |                                                                                                           |                                                                                    | ((56)m = (                                                                                          | (55) × (41)r                                                                                           | m                                                                                      |                                                                              | 0                                                                 |               | (55)                                         |
|                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                   | _                                                                                                         |                                                                                    | ., /                                                                                                |                                                                                                        |                                                                                        | _                                                                            | _                                                                 | <br>          | (50)                                         |
| (56)m= 0 If cylinder contains                                                                                                                                                                                                                                     | 0 dodinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 oolor stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                 | 0<br>m = (56)m                                                                                    | 0 (50) /                                                                                                  | 0                                                                                  | 0                                                                                                   | 0<br>7)m = (56)                                                                                        | 0<br>m where (                                                                         | 0                                                                            | 0<br>m Annond                                                     | iv L          | (56)                                         |
| ·                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   | 11 – (30)111                                                                                      |                                                                                                           |                                                                                    | 1                                                                                                   | <i>1</i> )iii – (30)                                                                                   | iii wiicie (i                                                                          |                                                                              |                                                                   |               |                                              |
| (57)m= 0                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                 | 0                                                                                                 | 0                                                                                                         | 0                                                                                  | 0                                                                                                   | 0                                                                                                      | 0                                                                                      | 0                                                                            | 0                                                                 |               | (57)                                         |
| Primary circuit                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                                                                                                   |                                                                                                           |                                                                                    |                                                                                                     |                                                                                                        |                                                                                        |                                                                              | 0                                                                 |               | (58)                                         |
| Primary circuit                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   | ,                                                                                                 | ,                                                                                                         | ` '                                                                                | ` '                                                                                                 |                                                                                                        |                                                                                        |                                                                              |                                                                   |               |                                              |
| (modified by                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                                   |                                                                                                           | 1                                                                                  | <del></del>                                                                                         | <del></del>                                                                                            |                                                                                        |                                                                              |                                                                   | ı             | (50)                                         |
| (59)m= 0                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                 | 0                                                                                                 | 0                                                                                                         | 0                                                                                  | 0                                                                                                   | 0                                                                                                      | 0                                                                                      | 0                                                                            | 0                                                                 |               | (59)                                         |
| Combi loss cal                                                                                                                                                                                                                                                    | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | month (                                                                                                           | (61)m =                                                                                           | (60) ÷ 36                                                                                                 | 65 × (41)                                                                          | )m                                                                                                  |                                                                                                        |                                                                                        |                                                                              |                                                                   | ı             |                                              |
| (61)m= 0                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                 | 0                                                                                                 | 0                                                                                                         | 0                                                                                  | 0                                                                                                   | 0                                                                                                      | 0                                                                                      | 0                                                                            | 0                                                                 |               | (61)                                         |
| Total heat requ                                                                                                                                                                                                                                                   | ired for v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                                         | alculated                                                                                         | for eac                                                                                                   | h month                                                                            | (62)m =                                                                                             | 0.85 × (                                                                                               | 45)m +                                                                                 | (46)m +                                                                      | (57)m +                                                           | (59)m + (61)m |                                              |
| (62)m= 125.46                                                                                                                                                                                                                                                     | 109.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.72                                                                                                             | 94.72                                                                                             | 81.74                                                                                                     | 75.74                                                                              | 86.91                                                                                               | 87.95                                                                                                  | 102.5                                                                                  | 111.89                                                                       | 121.5                                                             |               | (62)                                         |
| Solar DHW input c                                                                                                                                                                                                                                                 | alculated u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ising Appe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | endix G or                                                                                                        | Appendix                                                                                          | H (negati                                                                                                 | ve quantity                                                                        | /) (enter '0                                                                                        | ' if no sola                                                                                           | contributi                                                                             | on to wate                                                                   | er heating)                                                       |               |                                              |
| (add additional                                                                                                                                                                                                                                                   | lines if F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and/or V                                                                                                          | WWHRS                                                                                             | applies                                                                                                   | , see Ap                                                                           | pendix (                                                                                            | 3)                                                                                                     |                                                                                        |                                                                              |                                                                   |               |                                              |
| (63)m= 0                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                 | 0                                                                                                 | 0                                                                                                         | 0                                                                                  | 0                                                                                                   | 0                                                                                                      | 0                                                                                      | 0                                                                            | 0                                                                 |               | (63)                                         |
| Output from wa                                                                                                                                                                                                                                                    | ater heate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                                                                                   |                                                                                                           |                                                                                    |                                                                                                     |                                                                                                        |                                                                                        |                                                                              |                                                                   |               |                                              |
| (64)m= 125.46                                                                                                                                                                                                                                                     | 109.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.72                                                                                                             | 94.72                                                                                             | 81.74                                                                                                     | 75.74                                                                              | 86.91                                                                                               | 87.95                                                                                                  | 102.5                                                                                  | 111.89                                                                       | 121.5                                                             |               | _                                            |
|                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                   |                                                                                                           |                                                                                    | Outp                                                                                                | out from wa                                                                                            | ater heater                                                                            | r (annual)₁                                                                  | 12                                                                | 1210.1        | (64)                                         |
| Heat gains fror                                                                                                                                                                                                                                                   | n water h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | neating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kWh/ma                                                                                                            | onth 0 2!                                                                                         | 5 ′ [0 85                                                                                                 | x (45)m                                                                            | + (61)m                                                                                             | 1 + 0 8 v                                                                                              | (//6)m                                                                                 | ± (57)m                                                                      | ± (50)m                                                           | 1             |                                              |
|                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                 | o                                                                                                 | J [0.00                                                                                                   | (40)11                                                                             | ' (O 1 <i>)</i> 11                                                                                  | 1] 1 0.0 7                                                                                             | . [( <del>4</del> 0)iii                                                                | + (3 <i>1)</i> 111                                                           | + (59)111                                                         | J             |                                              |
| (65)m= 31.37                                                                                                                                                                                                                                                      | 27.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.68                                                                                                             | 23.68                                                                                             | 20.43                                                                                                     | 18.94                                                                              | 21.73                                                                                               | 21.99                                                                                                  | 25.63                                                                                  | 27.97                                                                        | 30.38                                                             | J             | (65)                                         |
| (65)m= 31.37 include (57)r                                                                                                                                                                                                                                        | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.68                                                                                                             | 23.68                                                                                             | 20.43                                                                                                     | 18.94                                                                              | 21.73                                                                                               | 21.99                                                                                                  | 25.63                                                                                  | 27.97                                                                        | 30.38                                                             |               | (65)                                         |
|                                                                                                                                                                                                                                                                   | n in calcı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.31<br>ulation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.68<br>of (65)m                                                                                                 | 23.68<br>only if c                                                                                | 20.43                                                                                                     | 18.94                                                                              | 21.73                                                                                               | 21.99                                                                                                  | 25.63                                                                                  | 27.97                                                                        | 30.38                                                             |               | (65)                                         |
| include (57)r 5. Internal ga                                                                                                                                                                                                                                      | n in calcuins (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.31<br>ulation of<br>Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.68<br>of (65)m<br>and 5a                                                                                       | 23.68<br>only if c                                                                                | 20.43                                                                                                     | 18.94                                                                              | 21.73                                                                                               | 21.99                                                                                                  | 25.63                                                                                  | 27.97                                                                        | 30.38                                                             |               | (65)                                         |
| include (57)r                                                                                                                                                                                                                                                     | n in calcuins (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.31<br>ulation of<br>Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.68<br>of (65)m<br>and 5a                                                                                       | 23.68<br>only if c                                                                                | 20.43                                                                                                     | 18.94                                                                              | 21.73<br>dwelling                                                                                   | 21.99<br>or hot w                                                                                      | 25.63                                                                                  | 27.97                                                                        | 30.38                                                             |               | (65)                                         |
| include (57)r 5. Internal ga Metabolic gain                                                                                                                                                                                                                       | m in calcuins (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.31<br>ulation of<br>Table 5<br>5), Watt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.68<br>of (65)m<br>and 5a                                                                                       | 23.68<br>only if c                                                                                | 20.43<br>ylinder i                                                                                        | 18.94<br>s in the o                                                                | 21.73                                                                                               | 21.99                                                                                                  | 25.63<br>ater is fr                                                                    | 27.97<br>om com                                                              | 30.38<br>munity h                                                 |               | (65)                                         |
| include (57)r  5. Internal ga  Metabolic gain:  Jan  (66)m= 118.49                                                                                                                                                                                                | ins (see<br>s (Table<br>Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.31 ulation of Table 5 5), Watt Mar 118.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.68 of (65)m and 5a ts Apr 118.49                                                                               | 23.68  only if c  :  May  118.49                                                                  | 20.43 ylinder is Jun 118.49                                                                               | 18.94<br>s in the o                                                                | 21.73<br>dwelling<br>Aug<br>118.49                                                                  | 21.99<br>or hot w<br>Sep<br>118.49                                                                     | 25.63 ater is fr                                                                       | 27.97<br>om com                                                              | 30.38<br>munity h                                                 |               |                                              |
| include (57)r  5. Internal ga  Metabolic gain  Jan                                                                                                                                                                                                                | ins (see<br>s (Table<br>Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.31 ulation of Table 5 5), Watt Mar 118.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.68 of (65)m and 5a ts Apr 118.49                                                                               | 23.68  only if c  :  May  118.49                                                                  | 20.43 ylinder is Jun 118.49                                                                               | 18.94<br>s in the o                                                                | 21.73<br>dwelling<br>Aug<br>118.49                                                                  | 21.99<br>or hot w<br>Sep<br>118.49                                                                     | 25.63 ater is fr                                                                       | 27.97<br>om com                                                              | 30.38<br>munity h                                                 |               |                                              |
| include (57)r  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68                                                                                                                                                                  | m in calculate s (Table Feb 118.49 (calculate 16.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.31 ulation of Table 5 5), Watt Mar 118.49 ed in Ap 13.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.21                                                                | 23.68 only if c : May 118.49 L, equati 7.64                                                       | 20.43 ylinder is  Jun 118.49 on L9 of 6.45                                                                | Jul<br>118.49<br>118.49<br>1 L9a), a                                               | 21.73 dwelling Aug 118.49 lso see 9.05                                                              | 21.99 or hot w Sep 118.49 Table 5 12.15                                                                | 25.63 ater is fr  Oct 118.49                                                           | 27.97<br>om com<br>Nov<br>118.49                                             | 30.38<br>munity h                                                 |               | (66)                                         |
| include (57)r  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai                                                                                                                                                  | m in calculate 16.59 ns (calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.31  ulation of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the | 24.68 of (65)m and 5a ts Apr 118.49 ppendix 10.21 Append                                                          | 23.68 only if c : May 118.49 L, equati 7.64 dix L, equ                                            | Jun 118.49 ion L9 of 6.45 uation L                                                                        | Jul<br>118.49<br>r L9a), a<br>6.97                                                 | 21.73 dwelling Aug 118.49 lso see 9.05                                                              | 21.99 or hot w Sep 118.49 Table 5 12.15 o see Tal                                                      | 25.63 ater is fr  Oct 118.49                                                           | 27.97<br>om com<br>Nov<br>118.49                                             | 30.38<br>munity h                                                 |               | (66)                                         |
| include (57)r  5. Internal ga  Metabolic gain:  Jan  (66)m= 118.49  Lighting gains (67)m= 18.68  Appliances gai  (68)m= 209.56                                                                                                                                    | m in calculate 16.59 ns (calculate 211.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.31 ulation of Table 5 5), Watte Mar 118.49 ed in Ap 13.49 ulated in 206.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.21 Append 194.59                                                  | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86                                   | 20.43  ylinder is  Jun  118.49  on L9 of  6.45  uation L  166.02                                          | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78                           | 21.73 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6                                             | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08                                              | 25.63  ater is fr  Oct  118.49  15.43  ble 5  171.75                                   | 27.97<br>om com<br>Nov<br>118.49                                             | 30.38<br>munity h                                                 |               | (66)<br>(67)                                 |
| include (57)r  5. Internal ga  Metabolic gain:  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains                                                                                                                    | m in calculate S (Table Feb 118.49 (calculate 16.59 ns (calculate 211.73 (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (calculate (cal | 28.31  ulation of Table 5  5), Watt  Mar  118.49  ed in Ap  13.49  ulated in  206.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.68 of (65)m and 5a as Apr 118.49 opendix 10.21 Append 194.59 opendix                                           | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equati 179.86 L, equat                       | 20.43 ylinder is  Jun 118.49 fon L9 of 6.45 uation L 166.02 ion L15                                       | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a                | 21.73 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se                                  | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table                                     | 25.63  ater is fr  Oct  118.49  15.43  ole 5  171.75  5                                | 27.97<br>om com<br>Nov<br>118.49<br>18.01                                    | 30.38<br>munity h                                                 |               | (66)<br>(67)<br>(68)                         |
| include (57)r  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85                                                                                                      | m in calculate (calculate 211.73 (calculate 34.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.31  ulation of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the | 24.68 of (65)m and 5a as Apr 118.49 opendix 10.21 Append 194.59 opendix 34.85                                     | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86                                   | 20.43  ylinder is  Jun  118.49  on L9 of  6.45  uation L  166.02                                          | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78                           | 21.73 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6                                             | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08                                              | 25.63  ater is fr  Oct  118.49  15.43  ble 5  171.75                                   | 27.97<br>om com<br>Nov<br>118.49                                             | 30.38<br>munity h                                                 |               | (66)<br>(67)                                 |
| include (57)r  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and far                                                                                       | m in calculate (calculate 211.73 (calculate 34.85 as gains (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.31  ulation of Table 5  5), Watte Mar  118.49  ed in Ap  13.49  ulated in  206.25  ed in Ap  34.85  (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.21 Appendix 194.59 opendix 34.85 ia)                              | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85                    | Jun<br>118.49<br>5 on L9 of<br>6.45<br>uation L<br>166.02<br>ion L15<br>34.85                             | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a)<br>34.85      | 21.73 dwelling Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85                             | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85                               | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85                               | 27.97 om com  Nov 118.49  18.01  186.47                                      | 30.38<br>munity h<br>Dec<br>118.49<br>19.2<br>200.31              |               | (66)<br>(67)<br>(68)<br>(69)                 |
| include (57)r  5. Internal ga  Metabolic gain:  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and far  (70)m= 0                                                                             | m in calculate 16.59 ns (calculate 34.85 ns gains (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.31  ulation of Table 5  5), Watte Mar  118.49  ed in Ap  13.49  ulated in  206.25  ed in Ap  34.85  (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.21 Appendix 194.59 opendix 34.85 oa) 0                            | 23.68 only if c  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85                       | 20.43 ylinder is  Jun 118.49 on L9 of 6.45 uation L 166.02 ion L15 34.85                                  | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a                | 21.73 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se                                  | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table                                     | 25.63  ater is fr  Oct  118.49  15.43  ole 5  171.75  5                                | 27.97<br>om com<br>Nov<br>118.49<br>18.01                                    | 30.38<br>munity h                                                 |               | (66)<br>(67)<br>(68)                         |
| include (57)r  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and far  (70)m= 0  Losses e.g. even                                                           | m in calculate (calculate 211.73 (calculate 34.85 as gains (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.31  ulation of Table 5  5), Watte Mar  118.49  ed in Ap  13.49  ulated in 206.25  ded in Ap  34.85  (Table 5  0  n (negat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.21 Appendix 194.59 opendix 34.85 oa) o iive valu                  | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab        | 20.43  ylinder is  Jun 118.49  on L9 of 6.45  uation L 166.02  ion L15 34.85  0  le 5)                    | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a)<br>34.85      | 21.73 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85                            | 21.99 or hot w  Sep 118.49 Table 5 12.15 see Tal 160.08 ee Table 34.85                                 | 25.63 ater is fr  Oct 118.49  15.43 ole 5 171.75 5 34.85                               | 27.97 om com  Nov 118.49  18.01  186.47  34.85                               | 30.38 munity h  Dec 118.49  19.2  200.31  34.85                   |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include (57)r  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and far  (70)m= 0  Losses e.g. evi  (71)m= -94.79                                             | m in calculate Feb (calculate 16.59) (calculate 34.85) as gains ( apporatior -94.79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.31  ulation of Table 5  5), Watte Mar  118.49  ed in Ap  13.49  ulated in 206.25  ded in Ap  34.85  (Table 5  0  n (negat -94.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.21 Appendix 194.59 opendix 34.85 oa) 0                            | 23.68 only if c  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85                       | 20.43 ylinder is  Jun 118.49 on L9 of 6.45 uation L 166.02 ion L15 34.85                                  | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a)<br>34.85      | 21.73 dwelling Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85                             | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85                               | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85                               | 27.97 om com  Nov 118.49  18.01  186.47                                      | 30.38<br>munity h<br>Dec<br>118.49<br>19.2<br>200.31              |               | (66)<br>(67)<br>(68)<br>(69)                 |
| include (57)r  5. Internal ga  Metabolic gains Jan (66)m= 118.49  Lighting gains (67)m= 18.68  Appliances gai (68)m= 209.56  Cooking gains (69)m= 34.85  Pumps and far (70)m= 0  Losses e.g. eve (71)m= -94.79  Water heating                                     | m in calculate (calculate 34.85) as gains (Taporatior -94.79) gains (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporation (Taporatio | 28.31  ulation of Table 5  5), Watte Mar  118.49  ed in Ap  13.49  ulated in 206.25  ed in Ap  34.85  (Table 5  on (negat -94.79)  able 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.68 of (65)m and 5a as Apr 118.49 opendix 10.21 Appendix 34.85 opendix 34.85 opendix 34.85 opendix 34.85        | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab        | 20.43 ylinder is  Jun 118.49 fon L9 of 6.45 uation L 166.02 ion L15 34.85  0 le 5) -94.79                 | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a<br>34.85       | 21.73 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85                            | 21.99 or hot w  Sep 118.49 Table 5 12.15 see Tall 160.08 ee Table 34.85  0                             | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85                               | 27.97 om com  Nov 118.49  18.01  186.47  34.85                               | 30.38 munity h  Dec 118.49  19.2  200.31  34.85                   |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| include (57)r  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and far  (70)m= 0  Losses e.g. ev  (71)m= -94.79  Water heating  (72)m= 42.16                 | m in calculate Feb 118.49 (calculate 16.59 ns (calculate 34.85 ns gains (0 aporation -94.79 gains (Ta 40.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.31  ulation of Table 5  5), Watte Mar  118.49  ed in Ap  13.49  ulated in 206.25  ded in Ap  34.85  (Table 5  0  n (negat -94.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.21 Appendix 194.59 opendix 34.85 oa) o iive valu                  | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab        | 20.43  ylinder is  Jun  118.49  on L9 of  6.45  uation L  166.02  ion L15  34.85  0  le 5)  -94.79        | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a)<br>34.85      | 21.73 dwelling Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85  0                          | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85  0  -94.79                    | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85  0  -94.79                    | 27.97 om com Nov 118.49 18.01 186.47 34.85 0 -94.79                          | 30.38 munity h  Dec 118.49  19.2  200.31  34.85  0  -94.79        |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include (57)r  5. Internal ga  Metabolic gain:  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and far  (70)m= 0  Losses e.g. ev  (71)m= -94.79  Water heating  (72)m= 42.16  Total internal | m in calculate Feb (calculate 16.59) ms (calculate 34.85) ms gains (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.31  ulation of Table 5  5), Watte Mar  118.49  ed in Ap  13.49  ulated in 206.25  ded in Ap  34.85  (Table 5  0  n (negat -94.79  able 5) 38.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.21 Appendix 34.85 opendix 34.85 opendix 34.85 a) opendix 34.85 a) | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab -94.79 | 20.43  ylinder is  Jun 118.49  on L9 of 6.45  uation L 166.02  ion L15 34.85  0  le 5) -94.79  28.38 (66) | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a)<br>34.85<br>0 | 21.73 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85  0  -94.79  29.21 1+ (68)m | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85  0  -94.79  30.54 + (69)m + ( | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75  5 34.85  0  -94.79  34.44  70)m + (7 | 27.97 om com  Nov 118.49  18.01  186.47  34.85  0  -94.79  38.85  1)m + (72) | 30.38 munity h  Dec 118.49  19.2  200.31  34.85  0  -94.79  40.83 |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| include (57)r  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and far  (70)m= 0  Losses e.g. ev  (71)m= -94.79  Water heating  (72)m= 42.16                 | m in calculate   S (Table   Feb   118.49   (calculate   16.59   ns (calculate   211.73   (calculate   34.85   ns gains (   0   aporatior   -94.79   gains (Ta   40.82   gains =   327.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.31  ulation of Table 5  5), Watte Mar  118.49  ed in Ap  13.49  ulated in 206.25  ed in Ap  34.85  (Table 5  on (negat -94.79)  able 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.68 of (65)m and 5a as Apr 118.49 opendix 10.21 Appendix 34.85 opendix 34.85 opendix 34.85 opendix 34.85        | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab        | 20.43  ylinder is  Jun  118.49  on L9 of  6.45  uation L  166.02  ion L15  34.85  0  le 5)  -94.79        | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a)<br>34.85      | 21.73 dwelling Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85  0                          | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85  0  -94.79                    | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85  0  -94.79                    | 27.97 om com Nov 118.49 18.01 186.47 34.85 0 -94.79                          | 30.38 munity h  Dec 118.49  19.2  200.31  34.85  0  -94.79        |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Stroma FSAP 2012 Version: 1.0.4.16 (SAP 9.92) - http://www.stroma.com

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|---------------------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x            | 0.77                      | X | 5.69       | x | 11.28            | x | 0.63           | x | 0.7            | =   | 19.62        | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 11.28            | x | 0.63           | x | 0.7            | =   | 3            | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 22.97            | x | 0.63           | x | 0.7            | =   | 39.94        | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 22.97            | x | 0.63           | x | 0.7            | =   | 6.11         | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 41.38            | x | 0.63           | x | 0.7            | =   | 71.96        | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 41.38            | x | 0.63           | x | 0.7            | =   | 11           | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 67.96            | x | 0.63           | x | 0.7            | ] = | 118.17       | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 67.96            | x | 0.63           | x | 0.7            | =   | 18.07        | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 91.35            | x | 0.63           | x | 0.7            | =   | 158.84       | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 91.35            | x | 0.63           | x | 0.7            | =   | 24.29        | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 97.38            | x | 0.63           | x | 0.7            | =   | 169.35       | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 97.38            | x | 0.63           | x | 0.7            | =   | 25.89        | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 91.1             | x | 0.63           | x | 0.7            | =   | 158.42       | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 91.1             | x | 0.63           | x | 0.7            | =   | 24.22        | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 72.63            | x | 0.63           | x | 0.7            | =   | 126.29       | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 72.63            | x | 0.63           | X | 0.7            | =   | 19.31        | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 50.42            | x | 0.63           | x | 0.7            | =   | 87.68        | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 50.42            | x | 0.63           | x | 0.7            | =   | 13.41        | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 28.07            | x | 0.63           | x | 0.7            | =   | 48.81        | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 28.07            | x | 0.63           | x | 0.7            | =   | 7.46         | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 14.2             | x | 0.63           | x | 0.7            | =   | 24.69        | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 14.2             | x | 0.63           | x | 0.7            | =   | 3.77         | (75) |
| Northeast 0.9x            | 0.77                      | x | 5.69       | x | 9.21             | x | 0.63           | x | 0.7            | =   | 16.02        | (75) |
| Northeast 0.9x            | 0.77                      | x | 0.87       | x | 9.21             | x | 0.63           | x | 0.7            | =   | 2.45         | (75) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 36.79            | x | 0.63           | X | 0.7            | =   | 33.06        | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 62.67            | x | 0.63           | x | 0.7            | =   | 56.31        | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 85.75            | x | 0.63           | x | 0.7            | =   | 77.05        | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 106.25           | x | 0.63           | X | 0.7            | =   | 95.47        | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 119.01           | x | 0.63           | x | 0.7            | ] = | 106.93       | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 118.15           | x | 0.63           | x | 0.7            | =   | 106.16       | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 113.91           | x | 0.63           | X | 0.7            | =   | 102.35       | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 104.39           | x | 0.63           | x | 0.7            | =   | 93.8         | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 92.85            | x | 0.63           | x | 0.7            | =   | 83.43        | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 69.27            | x | 0.63           | x | 0.7            | =   | 62.24        | (77) |
| Southeast 0.9x            | 0.77                      | x | 1.47       | x | 44.07            | x | 0.63           | x | 0.7            | =   | 39.6         | (77) |
| Southeast 0.9x            | 0.77                      | X | 1.47       | x | 31.49            | x | 0.63           | x | 0.7            | ] = | 28.29        | (77) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 0.93       | x | 36.79            | Ī | 0.63           | x | 0.7            | ] = | 10.46        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 1.98       | x | 36.79            | ] | 0.63           | х | 0.7            | ] = | 22.26        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 1.63       | x | 36.79            | ] | 0.63           | x | 0.7            | ] = | 18.33        | (79) |
|                           |                           |   |            | - |                  | - |                | • |                | -   |              | _    |

| Southwest <sub>0.9x</sub>   | 0.77 | 1           | 0.04 | 1 .,     | 00.70  | 0.00 | l " | 0.7 | 1 =        | 00.04 | (79)          |
|-----------------------------|------|-------------|------|----------|--------|------|-----|-----|------------|-------|---------------|
| Southwest <sub>0.9x</sub>   | 0.77 | ] X<br>]    | 2.04 | X<br>I   | 36.79  | 0.63 | X   | 0.7 | ]          | 22.94 | =             |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | X<br>I   | 62.67  | 0.63 | X   | 0.7 | ] =<br>1 _ | 17.81 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | ] X<br>] ., | 1.98 | l X<br>l | 62.67  | 0.63 | X   | 0.7 | ] =<br>1 _ | 37.92 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 62.67  | 0.63 | X   | 0.7 | ] =<br>1   | 31.22 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 62.67  | 0.63 | X   | 0.7 | ] =<br>1   | 39.07 | (79)          |
| Southwesto.9x Southwesto.9x | 0.77 | ] X<br>]    | 0.93 | X<br>    | 85.75  | 0.63 | X   | 0.7 | ] =<br>1 _ | 24.37 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | X        | 85.75  | 0.63 | X   | 0.7 | ] =<br>1   | 51.89 | (79)          |
| <u> </u>                    | 0.77 | X           | 1.63 | X        | 85.75  | 0.63 | X   | 0.7 | ] =<br>1   | 42.72 | (79)          |
| Southwesto.9x               | 0.77 | X           | 2.04 | X        | 85.75  | 0.63 | X   | 0.7 | ] =<br>1   | 53.46 | (79)          |
| Southwesto.9x               | 0.77 | X           | 0.93 | X        | 106.25 | 0.63 | X   | 0.7 | ] =<br>1   | 30.2  | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | X        | 106.25 | 0.63 | X   | 0.7 | ] =<br>1   | 64.29 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 106.25 | 0.63 | X   | 0.7 | ] =        | 52.93 | <u> </u> (79) |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 106.25 | 0.63 | X   | 0.7 | =          | 66.24 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | X        | 119.01 | 0.63 | X   | 0.7 | =          | 33.83 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | X        | 119.01 | 0.63 | X   | 0.7 | ] =        | 72.01 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 119.01 | 0.63 | X   | 0.7 | ] <b>=</b> | 59.29 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 119.01 | 0.63 | X   | 0.7 | =          | 74.2  | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | X        | 118.15 | 0.63 | X   | 0.7 | =          | 33.58 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | x        | 118.15 | 0.63 | X   | 0.7 | =          | 71.49 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | x        | 118.15 | 0.63 | X   | 0.7 | =          | 58.86 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 118.15 | 0.63 | X   | 0.7 | =          | 73.66 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | x        | 113.91 | 0.63 | X   | 0.7 | =          | 32.38 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | X        | 113.91 | 0.63 | X   | 0.7 | =          | 68.93 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 113.91 | 0.63 | X   | 0.7 | =          | 56.74 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | x        | 113.91 | 0.63 | X   | 0.7 | <b>=</b>   | 71.02 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | x        | 104.39 | 0.63 | X   | 0.7 | <b>=</b>   | 29.67 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | x        | 104.39 | 0.63 | X   | 0.7 | <b>=</b>   | 63.17 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 104.39 | 0.63 | X   | 0.7 | =          | 52    | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 104.39 | 0.63 | X   | 0.7 | =          | 65.08 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | x        | 92.85  | 0.63 | X   | 0.7 | =          | 26.39 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 1.98 | x        | 92.85  | 0.63 | X   | 0.7 | =          | 56.19 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | x        | 92.85  | 0.63 | X   | 0.7 | =          | 46.25 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | x        | 92.85  | 0.63 | x   | 0.7 | =          | 57.89 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 0.93 | x        | 69.27  | 0.63 | x   | 0.7 | ] =        | 19.69 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | x        | 69.27  | 0.63 | X   | 0.7 | =          | 41.91 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 1.63 | x        | 69.27  | 0.63 | x   | 0.7 | ] =        | 34.51 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 2.04 | x        | 69.27  | 0.63 | x   | 0.7 | ] =        | 43.18 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 0.93 | x        | 44.07  | 0.63 | x   | 0.7 | ] =        | 12.53 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 1.98 | x        | 44.07  | 0.63 | x   | 0.7 | ] =        | 26.67 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 1.63 | x        | 44.07  | 0.63 | x   | 0.7 | ] =        | 21.95 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 2.04 | x        | 44.07  | 0.63 | x   | 0.7 | ] =        | 27.48 | (79)          |
| _                           |      | -           |      | -        |        |      |     |     | -          |       | _             |

| Southwest <sub>0.9x</sub> 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.49                                                                                                                                                       |                                                                         |                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                   | 0.7                                                             | =                                                | 8.95  | (79)                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|-------|--------------------------------------------------------------|
| Southwest <sub>0.9x</sub> 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.49                                                                                                                                                       |                                                                         |                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 19.05 | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.49                                                                                                                                                       |                                                                         |                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 15.69 | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.49                                                                                                                                                       |                                                                         |                                                                                                                   | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 19.63 | (79)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                          |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 7.95  | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                                                                                                                                                          |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 16.52 | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96                                                                                                                                                          |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 29.36 | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150                                                                                                                                                         |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 45.88 | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 192                                                                                                                                                         |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 58.72 | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                         |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 61.17 | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 189                                                                                                                                                         |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 57.8  | (82)                                                         |
| Rooflights <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 157                                                                                                                                                         |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 48.02 | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115                                                                                                                                                         |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 35.17 | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66                                                                                                                                                          |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 20.19 | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                                                                                                                                          |                                                                         | x [                                                                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 10.09 | (82)                                                         |
| Rooflights 0.9x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                          |                                                                         | x                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                   | 0.7                                                             | =                                                | 6.42  | (82)                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                 |                                                  |       |                                                              |
| Solar gains in watts, ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             | (8:                                                                     | 3)m =                                                                                                             | Sum(74)m .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (82)m                                                               |                                                                 |                                                  |       |                                                              |
| (83)m= 137.62 244.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 361.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 491.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 588.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00.16 571                                                                                                                                                   |                                                                         | 497.3                                                                                                             | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 277.98                                                              | 166.78                                                          | 116.51                                           | 7     | (83)                                                         |
| Total gains – internal a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>= (84)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : (73)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + (8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>l</u><br>33)m , wat                                                                                                                                      | tts                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                 |                                                  | _     |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                 |                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | _                                                               |                                                  | 7     |                                                              |
| (84)m=   466.56   572.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 678.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 788.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 865.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59.55 819                                                                                                                                                   | 9.6   7                                                                 | 748.7                                                                                                             | 5   667.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 558.15                                                              | 468.65                                                          | 435.39                                           |       | (84)                                                         |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.55 819                                                                                                                                                   | 9.6                                                                     | 748.7                                                                                                             | 5 667.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 558.15                                                              | 468.65                                                          | 435.39                                           |       | (84)                                                         |
| 7. Mean internal temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | erature (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | seasor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 558.15                                                              | 468.65                                                          | 435.39                                           | 21    |                                                              |
| 7. Mean internal temp Temperature during h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | erature (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (heating<br>eriods ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | seasor<br>the livi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n)<br>ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | area from                                                                                                                                                   | Table                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 558.15                                                              | 468.65                                                          | 435.39                                           | 21    | (84)                                                         |
| 7. Mean internal temp Temperature during h Utilisation factor for ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erature (eating peatins for li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (heating<br>eriods ir<br>iving are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | seasor<br>the livi<br>ea, h1,m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing<br>n (se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | area from                                                                                                                                                   | Table                                                                   | e 9, <sup>-</sup>                                                                                                 | Γh1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |                                                                 |                                                  | 21    |                                                              |
| 7. Mean internal temp Temperature during h Utilisation factor for ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erature (<br>eating po<br>ains for li<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (heating<br>eriods in<br>iving are<br>Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | seasor<br>the livi<br>ea, h1,m<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | area from<br>ee Table 9<br>Jun Ju                                                                                                                           | Table<br>9a)<br>ul                                                      | e 9, <sup>-</sup><br>Auç                                                                                          | Γh1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oct                                                                 | Nov                                                             | Dec                                              | 21    | (85)                                                         |
| 7. Mean internal temp Temperature during h Utilisation factor for ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erature (eating peatins for li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (heating<br>eriods ir<br>iving are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | seasor<br>the livi<br>ea, h1,m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | area from                                                                                                                                                   | Table<br>9a)<br>ul                                                      | e 9, <sup>-</sup>                                                                                                 | Γh1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |                                                                 |                                                  | 21    |                                                              |
| 7. Mean internal temp Temperature during h Utilisation factor for ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erature (eating positions for limited Mar 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (heating<br>eriods in<br>iving are<br>Apr<br>0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | seasor<br>the livi<br>ea, h1,m<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ing<br>n (se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | area from<br>ee Table 9<br>Jun Ju<br>0.67 0.5                                                                                                               | Table<br>9a)<br>ul                                                      | e 9, -<br>Aug<br>0.57                                                                                             | Γh1 (°C)  g Sep  0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oct                                                                 | Nov                                                             | Dec                                              | 21    | (85)                                                         |
| 7. Mean internal temp Temperature during h Utilisation factor for ga  Jan Feb  (86)m= 1 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erature (eating positions for limited Mar 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (heating<br>eriods in<br>iving are<br>Apr<br>0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | seasor<br>the livi<br>ea, h1,m<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ing<br>n (so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | area from<br>ee Table 9<br>Jun Ju<br>0.67 0.5                                                                                                               | Table 9a) ul 51 to 7 ii                                                 | e 9, -<br>Aug<br>0.57                                                                                             | Fh1 (°C)  g Sep  0.82  ble 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oct                                                                 | Nov<br>0.99                                                     | Dec                                              | 21    | (85)                                                         |
| 7. Mean internal temp Temperature during h Utilisation factor for ga    Jan   Feb     (86)m=   1   0.99     Mean internal temperature during h   Utilisation factor for ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eating positions for limited Mar 0.98 ature in l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (heating eriods in iving are 0.94 iving are 20.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | seasor<br>the livi<br>ea, h1,m<br>May<br>0.84<br>ea T1 (for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing (secollo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20.                                                                                                     | Table 9a) ul to 7 ii                                                    | 20.98                                                                                                             | Sep 0.82 ble 9c) 20.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oct<br>0.97                                                         | Nov<br>0.99                                                     | Dec<br>1                                         | 21    | (85)                                                         |
| 7. Mean internal temp Temperature during h Utilisation factor for ga  Jan Feb (86)m= 1 0.99  Mean internal temperature during h Utilisation factor for ga  Jan Feb (86)m= 1 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eating positions for limited Mar 0.98 ature in l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (heating eriods in iving are 0.94 iving are 20.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | seasor<br>the livi<br>ea, h1,m<br>May<br>0.84<br>ea T1 (for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing (so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20.                                                                                                     | Table 9a) ul to 7 ii                                                    | 20.98                                                                                                             | Sep 0.82 ble 9c) 20.85 Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oct<br>0.97                                                         | Nov<br>0.99                                                     | Dec<br>1                                         | 21    | (85)                                                         |
| 7. Mean internal temp Temperature during h Utilisation factor for ga  Jan Feb (86)m= 1 0.99  Mean internal temperature (87)m= 19.55 19.75  Temperature during h (88)m= 19.82 19.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eating peains for li Mar 0.98 ature in l 20.06 eating pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (heating eriods in Apr 0.94 iving are 20.46 eriods in 19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | seasor<br>the livies, h1,m<br>May<br>0.84<br>ea T1 (f<br>20.78<br>n rest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng (secollo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. relling from 9.85 19.                                                                               | Table 9a) ul to 7 ii 99 n Tabl                                          | Aug<br>0.57<br>n Ta<br>20.98<br>le 9,                                                                             | Sep 0.82 ble 9c) 20.85 Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oct 0.97                                                            | Nov<br>0.99                                                     | Dec<br>1                                         | 21    | (85)<br>(86)<br>(87)                                         |
| 7. Mean internal temp Temperature during h Utilisation factor for ga  Jan Feb (86)m= 1 0.99  Mean internal temperature during h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eating peains for li Mar 0.98 ature in l 20.06 eating pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (heating eriods in Apr 0.94 iving are 20.46 eriods in 19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | seasor<br>the livies, h1,m<br>May<br>0.84<br>ea T1 (f<br>20.78<br>n rest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng (sollo 2 dw 1 h2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. relling from 9.85 19.                                                                               | Table 9a) ul 51 to 7 ii 99 n Tabl 85                                    | Aug<br>0.57<br>n Ta<br>20.98<br>le 9,                                                                             | Sep 0.82 ble 9c) 20.85 Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oct 0.97                                                            | Nov<br>0.99                                                     | Dec<br>1                                         | 21    | (85)<br>(86)<br>(87)                                         |
| 7. Mean internal temporature during house and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o | eating positions for line atture in language 20.06 eating positions for range 20.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (heating eriods in iving are 20.46 eriods in 19.84 est of do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | seasor<br>the livies, h1,m<br>May<br>0.84<br>ea T1 (for<br>20.78<br>or rest of<br>19.84<br>welling,<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1) (sollo ollo 2 h2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3                                                             | Table 9a) ul to 7 ii 99 n Table 85 able 9a                              | Aug 0.57  n Ta 20.98  le 9, 19.86  a) 0.44                                                                        | Sep 0.82 ble 9c) 20.85 Th2 (°C) 19.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oct 0.97 20.42 19.84 0.95                                           | Nov<br>0.99<br>19.91                                            | Dec<br>1<br>19.52                                | 21    | (85)<br>(86)<br>(87)<br>(88)                                 |
| 7. Mean internal temp Temperature during h Utilisation factor for ga    Jan   Feb     (86)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eating positions for limited Mar 0.98 atture in l 20.06 eating positions for r 0.98 atture in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (heating eriods in 19.84 eriods in 19.92 the rest of data and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the | season<br>the living the | ing (solloolloolloolloolloolloolloolloollool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3 T2 (follow                                                  | Table 9a) ul to 7 ii 99 m Tabl 85 able 9a 38                            | Auq<br>0.57<br>n Ta<br>20.98<br>le 9,<br>19.86<br>a)<br>0.44<br>s 3 t                                             | Sep 0.82 ble 9c) 20.85 Th2 (°C) 19.85 0.74 0 7 in Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Oct<br>0.97<br>20.42<br>19.84<br>0.95<br>e 9c)                      | Nov<br>0.99<br>19.91<br>19.84                                   | Dec<br>1<br>19.52<br>19.83                       | 21    | (85)<br>(86)<br>(87)<br>(88)<br>(89)                         |
| 7. Mean internal temporature during house and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o | eating positions for line atture in language 20.06 eating positions for range 20.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (heating eriods in iving are 20.46 eriods in 19.84 est of do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | seasor<br>the livies, h1,m<br>May<br>0.84<br>ea T1 (for<br>20.78<br>or rest of<br>19.84<br>welling,<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing (solloolloolloolloolloolloolloolloollool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3                                                             | Table 9a) ul to 7 ii 99 m Tabl 85 able 9a 38                            | Aug 0.57  n Ta 20.98  le 9, 19.86  a) 0.44                                                                        | Sep 0.82 ble 9c) 3 20.85 Th2 (°C) 6 19.85  0.74 0 7 in Table 19.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oct<br>0.97<br>20.42<br>19.84<br>0.95<br>e 9c)<br>19.39             | Nov<br>0.99<br>19.91<br>19.84<br>0.99                           | Dec<br>1<br>19.52<br>19.83                       |       | (85)<br>(86)<br>(87)<br>(88)<br>(89)                         |
| 7. Mean internal temp Temperature during h Utilisation factor for ga    Jan   Feb     (86)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eating positions for limited Mar 0.98 atture in l 20.06 eating positions for r 0.98 atture in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (heating eriods in 19.84 eriods in 19.92 the rest of data and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the | season<br>the living the | ing (solloolloolloolloolloolloolloolloollool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3 T2 (follow                                                  | Table 9a) ul to 7 ii 99 m Tabl 85 able 9a 38                            | Auq<br>0.57<br>n Ta<br>20.98<br>le 9,<br>19.86<br>a)<br>0.44<br>s 3 t                                             | Sep 0.82 ble 9c) 3 20.85 Th2 (°C) 6 19.85  0.74 0 7 in Table 19.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oct<br>0.97<br>20.42<br>19.84<br>0.95<br>e 9c)<br>19.39             | Nov<br>0.99<br>19.91<br>19.84                                   | Dec<br>1<br>19.52<br>19.83                       | 21    | (85)<br>(86)<br>(87)<br>(88)<br>(89)                         |
| 7. Mean internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and house and house and house and house and house and house and ho | eating positions for line atture in language 20.06 eating positions for range 20.08 eating positions for range 20.08 eature in table 20.03 eature in table 20.03 eature (for eature (for eating positions) eature in table 20.03 eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (for eature (f | cheating eriods in 19.84 eriods in 19.84 eriods in 19.42 er the whom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | seasor the livi ea, h1,m May 0.84 ea T1 (ff 20.78 rest of 19.84 welling, 0.78 of dwell 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (sollowing) (s | area from ee Table 9 Jun Ju 0.67 0.6 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3 T2 (follow 9.83 19.                                         | Table 9a) ul to 7 ii 99 m Table 85 able 9a 38 v steps 85                | Aug 0.57 n Ta 20.98 le 9, 19.86 a) 0.44 s 3 t 19.85                                                               | Fh1 (°C)  g Sep 0.82  ble 9c) 3 20.85  Th2 (°C) 6 19.85  0.74  0 7 in Table 6 19.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oct<br>0.97<br>20.42<br>19.84<br>0.95<br>e 9c)<br>19.39             | Nov<br>0.99<br>19.91<br>19.84<br>0.99<br>18.88<br>ing area ÷ (4 | Dec<br>1<br>19.52<br>19.83<br>1<br>18.49         |       | (85)<br>(86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| 7. Mean internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and house and house and house and house and house and house and ho | eating positions for line attree in language 20.06 eating positions for ranguage 20.08 eating positions for ranguage 20.08 eature in tage 20.08 eature (for 19.39 eature (for 19.39 eature in tage 20.08 eature (for 19.39 eature in tage 20.08 eature (for 19.39 eature in tage 20.08 eature (for 19.39 eature in tage 20.08 eature (for 19.39 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in | (heating eriods in iving are 20.46 eriods in 19.84 est of do 0.92 the rest of 19.42 er the who 19.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | seasor the livi ea, h1,m May 0.84 ea T1 (fr 20.78 n rest of 19.84 welling, 0.78 of dwell 19.7 ole dwe 20.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ollo 2  h2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3 T2 (follow 9.83 19. g) = fLA × 0.23 20.                     | Table 9a) ul to 7 ii 99 n Table 85 able 9a 38 v steps 85                | Aug 0.57 n Ta 20.98 le 9, 19.86 a) 0.44 s 3 t 19.85 (1 - 20.25                                                    | Sep 0.82 ble 9c) 3 20.85 Th2 (°C) 6 19.85  0.74 0 7 in Table 6 19.77 f fLA) × T2 6 20.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oct 0.97  20.42  19.84  0.95  e 9c) 19.39  LA = Liv                 | Nov<br>0.99<br>19.91<br>19.84<br>0.99<br>18.88<br>ing area ÷ (4 | Dec<br>1<br>19.52<br>19.83                       |       | (85)<br>(86)<br>(87)<br>(88)<br>(89)                         |
| 7. Mean internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and house and house and house and house and house and house and ho | eating positions for line atture in language 20.06 eating positions for range 20.08 eating positions for range 20.08 eature in table 20.03 eature in table 20.03 eature (for 19.03 eature mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cheating eriods in the iving are 20.46 eriods in 19.84 est of do 0.92 the rest of 19.42 er the whom 19.79 internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | season the livi ea, h1,m May 0.84 ea T1 (ff 20.78 n rest of 19.84 welling, 0.78 of dwell 19.7 ole dwe 20.08 temper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h2, (ling 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3 T2 (follow 9.83 19. g) = fLA × 0.23 20. re from Ta          | Table 9a) ul to 7 ii 99 m Table 85 able 9a 38 v steps 85 T1 + 25 able 4 | Aug<br>0.57<br>n Ta<br>20.98<br>le 9,<br>19.86<br>0.44<br>s 3 t<br>19.85<br>(1 –<br>20.25<br>le, w                | Sep 0.82 ble 9c) 3 20.85 Th2 (°C) 6 19.85  0.74 0 7 in Table 6 19.77 ffLA) × T2 6 20.16 here appro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oct 0.97  20.42  19.84  0.95  e 9c) 19.39  LA = Liv                 | Nov<br>0.99<br>19.91<br>19.84<br>0.99<br>18.88<br>ing area ÷ (4 | Dec<br>1<br>19.52<br>19.83<br>1<br>18.49<br>4) = |       | (85)<br>(86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| 7. Mean internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and house and house and house and house and house and house and ho | eating positions for line attree in language 20.06 eating positions for ranguage 20.08 eating positions for ranguage 20.08 eature in tage 20.08 eature (for 19.39 eature (for 19.39 eature in tage 20.08 eature (for 19.39 eature in tage 20.08 eature (for 19.39 eature in tage 20.08 eature (for 19.39 eature in tage 20.08 eature (for 19.39 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in tage 20.08 eature in | (heating eriods in iving are 20.46 eriods in 19.84 est of do 0.92 the rest of 19.42 er the who 19.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | seasor the livi ea, h1,m May 0.84 ea T1 (fr 20.78 n rest of 19.84 welling, 0.78 of dwell 19.7 ole dwe 20.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h2, (ling 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3 T2 (follow 9.83 19. g) = fLA × 0.23 20.                     | Table 9a) ul to 7 ii 99 m Table 85 able 9a 38 v steps 85 T1 + 25 able 4 | Aug 0.57 n Ta 20.98 le 9, 19.86 a) 0.44 s 3 t 19.85 (1 - 20.25                                                    | Sep 0.82 ble 9c) 3 20.85 Th2 (°C) 6 19.85  0.74 0 7 in Table 6 19.77 ffLA) × T2 6 20.16 here appro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oct 0.97  20.42  19.84  0.95  e 9c) 19.39  LA = Liv                 | Nov<br>0.99<br>19.91<br>19.84<br>0.99<br>18.88<br>ing area ÷ (4 | Dec<br>1<br>19.52<br>19.83<br>1<br>18.49         |       | (85)<br>(86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| 7. Mean internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and house and house and house and house and house and house and ho | eating positive in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th | cheating eriods in the iving are 20.46 eriods in 19.84 est of do 0.92 the rest of 19.42 er the whom 19.79 internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | season the livi ea, h1,m May 0.84 ea T1 (ff 20.78 n rest of 19.84 welling, 0.78 of dwell 19.7 ole dwe 20.08 temper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h2, (ling 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3 T2 (follow 9.83 19. g) = fLA × 0.23 20. re from Ta          | Table 9a) ul to 7 ii 99 m Table 85 able 9a 38 v steps 85 T1 + 25 able 4 | Aug<br>0.57<br>n Ta<br>20.98<br>le 9,<br>19.86<br>0.44<br>s 3 t<br>19.85<br>(1 –<br>20.25<br>le, w                | Sep 0.82 ble 9c) 3 20.85 Th2 (°C) 6 19.85  0.74 0 7 in Table 6 19.77 ffLA) × T2 6 20.16 here appro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oct<br>0.97<br>20.42<br>19.84<br>0.95<br>e 9c)<br>19.39<br>LA = Liv | Nov<br>0.99<br>19.91<br>19.84<br>0.99<br>18.88<br>ing area ÷ (4 | Dec<br>1<br>19.52<br>19.83<br>1<br>18.49<br>4) = |       | (85)<br>(86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| 7. Mean internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and internal temporature during house and house and house and house and house and house and house and ho | erature (eating positions for limited positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positions for realist positi | cheating eriods in iving are 20.46 eriods in 19.84 est of dv 0.92 che rest of 19.42 er the whole 19.79 internal 19.79 enperatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | seasor in the livitea, h1,m May 0.84 ea T1 (fr 20.78 in rest of 19.84 welling, 0.78 of dwell 19.7 ole dwell 20.08 temper 20.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h2,  colloing  the selling  the | area from ee Table 9 Jun Ju 0.67 0.5 w steps 3 0.94 20. elling from 9.85 19. m (see Ta 0.57 0.3 T2 (follow 9.83 19. g) = fLA × 0.23 20. re from Ta 0.23 20. | Table 9a) ul to 7 ii .99 m Table .85 able 9a .85 T1 + .25 able 4 .25    | Aug<br>0.57<br>n Ta<br>20.98<br>le 9,<br>19.86<br>a)<br>0.44<br>s 3 t<br>19.85<br>(1 –<br>20.25<br>le, w<br>20.25 | Sep 0.82 ble 9c) 3 20.85 Th2 (°C) 5 19.85  0.74 0 7 in Table 6 19.77 f fLA) × T2 6 20.16 here approximates the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec | Oct<br>0.97<br>20.42<br>19.84<br>0.95<br>e 9c)<br>19.39<br>LA = Liv | Nov 0.99 19.91 19.84 0.99 18.88 ing area ÷ (4                   | Dec<br>1<br>19.52<br>19.83<br>1<br>18.49<br>4) = | 0.35  | (85)<br>(86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Mar

Jan

Feb

| Utilisa  | ation fac  | tor for g  | ains, hm   | :         |           |           |           |            |            |             |              |                        |         |          |
|----------|------------|------------|------------|-----------|-----------|-----------|-----------|------------|------------|-------------|--------------|------------------------|---------|----------|
| (94)m=   | 1          | 0.99       | 0.97       | 0.92      | 0.8       | 0.6       | 0.43      | 0.49       | 0.77       | 0.95        | 0.99         | 1                      |         | (94)     |
| Usefu    | ıl gains,  | hmGm       | , W = (94  | 4)m x (8  | 4)m       | •         | •         | •          |            | •           |              | •                      |         |          |
| (95)m=   | 464.66     | 566.73     | 659.52     | 725.26    | 690.54    | 517.73    | 349.17    | 364.07     | 511.2      | 532.05      | 464.6        | 434.08                 |         | (95)     |
| Mont     | nly avera  | age exte   | rnal tem   | perature  | from Ta   | able 8    |           |            |            |             |              |                        |         |          |
| (96)m=   | 4.3        | 4.9        | 6.5        | 8.9       | 11.7      | 14.6      | 16.6      | 16.4       | 14.1       | 10.6        | 7.1          | 4.2                    |         | (96)     |
| Heat     | loss rate  | for me     | an intern  | al tempe  | erature,  | Lm , W =  | =[(39)m : | x [(93)m   | – (96)m    | ]           |              |                        | 1       |          |
| (97)m=   | 1457.24    | 1413.48    | 1281.58    | 1068.03   | 820.14    | 543.98    | 353.37    | 371.58     | 588.21     | 895.93      | 1194.48      | 1448.47                |         | (97)     |
| -        |            |            | ement fo   |           | nonth, k  | Wh/mon    | th = 0.02 | 24 x [(97  | )m – (95   | <del></del> | <del> </del> |                        | ı       |          |
| (98)m=   | 738.48     | 569.02     | 462.81     | 246.8     | 96.43     | 0         | 0         | 0          | 0          | 270.72      | 525.52       | 754.7                  |         |          |
|          |            |            |            |           |           |           |           | Tota       | l per year | (kWh/year   | r) = Sum(9   | 8) <sub>15,912</sub> = | 3664.47 | (98)     |
| Spac     | e heatin   | g require  | ement in   | kWh/m²    | ²/year    |           |           |            |            |             |              |                        | 48.6    | (99)     |
| 8c. S    | pace co    | oling red  | quiremen   | nt        |           |           |           |            |            |             |              |                        |         |          |
|          |            | Ĭ          | July and   |           | See Tal   | ble 10b   |           |            |            |             |              |                        |         |          |
|          | Jan        | Feb        | Mar        | Apr       | May       | Jun       | Jul       | Aug        | Sep        | Oct         | Nov          | Dec                    |         |          |
| Heat     | loss rate  | ELm (ca    | lculated   | using 2   | 5°C inter | nal tem   | perature  | and ext    | ernal ter  | nperatur    | e from T     | able 10)               |         |          |
| (100)m=  | 0          | 0          | 0          | 0         | 0         | 908.81    | 715.45    | 733.17     | 0          | 0           | 0            | 0                      |         | (100)    |
| Utilisa  | ation fac  | tor for lo | ss hm      |           | _         |           | -         |            |            |             | _            | _                      |         |          |
| (101)m=  | 0          | 0          | 0          | 0         | 0         | 0.89      | 0.94      | 0.91       | 0          | 0           | 0            | 0                      |         | (101)    |
| Usefu    | ıl loss, h | mLm (V     | Vatts) = ( | (100)m x  | (101)m    |           |           |            |            |             |              |                        |         |          |
| (102)m=  | 0          | 0          | 0          | 0         | 0         | 804.65    | 669.32    | 668.18     | 0          | 0           | 0            | 0                      |         | (102)    |
| Gains    | (solar     | gains ca   | lculated   | for appli | cable w   | eather re | egion, se | e Table    | 10)        |             | i            |                        | 1       |          |
| (103)m=  | 0          | 0          | 0          | 0         | 0         | 1082.43   | 1034.49   | 954.77     | 0          | 0           | 0            | 0                      |         | (103)    |
|          |            |            |            |           |           | dwelling, | continue  | ous ( kN   | h') = 0.0  | 24 x [(10   | 03)m – (     | 102)m ] :              | x (41)m |          |
| (104)m=  |            | 0          | (104)m <   | 0 0       | 0         | 200       | 271.69    | 213.23     | 0          | 0           | 0            | 0                      |         |          |
| (104)111 |            |            |            |           |           | 200       | 27 1.00   | 210.20     |            | I = Sum(    |              | =                      | 684.92  | (104)    |
| Cooled   | d fraction | า          |            |           |           |           |           |            |            | cooled      | ,            |                        | 1       | (105)    |
|          |            |            | able 10b   | )         |           |           |           |            |            |             |              | ′ I                    |         | `        |
| (106)m=  | 0          | 0          | 0          | 0         | 0         | 0.25      | 0.25      | 0.25       | 0          | 0           | 0            | 0                      |         |          |
|          |            |            | •          |           |           |           |           | •          | Tota       | l = Sum(    | 104)         | =                      | 0       | (106)    |
| Space    | cooling    | require    | ment for   | month =   | (104)m    | × (105)   | × (106)r  | n          |            |             |              |                        |         |          |
| (107)m=  | 0          | 0          | 0          | 0         | 0         | 50        | 67.92     | 53.31      | 0          | 0           | 0            | 0                      |         |          |
|          |            |            |            |           |           |           |           |            | Tota       | I = Sum(    | 107)         | =                      | 171.23  | (107)    |
| Space    | cooling    | require    | ment in k  | :Wh/m²/   | year      |           |           |            | (107       | ) ÷ (4) =   |              |                        | 2.27    | (108)    |
| 8f. Fab  | oric Ene   | rgy Effic  | iency (ca  | alculated | l only un | der spec  | cial cond | litions, s | ee sectio  | on 11) _    |              |                        |         |          |
| Fabri    | c Energy   | y Efficie  | ncy        |           |           |           |           |            | (99)       | + (108) :   | =            |                        | 50.87   | (109)    |
| Targe    | et Fabri   | c Enera    | y Efficie  | ency (TF  | EE)       |           |           |            |            |             |              |                        | 58.5    | (109)    |
| - 3      |            | - 3        | •          | , ,       | ,         |           |           |            |            |             |              |                        |         | <b>_</b> |

|                                                 |                       |               |                   | User E     | Details:        |             |                   |            |           |                        |              |
|-------------------------------------------------|-----------------------|---------------|-------------------|------------|-----------------|-------------|-------------------|------------|-----------|------------------------|--------------|
| Assessor Name:<br>Software Name:                | Chris Hoo<br>Stroma F | _             | 2                 |            | Strom<br>Softwa |             |                   |            |           | 016363<br>on: 1.0.4.16 |              |
|                                                 |                       |               | Р                 | roperty    | Address         |             |                   |            |           |                        |              |
| Address :                                       |                       |               |                   |            |                 |             |                   |            |           |                        |              |
| 1. Overall dwelling din                         | nensions:             |               |                   |            |                 |             |                   |            |           |                        |              |
| Ground floor                                    |                       |               |                   |            | a(m²)           | (1a) v      | Av. Hei           |            | 1(20) -   | Volume(m³)             | _            |
|                                                 | (4 - )                | /4 -1\ · /4 - | \ (4              |            |                 | (1a) x      | 2                 | 2.7        | (2a) =    | 135.46                 | (3a)         |
| Total floor area TFA = (                        | (1a)+(1b)+(1c)+       | -(1d)+(1e     | )+(1r             | ؛ (۱       | 50.17           | (4)         |                   |            |           |                        | _            |
| Dwelling volume                                 |                       |               |                   |            |                 | (3a)+(3b    | )+(3c)+(3d        | )+(3e)+    | .(3n) =   | 135.46                 | (5)          |
| 2. Ventilation rate:                            |                       |               |                   |            | - 11            |             | 4-4-1             |            |           | 2 1                    |              |
|                                                 | main<br>heating       |               | econdar<br>eating | ту<br>     | other           | _           | total             |            |           | m³ per houi            | _            |
| Number of chimneys                              | 0                     | +             | 0                 | +          | 0               | =           | 0                 | X 4        | 40 =      | 0                      | (6a)         |
| Number of open flues                            | 0                     | +             | 0                 | ] + [      | 0               | ] = [       | 0                 | x 2        | 20 =      | 0                      | (6b)         |
| Number of intermittent                          | fans                  |               |                   |            |                 |             | 2                 | <b>x</b> ' | 10 =      | 20                     | (7a)         |
| Number of passive ven                           | ts                    |               |                   |            |                 | Ē           | 0                 | x -        | 10 =      | 0                      | (7b)         |
| Number of flueless gas                          | fires                 |               |                   |            |                 | F           | 0                 | X 4        | 40 =      | 0                      | ☐<br>[7c]    |
| · ·                                             |                       |               |                   |            |                 | L           |                   |            |           |                        | <b>」</b> ` ′ |
|                                                 |                       |               |                   |            |                 |             |                   |            | Air ch    | nanges per ho          | ur           |
| Infiltration due to chimn                       | eys, flues and        | fans = (6     | a)+(6b)+(7        | a)+(7b)+(  | (7c) =          | Γ           | 20                |            | ÷ (5) =   | 0.15                   | (8)          |
| If a pressurisation test has                    |                       |               | ed, procee        | d to (17), | otherwise (     | continue fr | om (9) to (       | (16)       |           |                        | _            |
| Number of storeys in<br>Additional infiltration | the dwelling (r       | is)           |                   |            |                 |             |                   | [(0)       | 1100 1 =  | 0                      | (9)          |
| Structural infiltration:                        | 0.25 for steel o      | r timber f    | frame or          | . 0 35 fo  | r masoni        | v constr    | ruction           | [(9)       | -1]x0.1 = | 0                      | (10)         |
| if both types of wall are                       |                       |               |                   |            |                 | •           | dollon            |            |           | 0                      | (11)         |
| deducting areas of ope                          | 0 // /                |               |                   |            |                 |             |                   |            |           |                        | _            |
| If suspended wooder                             |                       | ,             | ed) or 0          | .1 (seale  | ed), else       | enter 0     |                   |            |           | 0                      | (12)         |
| If no draught lobby, e Percentage of windo      |                       |               | rinned            |            |                 |             |                   |            |           | 0                      | (13)         |
| Window infiltration                             | ws and doors d        | raugiit st    | пррец             |            | 0.25 - [0.2     | x (14) ÷ 1  | 00] =             |            |           | 0                      | (15)         |
| Infiltration rate                               |                       |               |                   |            | (8) + (10)      | + (11) + (1 | -<br>12) + (13) - | + (15) =   |           | 0                      | (16)         |
| Air permeability value                          | e, q50, express       | ed in cub     | ic metre          | s per ho   | our per s       | quare m     | etre of e         | nvelope    | area      | 3                      | (17)         |
| If based on air permeat                         | oility value, the     | 1 (18) = [(1  | 7) ÷ 20]+(8       | 8), otherw | rise (18) = (   | (16)        |                   |            |           | 0.3                    | (18)         |
| Air permeability value app                      | •                     | ion test has  | s been dor        | ne or a de | gree air pe     | rmeability  | is being us       | sed        |           |                        | _            |
| Number of sides shelte<br>Shelter factor        | red                   |               |                   |            | (20) = 1 -      | [0 075 x (1 | 19)1 =            |            |           | 1 0.00                 | (19)         |
| Infiltration rate incorpor                      | ating shelter fa      | ctor          |                   |            | (21) = (18      |             | .0/]              |            |           | 0.92                   | (20)         |
| Infiltration rate modified                      | •                     |               | 1                 |            | ()              | , (==)      |                   |            |           | 0.28                   | (21)         |
| Jan Feb                                         | Mar Apr               | May           | Jun               | Jul        | Aug             | Sep         | Oct               | Nov        | Dec       |                        |              |
| Monthly average wind s                          | <u>'</u>              |               |                   |            |                 | *F          |                   |            |           | 1                      |              |
| (22)m= 5.1 5                                    | 4.9 4.4               | 4.3           | 3.8               | 3.8        | 3.7             | 4           | 4.3               | 4.5        | 4.7       | ]                      |              |
|                                                 | I                     |               | I                 | 1          | 1               | I           | 1                 | ı          | 1         | 1                      |              |
| Wind Factor (22a)m = (                          |                       | , ,           |                   |            | 1               | ı           | 1                 |            | 1         | 1                      |              |
| (22a)m= 1.27 1.25                               | 1.23 1.1              | 1.08          | 0.95              | 0.95       | 0.92            | 1           | 1.08              | 1.12       | 1.18      |                        |              |

| Adjusted infiltration                           | on rate (allo       | wing for sl   | nelter an  | nd wind s      | speed) =                                         | (21a) x             | (22a)m                                          |                                                  |                                                  |               |               |               |
|-------------------------------------------------|---------------------|---------------|------------|----------------|--------------------------------------------------|---------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------|---------------|---------------|
| 0.35                                            | 0.34                | 0.3           | 0.3        | 0.26           | 0.26                                             | 0.25                | 0.28                                            | 0.3                                              | 0.31                                             | 0.32          | ]             |               |
| Calculate effectiv                              | •                   | e rate for t  | he appli   | icable ca      | ise                                              |                     |                                                 |                                                  |                                                  |               | •             |               |
| If mechanical v                                 |                     | nnondiy N. /  | )2h) = (22 | a) v Fmv (     | aguation (                                       | NEN otho            | nuina (22h                                      | ·) = (22a)                                       |                                                  |               | 0             | (238          |
| If exhaust air heat                             |                     |               | , ,        | ,              | . `                                              | ,, .                | `                                               | )) = (23a)                                       |                                                  |               | 0             | (23k          |
| If balanced with he                             | -                   | -             | _          |                |                                                  |                     |                                                 | <b>.</b>                                         |                                                  | 4 (00.)       | 0             | (230          |
| a) If balanced r                                | 1                   | i             | ·          | 1              | <del>-                                    </del> | <del>- ^ ` ` </del> | <del>í `</del>                                  | <del>,                                    </del> | <del>-                                    </del> | <del>``</del> | ) ÷ 100]<br>1 | (24a          |
| (24a)m= 0                                       | 0 0                 | 0             | 0          | 0              | 0                                                | 0                   | 0                                               | 0                                                | 0                                                | 0             | ]             | (240          |
| b) If balanced r                                |                     |               |            | 1              | covery (I                                        | VIV) (24)<br>1 0    | $\int_{0}^{\infty} \int_{0}^{\infty} dt = (22)$ | <del>- ^ `</del>                                 | <del>-                                    </del> | Ι ,           | 1             | (24           |
| (24b)m= 0                                       | !                   | 0             | 0          | . ,            |                                                  |                     | <u> </u>                                        | 0                                                | 0                                                | 0             |               | (24)          |
| c) If whole hous<br>if (22b)m <                 |                     |               | •          | •              |                                                  |                     |                                                 | 5 x (23h                                         | <b>,</b> )                                       |               |               |               |
| (24c)m = 0                                      | 0.5 × (235)         | 0             | 0          | 0              | 0                                                | 0) - (22)           | 0                                               | 0                                                | 0                                                | 0             | 1             | (24           |
| d) If natural ve                                |                     |               |            | <u> </u>       |                                                  |                     | <u> </u>                                        |                                                  |                                                  |               | J             | `             |
| ,                                               | 1, then (24         |               | •          | •              |                                                  |                     |                                                 | 0.5]                                             |                                                  |               |               |               |
| (24d)m= 0.56 (                                  | 0.56                | 0.55          | 0.54       | 0.53           | 0.53                                             | 0.53                | 0.54                                            | 0.54                                             | 0.55                                             | 0.55          | ]             | (240          |
| Effective air ch                                | ange rate -         | enter (24a    | ) or (24l  | b) or (24      | c) or (24                                        | d) in bo            | x (25)                                          | •                                                | •                                                | •             | •             |               |
| (25)m= 0.56 (                                   | 0.56                | 0.55          | 0.54       | 0.53           | 0.53                                             | 0.53                | 0.54                                            | 0.54                                             | 0.55                                             | 0.55          | ]             | (25)          |
| 3. Heat losses a                                | nd hoot lod         | o paramat     | or:        | ,              | •                                                | ,                   | •                                               | ,                                                |                                                  | •             | 4             |               |
| ELEMENT                                         | Gross<br>area (m²)  | Openin<br>m   | ıgs        | Net Ar<br>A ,r |                                                  | U-val<br>W/m2       |                                                 | A X U<br>(W/I                                    | K)                                               | k-value       |               | A X k<br>kJ/K |
| Doors                                           | arca (III )         |               | •          | 2              | x                                                | 1.3                 | <br>=                                           | 2.6                                              |                                                  | KO/III        |               | (26)          |
| Windows Type 1                                  |                     |               |            | 9.56           | _                                                | /[1/( 1.3 )+        |                                                 |                                                  | =                                                |               |               | (27)          |
| Windows Type 2                                  |                     |               |            |                | _                                                | /[1/( 1.3 )+        |                                                 | 11.81                                            | $\dashv$                                         |               |               | •             |
| Windows Type 3                                  |                     |               |            | 4.62           | = ,                                              | /[1/( 1.3 )+        |                                                 | 5.71                                             | ᠆                                                |               |               | (27)          |
| • • • • • • • • • • • • • • • • • • • •         |                     |               |            | 4.17           | = ,                                              | /[1/(1.6) +         |                                                 | 5.15                                             | <b>=</b>                                         |               |               | (27)          |
| Rooflights Type 1                               |                     |               |            | 1.05           | <b>=</b>   ~.                                    | •                   | •                                               | 1.68                                             |                                                  |               |               | (27           |
| Rooflights Type 2                               |                     |               |            | 1.79           | X1                                               | /[1/(1.6) +         | 0.04] =                                         | 2.864                                            | ᆗ ,                                              |               |               | (27           |
| Walls Type1                                     | 35.48               | 22.5          | 2          | 12.96          | 5 X                                              | 0.15                |                                                 | 1.94                                             | 닠 !                                              |               | <b>-</b>      | (29)          |
| Walls Type2                                     | 30.48               | 2             |            | 28.48          | 3 X                                              | 0.13                |                                                 | 3.8                                              | _                                                |               |               | (29)          |
| Roof                                            | 50.17               | 2.84          | 1          | 47.33          | 3 X                                              | 0.1                 | =                                               | 4.73                                             |                                                  |               |               | (30)          |
| Total area of eler                              | nents, m²           |               |            | 116.1          | 3                                                |                     |                                                 |                                                  |                                                  |               |               | (31)          |
| Party wall                                      |                     |               |            | 26.97          | 7 <b>X</b>                                       | 0                   | =                                               | 0                                                |                                                  |               |               | (32           |
| Party floor                                     |                     |               |            | 50.17          | 7                                                |                     |                                                 |                                                  | [                                                |               |               | (32           |
| * for windows and roc<br>** include the areas o |                     |               |            |                | lated using                                      | g formula 1         | /[(1/U-valu                                     | ue)+0.04] a                                      | as given in                                      | paragrapl     | n 3.2         |               |
| abric heat loss,                                | W/K = S (A          | ν <b>Χ</b> U) |            |                |                                                  | (26)(30             | ) + (32) =                                      |                                                  |                                                  |               | 45.18         | (33           |
| Heat capacity Cn                                | $I = S(A \times k)$ | )             |            |                |                                                  |                     | ((28).                                          | (30) + (32                                       | 2) + (32a).                                      | (32e) =       | 10845.        | 77 (34        |
| Thermal mass pa                                 | rameter (T          | MP = Cm -     | + TFA) ir  | n kJ/m²K       |                                                  |                     | Indica                                          | ative Value                                      | : Medium                                         |               | 250           | (35           |
|                                                 |                     |               |            |                |                                                  |                     |                                                 |                                                  | TMD: T                                           |               |               |               |
| For design assessme<br>can be used instead o    |                     |               | construct  | tion are no    | t known pi                                       | recisely the        | e indicative                                    | e values of                                      | TMP IN T                                         | able 1†       |               |               |
| ŭ                                               | of a detailed ca    | alculation.   |            |                | •                                                | recisely the        | e indicative                                    | e values of                                      | TMP IN T                                         | able 1f       | 14.19         | (36           |

| Total fabric h                  | eat loss      |             |                      |                |            |            |             | (33) +       | (36) =                 |                           | ı         | 59.37   | (37) |
|---------------------------------|---------------|-------------|----------------------|----------------|------------|------------|-------------|--------------|------------------------|---------------------------|-----------|---------|------|
| Ventilation he                  |               | alculated   | d monthl             | V              |            |            |             | ` '          | ` '                    | 25)m x (5)                | l         | 30.01   | (0.) |
| Jan                             | Feb           | Mar         | Apr                  | May            | Jun        | Jul        | Aug         | Sep          | Oct                    | Nov                       | Dec       |         |      |
| (38)m= 25.1                     | 25            | 24.89       | 24.4                 | 24.31          | 23.88      | 23.88      | 23.8        | 24.04        | 24.31                  | 24.5                      | 24.69     |         | (38) |
| Heat transfer                   | coefficie     | nt, W/K     |                      |                |            |            |             | (39)m        | = (37) + (37)          | 38)m                      |           |         |      |
| (39)m= 84.48                    | 84.37         | 84.27       | 83.77                | 83.68          | 83.25      | 83.25      | 83.17       | 83.42        | 83.68                  | 83.87                     | 84.06     |         |      |
| Heat loss par                   | rameter (I    | HLP), W     | /m²K                 | •              | •          | •          |             |              | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub> (4) | 12 /12=   | 83.77   | (39) |
| (40)m= 1.68                     | 1.68          | 1.68        | 1.67                 | 1.67           | 1.66       | 1.66       | 1.66        | 1.66         | 1.67                   | 1.67                      | 1.68      |         |      |
| Number of da                    | ays in mo     | nth (Tab    | le 1a)               | •              | •          | •          |             | ,            | Average =              | Sum(40) <sub>1.</sub>     | 12 /12=   | 1.67    | (40) |
| Jan                             | Feb           | Mar         | Apr                  | May            | Jun        | Jul        | Aug         | Sep          | Oct                    | Nov                       | Dec       |         |      |
| (41)m= 31                       | 28            | 31          | 30                   | 31             | 30         | 31         | 31          | 30           | 31                     | 30                        | 31        |         | (41) |
|                                 | •             |             |                      | •              |            |            |             |              |                        |                           |           |         |      |
| 4. Water he                     | ating ene     | rav reau    | irement <sup>.</sup> |                |            |            |             |              |                        |                           | kWh/ye    | ar.     |      |
| T. Water field                  | attrig cric   | igy requi   | il Cilicili.         |                |            |            |             |              |                        |                           | KVVIII yC | ,ai.    |      |
| Assumed occ                     |               |             |                      |                |            |            |             |              |                        |                           | .7        |         | (42) |
| if TFA > 13<br>if TFA £ 13      |               | + 1.76 x    | [1 - exp             | (-0.0003       | 849 x (TF  | FA -13.9   | )2)] + 0.0  | 0013 x (     | ΓFA -13.               | 9)                        |           |         |      |
| Annual avera                    | •             | ater usad   | ne in litre          | es ner da      | av Vd av   | erane =    | (25 x N)    | + 36         |                        | 7.4                       | .46       |         | (43) |
| Reduce the ann                  |               |             |                      |                |            |            |             |              | se target o            |                           | .46       |         | (43) |
| not more that 12                | 25 litres per | person pei  | r day (all w         | ater use, l    | hot and co | ld)        |             |              |                        |                           |           |         |      |
| Jan                             | Feb           | Mar         | Apr                  | May            | Jun        | Jul        | Aug         | Sep          | Oct                    | Nov                       | Dec       |         |      |
| Hot water usage                 | in litres per | day for ea  | <u> </u>             |                | ctor from  | Table 1c x |             |              |                        | ı                         |           |         |      |
| (44)m= 81.9                     | 78.93         | 75.95       | 72.97                | 69.99          | 67.01      | 67.01      | 69.99       | 72.97        | 75.95                  | 78.93                     | 81.9      |         |      |
|                                 |               |             |                      |                |            |            |             |              | Total = Su             | m(44) <sub>112</sub> =    |           | 893.51  | (44) |
| Energy content of               | of hot water  | used - cal  | culated me           | onthly $= 4$ . | 190 x Vd,r | m x nm x E | OTm / 3600  | kWh/mor      | nth (see Ta            | ables 1b, 1               | c, 1d)    |         | _    |
| (45)m= 121.46                   | 106.23        | 109.62      | 95.57                | 91.7           | 79.13      | 73.33      | 84.14       | 85.15        | 99.23                  | 108.32                    | 117.63    |         |      |
|                                 | •             |             |                      |                |            |            | •           |              | Total = Su             | m(45) <sub>112</sub> =    |           | 1171.53 | (45) |
| If instantaneous                | water heati   | ng at point | of use (no           | hot water      | storage),  | enter 0 in | boxes (46,  | ) to (61)    |                        |                           |           |         |      |
| (46)m= 0                        | 0             | 0           | 0                    | 0              | 0          | 0          | 0           | 0            | 0                      | 0                         | 0         |         | (46) |
| Water storag                    |               |             |                      |                |            |            |             |              |                        |                           |           |         |      |
| Storage volui                   | ` '           |             | •                    |                |            | _          |             | ame ves      | sel                    |                           | 0         |         | (47) |
| If community                    | _             |             |                      | _              |            |            | ` '         |              |                        |                           |           |         |      |
| Otherwise if r                  |               | hot wate    | er (this in          | icludes i      | nstantar   | neous co   | mbi boil    | ers) ente    | er '0' in (            | 47)                       |           |         |      |
| Water storag  a) If manufac     |               | oclared I   | oss fact             | or is kno      | wp (k\\/k  | n/day):    |             |              |                        |                           |           |         | (40) |
| •                               |               |             |                      | JI 15 KI10     | wii (Kvvi  | i/uay).    |             |              |                        |                           | 0         |         | (48) |
| Temperature                     |               |             |                      |                |            |            | (40) (40)   |              |                        |                           | 0         |         | (49) |
| Energy lost fr<br>b) If manufac |               | _           | -                    |                | or is not  |            | (48) x (49) | ) =          |                        |                           | 0         |         | (50) |
| Hot water sto                   |               |             | -                    |                |            |            |             |              |                        |                           | 0         |         | (51) |
| If community                    | •             |             |                      | , , , , , ,    | 3. 40      | ,          |             |              |                        |                           | ~         |         | (-1) |
| Volume facto                    | -             |             | -                    |                |            |            |             |              |                        |                           | 0         |         | (52) |
| Temperature                     | factor fro    | m Table     | 2b                   |                |            |            |             |              |                        |                           | 0         |         | (53) |
| Energy lost fr                  | om water      | storage     | , kWh/ye             | ear            |            |            | (47) x (51) | ) x (52) x ( | 53) =                  |                           | 0         |         | (54) |
| Enter (50) or                   |               | •           | ,                    |                |            |            |             | •            |                        | -                         | 0         |         | (55) |
| • •                             |               |             |                      |                |            |            |             |              |                        |                           |           |         | •    |

| Water sto                                                                                                                                                                  | rage loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lculated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for each                                                                                                       | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                               | ((56)m = (                                                                    | 55) × (41)                                                    | m                                              |                                               |                                |               |                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|--------------------------------|---------------|----------------------------------------------|
| (56)m=                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                     | 0                                                                             | 0                                                                             | 0                                                             | 0                                              | 0                                             | 0                              |               | (56)                                         |
| If cylinder co                                                                                                                                                             | ontains dedicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rage, (57)ı                                                                                                    | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                           | H11)] ÷ (5                                                                    | 0), else (5                                                                   | 7)m = (56)                                                    | m where (                                      | H11) is fro                                   | m Append                       | ix H          |                                              |
| (57)m=                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                     | 0                                                                             | 0                                                                             | 0                                                             | 0                                              | 0                                             | 0                              |               | (57)                                         |
| Primary c                                                                                                                                                                  | ircuit loss (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nnual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | om Table                                                                                                       | e 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                               |                                                                               |                                                               |                                                |                                               | 0                              |               | (58)                                         |
| •                                                                                                                                                                          | ircuit loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59)m = (                                                              | (58) ÷ 36                                                                     | 55 × (41)                                                                     | m                                                             |                                                |                                               |                                |               |                                              |
| (modifie                                                                                                                                                                   | ed by factor t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                                     | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                             | er heatir                                                                     | ng and a                                                                      | cylinde                                                       | r thermo                                       | stat)                                         |                                |               |                                              |
| (59)m=                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                     | 0                                                                             | 0                                                                             | 0                                                             | 0                                              | 0                                             | 0                              |               | (59)                                         |
| Combi los                                                                                                                                                                  | ss calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                                        | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                             | 65 × (41)                                                                     | )m                                                                            |                                                               |                                                |                                               |                                |               |                                              |
| (61)m=                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                     | 0                                                                             | 0                                                                             | 0                                                             | 0                                              | 0                                             | 0                              |               | (61)                                         |
| Total hea                                                                                                                                                                  | t required for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | water h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eating ca                                                                                                      | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for eac                                                               | h month                                                                       | (62)m =                                                                       | 0.85 × (                                                      | (45)m +                                        | (46)m +                                       | (57)m +                        | (59)m + (61)m |                                              |
| (62)m= 10                                                                                                                                                                  | 03.24 90.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81.24                                                                                                          | 77.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.26                                                                 | 62.33                                                                         | 71.52                                                                         | 72.38                                                         | 84.35                                          | 92.07                                         | 99.99                          |               | (62)                                         |
| Solar DHW                                                                                                                                                                  | input calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | endix G or                                                                                                     | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                             | ve quantity                                                                   | /) (enter '0                                                                  | ' if no sola                                                  | r contribut                                    | ion to wate                                   | er heating)                    |               |                                              |
| (add addi                                                                                                                                                                  | tional lines if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or V                                                                                                       | WWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                               | , see Ap                                                                      | pendix (                                                                      | 3)                                                            |                                                |                                               |                                |               |                                              |
| (63)m=                                                                                                                                                                     | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                     | 0                                                                             | 0                                                                             | 0                                                             | 0                                              | 0                                             | 0                              |               | (63)                                         |
| Output fro                                                                                                                                                                 | om water hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                               |                                                                               |                                                               |                                                |                                               |                                |               |                                              |
| (64)m= 10                                                                                                                                                                  | 03.24 90.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81.24                                                                                                          | 77.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.26                                                                 | 62.33                                                                         | 71.52                                                                         | 72.38                                                         | 84.35                                          | 92.07                                         | 99.99                          |               |                                              |
|                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                               | Outp                                                                          | out from wa                                                   | ater heate                                     | r (annual) <sub>1</sub>                       | 12                             | 995.8         | (64)                                         |
| Heat gain                                                                                                                                                                  | s from water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/mo                                                                                                         | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                             | × (45)m                                                                       | + (61)m                                                                       | n] + 0.8 x                                                    | ((46)m                                         | + (57)m                                       | + (59)m                        | ]             | _                                            |
| (65)m= 25                                                                                                                                                                  | 5.81 22.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.31                                                                                                          | 19.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.82                                                                 | 15.58                                                                         | 17.88                                                                         | 40.00                                                         | 04.00                                          |                                               | <u> </u>                       | -<br>         | (65)                                         |
| · /                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.01                                                                                                          | 19.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.02                                                                 | 15.56                                                                         | 17.00                                                                         | 18.09                                                         | 21.09                                          | 23.02                                         | 25                             |               | (03)                                         |
|                                                                                                                                                                            | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                       | l .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                              | <u> </u>                                                                      |                                                                               |                                                               |                                                | <u> </u>                                      |                                | eating        | (00)                                         |
| include                                                                                                                                                                    | (57)m in cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | culation (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m                                                                                                       | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                              | <u> </u>                                                                      |                                                                               |                                                               |                                                | <u> </u>                                      |                                | eating        | (03)                                         |
| include<br>5. Intern                                                                                                                                                       | (57)m in cal<br>nal gains (se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | culation of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the cultu | of (65)m<br>and 5a                                                                                             | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                              | <u> </u>                                                                      |                                                                               |                                                               |                                                | <u> </u>                                      |                                | eating        | (03)                                         |
| include  5. Interr                                                                                                                                                         | (57)m in cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | culation of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the cultu | of (65)m<br>and 5a                                                                                             | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                              | <u> </u>                                                                      |                                                                               | or hot w                                                      |                                                | <u> </u>                                      |                                | eating        | (03)                                         |
| include 5. Intern Metabolic                                                                                                                                                | (57)m in cal<br>nal gains (se<br>gains (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | culation of the culation of the culation of the culation of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the culture of the cu | of (65)m<br>and 5a                                                                                             | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                             | s in the d                                                                    | dwelling                                                                      |                                                               | ater is fr                                     | om com                                        | munity h                       | eating        | (66)                                         |
| include  5. Intern  Metabolic  (66)m= 8-                                                                                                                                   | (57)m in cal<br>nal gains (se<br>gains (Table<br>Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76                                                                     | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | ylinder is<br>Jun<br>84.76                                            | Jul<br>84.76                                                                  | Aug<br>84.76                                                                  | or hot w<br>Sep<br>84.76                                      | ater is fr                                     | om com                                        | munity h                       | eating        |                                              |
| include  5. Intern  Metabolic  (66)m= 84  Lighting g                                                                                                                       | (57)m in cal<br>nal gains (se<br>gains (Table<br>Jan Feb<br>4.76 84.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76                                                                     | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | ylinder is<br>Jun<br>84.76                                            | Jul<br>84.76                                                                  | Aug<br>84.76                                                                  | or hot w<br>Sep<br>84.76                                      | ater is fr                                     | om com                                        | munity h                       | eating        |                                              |
| include  5. Intern  Metabolic  (66)m= 84  Lighting g  (67)m= 1:                                                                                                            | (57)m in cal<br>nal gains (se<br>gains (Table<br>Jan Feb<br>4.76 84.76<br>gains (calcula<br>3.17 11.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Table 5 e 5), Wat Mar 84.76 ated in Ap 9.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m 6 and 5a tts Apr 84.76 ppendix 7.2                                                                    | only if constraints only if constraints only if constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraint on the constraints of the constraints on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on  | Jun<br>84.76<br>ion L9 o                                              | Jul<br>84.76<br>r L9a), a                                                     | Aug<br>84.76<br>Iso see                                                       | Sep<br>84.76<br>Table 5<br>8.57                               | Oct 84.76                                      | Nov<br>84.76                                  | Dec                            | eating        | (66)                                         |
| include  5. Intern  Metabolic  (66)m= 84  Lighting g  (67)m= 1:  Appliance                                                                                                 | (57)m in cal<br>nal gains (se<br>gains (Table<br>Jan Feb<br>4.76 84.76<br>gains (calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e Table 5 e 5), Wat Mar 84.76 ated in Ap 9.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m 6 and 5a tts Apr 84.76 ppendix 7.2                                                                    | only if constraints only if constraints only if constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraint on the constraints of the constraints on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on  | Jun<br>84.76<br>ion L9 o                                              | Jul<br>84.76<br>r L9a), a                                                     | Aug<br>84.76<br>Iso see                                                       | Sep<br>84.76<br>Table 5<br>8.57                               | Oct 84.76                                      | Nov<br>84.76                                  | Dec                            | eating        | (66)                                         |
| include  5. Intern  Metabolic  (66)m= 84  Lighting g  (67)m= 13  Appliance  (68)m= 14                                                                                      | (57)m in cal<br>nal gains (se<br>gains (Table<br>Jan Feb<br>4.76 84.76<br>gains (calcula<br>3.17 11.69<br>es gains (calcula<br>47.68 149.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.2 n Append 137.13                                                     | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 of<br>4.54<br>uation L                         | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1                                 | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also                                  | Sep 84.76 Table 5 8.57 see Ta 112.81                          | Oct 84.76  10.88 ble 5 121.03                  | Nov<br>84.76                                  | Dec 84.76                      | eating        | (66)<br>(67)                                 |
| include  5. Intern  Metabolic  (66)m= 8.  Lighting g  (67)m= 1:  Appliance  (68)m= 14  Cooking g                                                                           | (57)m in cal<br>nal gains (se<br>gains (Table<br>Jan Feb<br>4.76 84.76<br>gains (calcula<br>3.17 11.69<br>es gains (calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.2 n Append 137.13                                                     | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 of<br>4.54<br>uation L                         | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1                                 | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also                                  | Sep 84.76 Table 5 8.57 see Ta 112.81                          | Oct 84.76  10.88 ble 5 121.03                  | Nov<br>84.76                                  | Dec 84.76                      | eating        | (66)<br>(67)                                 |
| include  5. Intern  Metabolic  (66)m= 8.  Lighting g  (67)m= 1:  Appliance  (68)m= 14  Cooking g  (69)m= 3:                                                                | (57)m in calmal gains (second) (58) (Table 14.76 84.76 gains (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculation) (calculatio | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.2 Append 137.13 ppendix 31.48                                         | only if constructions:  May 84.76 L, equat 5.38 dix L, eq 126.75 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun 84.76 ion L9 of 4.54 uation L 116.99 ion L15                      | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)           | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95                        | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table                 | Oct 84.76  10.88 ble 5 121.03                  | Nov<br>84.76<br>12.69                         | Dec 84.76                      | eating        | (66)<br>(67)<br>(68)                         |
| include  5. Intern  Metabolic  (66)m= 8.  Lighting g  (67)m= 1:  Appliance  (68)m= 14  Cooking g  (69)m= 3:                                                                | (57)m in cal<br>nal gains (se<br>gains (Table<br>Jan Feb<br>4.76 84.76<br>gains (calcula<br>3.17 11.69<br>es gains (calcula<br>47.68 149.21<br>gains (calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.2 Appendix 137.13 ppendix 31.48                                       | only if constructions:  May 84.76 L, equat 5.38 dix L, eq 126.75 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun 84.76 ion L9 of 4.54 uation L 116.99 ion L15                      | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)           | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95                        | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table                 | Oct 84.76  10.88 ble 5 121.03                  | Nov<br>84.76<br>12.69                         | Dec 84.76                      | eating        | (66)<br>(67)<br>(68)                         |
| include  5. Intern  Metabolic  (66)m= 8.  Lighting g  (67)m= 1:  Appliance  (68)m= 14  Cooking g  (69)m= 3  Pumps ar  (70)m=                                               | (57)m in cal nal gains (se gains (Table Jan Feb 4.76 84.76 gains (calcula 3.17 11.69 es gains (calcula 1.48 31.48 nd fans gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.2 n Append 137.13 ppendix 31.48 5a) 0                                 | only if co<br>):<br>May<br>84.76<br>L, equat<br>5.38<br>dix L, eq<br>126.75<br>L, equat<br>31.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jun 84.76 ion L9 of 4.54 uation L 116.99 ion L15 31.48                | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48           | Oct 84.76  10.88 ble 5 121.03 5 31.48          | Nov<br>84.76<br>12.69<br>131.41               | Dec 84.76 13.53 141.16 31.48   | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| include  5. Intern  Metabolic  (66)m= 8.4  Lighting g  (67)m= 1:  Appliance  (68)m= 14  Cooking g  (69)m= 3:  Pumps ar  (70)m= Losses e.                                   | (57)m in cal nal gains (see gains (Table Jan Feb 4.76 84.76 gains (calcula 3.17 11.69 es gains (calcula 47.68 149.21 gains (calcula 1.48 31.48 and fans gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.2 n Append 137.13 ppendix 31.48 5a) 0                                 | only if co<br>):<br>May<br>84.76<br>L, equat<br>5.38<br>dix L, eq<br>126.75<br>L, equat<br>31.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jun 84.76 ion L9 of 4.54 uation L 116.99 ion L15 31.48                | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48           | Oct 84.76  10.88 ble 5 121.03 5 31.48          | Nov<br>84.76<br>12.69<br>131.41               | Dec 84.76 13.53 141.16 31.48   | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| include  5. Intern  Metabolic  (66)m= 84  Lighting g  (67)m= 13  Appliance  (68)m= 14  Cooking g  (69)m= 3  Pumps ar  (70)m= Losses e.  (71)m= -6                          | (57)m in cal nal gains (see gains (Table Jan Feb 4.76 84.76 gains (calcula 3.17 11.69 es gains (calcula 1.48 149.21 gains (calcula 1.48 31.48 nd fans gains 0 0 g. evaporatic 67.8 -67.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.2 n Append 137.13 ppendix 31.48 5a) 0 tive value                      | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 84.76 ion L9 of 4.54 uation L 116.99 ion L15 31.48  0             | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>0, also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48           | Oct 84.76  10.88 ble 5 121.03 5 31.48          | Nov<br>84.76<br>12.69<br>131.41               | Dec 84.76 13.53 141.16 31.48   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include  5. Intern  Metabolic  (66)m= 8.  Lighting g  (67)m= 1:  Appliance  (68)m= 14  Cooking g  (69)m= 3  Pumps ar  (70)m= Losses e.  (71)m= -6  Water hea               | (57)m in call gains (see gains (Table 4.76 84.76 gains (calcula 3.17 11.69 es gains (calcula 1.48 31.48 and fans gains 0 0 0 g. evaporatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.2 n Append 137.13 ppendix 31.48 5a) 0 tive value                      | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 84.76 ion L9 of 4.54 uation L 116.99 ion L15 31.48  0             | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>0, also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48           | Oct 84.76  10.88 ble 5 121.03 5 31.48          | Nov<br>84.76<br>12.69<br>131.41               | Dec 84.76 13.53 141.16 31.48   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include  5. Intern  Metabolic  (66)m= 8.4  Lighting g  (67)m= 1:  Appliance  (68)m= 14  Cooking g  (69)m= 3:  Pumps ar  (70)m= Losses e.  (71)m= -6  Water hea  (72)m= 3.4 | (57)m in call gains (see gains (Table 4.76 84.76 gains (calcula 3.17 11.69 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 31.48 gains (calcula 1.48 gains (calc | culation of the culation of the culation of the culation of the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in  | of (65)m  of and 5a  ts  Apr  84.76  opendix  7.2  Appendix  137.13  ppendix  31.48  5a)  0  tive value  -67.8 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 84.76 ion L9 of 4.54 uation L 116.99 ion L15 31.48  0 le 5) -67.8 | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1:<br>110.48<br>or L15a;<br>31.48 | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>o, also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48 0 -67.8   | Oct 84.76  10.88 ble 5 121.03 5 31.48  0 -67.8 | Nov<br>84.76<br>12.69<br>131.41<br>31.48<br>0 | Dec 84.76 13.53 141.16 31.48 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| include  5. Interr  Metabolic  (66)m= 8.  Lighting g (67)m= 1:  Appliance (68)m= 14  Cooking g (69)m= 3  Pumps ar (70)m=                                                   | (57)m in cal nal gains (see gains (Table Jan Feb 4.76 84.76 gains (calcula 3.17 11.69 es gains (calcula 1.48 31.48 nd fans gains 0 0 g. evaporation 67.8 -67.8 ating gains (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | culation of the culation of the culation of the culation of the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in Appendix at the culated in  | of (65)m  of and 5a  ts  Apr  84.76  opendix  7.2  Appendix  137.13  ppendix  31.48  5a)  0  tive value  -67.8 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 84.76 ion L9 of 4.54 uation L 116.99 ion L15 31.48  0 le 5) -67.8 | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48  | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>o, also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48  0  -67.8 | Oct 84.76  10.88 ble 5 121.03 5 31.48  0 -67.8 | Nov<br>84.76<br>12.69<br>131.41<br>31.48<br>0 | Dec 84.76 13.53 141.16 31.48 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:    | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |            | Gains<br>(W) |      |
|-----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|------------|--------------|------|
| Northeast 0.9x  | 0.77                      | X | 9.56       | x | 11.28            | x | 0.55           | x | 0.7            | ] =        | 28.78        | (75) |
| Northeast 0.9x  | 0.77                      | x | 4.62       | x | 11.28            | x | 0.55           | x | 0.7            | <b>=</b>   | 13.91        | (75) |
| Northeast 0.9x  | 0.77                      | x | 9.56       | x | 22.97            | x | 0.55           | x | 0.7            | =          | 58.58        | (75) |
| Northeast 0.9x  | 0.77                      | x | 4.62       | x | 22.97            | x | 0.55           | x | 0.7            | <b>=</b>   | 28.31        | (75) |
| Northeast 0.9x  | 0.77                      | x | 9.56       | x | 41.38            | x | 0.55           | x | 0.7            | =          | 105.54       | (75) |
| Northeast 0.9x  | 0.77                      | x | 4.62       | x | 41.38            | x | 0.55           | x | 0.7            | =          | 51.01        | (75) |
| Northeast 0.9x  | 0.77                      | x | 9.56       | x | 67.96            | x | 0.55           | x | 0.7            | <b>=</b>   | 173.33       | (75) |
| Northeast 0.9x  | 0.77                      | x | 4.62       | x | 67.96            | x | 0.55           | x | 0.7            | =          | 83.77        | (75) |
| Northeast 0.9x  | 0.77                      | x | 9.56       | x | 91.35            | x | 0.55           | x | 0.7            | <b>=</b>   | 232.99       | (75) |
| Northeast 0.9x  | 0.77                      | x | 4.62       | x | 91.35            | x | 0.55           | x | 0.7            | =          | 112.6        | (75) |
| Northeast 0.9x  | 0.77                      | x | 9.56       | x | 97.38            | x | 0.55           | x | 0.7            | =          | 248.39       | (75) |
| Northeast 0.9x  | 0.77                      | x | 4.62       | x | 97.38            | x | 0.55           | x | 0.7            | =          | 120.04       | (75) |
| Northeast 0.9x  | 0.77                      | x | 9.56       | x | 91.1             | x | 0.55           | X | 0.7            | <b>=</b>   | 232.37       | (75) |
| Northeast 0.9x  | 0.77                      | x | 4.62       | x | 91.1             | x | 0.55           | x | 0.7            | <b>=</b>   | 112.29       | (75) |
| Northeast 0.9x  | 0.77                      | x | 9.56       | x | 72.63            | x | 0.55           | x | 0.7            | ] =        | 185.25       | (75) |
| Northeast 0.9x  | 0.77                      | X | 4.62       | x | 72.63            | X | 0.55           | X | 0.7            | ] =        | 89.52        | (75) |
| Northeast 0.9x  | 0.77                      | X | 9.56       | x | 50.42            | x | 0.55           | X | 0.7            | =          | 128.61       | (75) |
| Northeast 0.9x  | 0.77                      | X | 4.62       | x | 50.42            | x | 0.55           | x | 0.7            | =          | 62.15        | (75) |
| Northeast 0.9x  | 0.77                      | X | 9.56       | x | 28.07            | x | 0.55           | x | 0.7            | =          | 71.59        | (75) |
| Northeast 0.9x  | 0.77                      | X | 4.62       | x | 28.07            | x | 0.55           | X | 0.7            | =          | 34.6         | (75) |
| Northeast 0.9x  | 0.77                      | X | 9.56       | x | 14.2             | x | 0.55           | x | 0.7            | =          | 36.21        | (75) |
| Northeast 0.9x  | 0.77                      | X | 4.62       | x | 14.2             | x | 0.55           | x | 0.7            | =          | 17.5         | (75) |
| Northeast 0.9x  | 0.77                      | x | 9.56       | x | 9.21             | x | 0.55           | x | 0.7            | ] =        | 23.5         | (75) |
| Northeast 0.9x  | 0.77                      | x | 4.62       | x | 9.21             | x | 0.55           | x | 0.7            | =          | 11.36        | (75) |
| Northwest 0.9x  | 0.77                      | x | 4.17       | x | 11.28            | x | 0.55           | x | 0.7            | =          | 25.11        | (81) |
| Northwest 0.9x  | 0.77                      | X | 4.17       | x | 22.97            | x | 0.55           | X | 0.7            | =          | 51.1         | (81) |
| Northwest 0.9x  | 0.77                      | X | 4.17       | x | 41.38            | X | 0.55           | X | 0.7            | ] =        | 92.07        | (81) |
| Northwest 0.9x  | 0.77                      | X | 4.17       | x | 67.96            | X | 0.55           | X | 0.7            | =          | 151.21       | (81) |
| Northwest 0.9x  | 0.77                      | x | 4.17       | x | 91.35            | x | 0.55           | X | 0.7            | ] <b>=</b> | 203.26       | (81) |
| Northwest 0.9x  | 0.77                      | x | 4.17       | x | 97.38            | x | 0.55           | x | 0.7            | =          | 216.7        | (81) |
| Northwest 0.9x  | 0.77                      | x | 4.17       | x | 91.1             | X | 0.55           | X | 0.7            | ] <b>=</b> | 202.71       | (81) |
| Northwest 0.9x  | 0.77                      | X | 4.17       | x | 72.63            | x | 0.55           | x | 0.7            | =          | 161.61       | (81) |
| Northwest 0.9x  | 0.77                      | X | 4.17       | x | 50.42            | x | 0.55           | x | 0.7            | =          | 112.19       | (81) |
| Northwest 0.9x  | 0.77                      | X | 4.17       | x | 28.07            | x | 0.55           | x | 0.7            | ] =        | 62.45        | (81) |
| Northwest 0.9x  | 0.77                      | x | 4.17       | x | 14.2             | x | 0.55           | x | 0.7            | ] =        | 31.59        | (81) |
| Northwest 0.9x  | 0.77                      | x | 4.17       | x | 9.21             | x | 0.55           | x | 0.7            | Ī =        | 20.5         | (81) |
| Rooflights 0.9x | 1                         | X | 1.05       | x | 26               | x | 0.55           | x | 0.8            | j =        | 10.81        | (82) |
| Rooflights 0.9x | 1                         | X | 1.79       | x | 26               | × | 0.55           | x | 0.8            | j =        | 18.43        | (82) |
| Rooflights 0.9x | 1                         | X | 1.05       | x | 54               | × | 0.55           | x | 0.8            | j =        | 22.45        | (82) |
|                 |                           |   |            | - |                  | • |                | • |                | -          |              | _    |

| - a:                       |              |             |              |          |               |                | ,        |              | _        |                |          |          | _    |
|----------------------------|--------------|-------------|--------------|----------|---------------|----------------|----------|--------------|----------|----------------|----------|----------|------|
| Rooflights 0.9x            | 1            | X           | 1.7          | 9        | X             | 54             | X        | 0.55         | X        | 0.8            | =        | 38.28    | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X           | 1.0          | 5        | X             | 96             | X        | 0.55         | X        | 0.8            | =        | 39.92    | (82) |
| Rooflights 0.9x            | 1            | X           | 1.7          | 9        | X             | 96             | X        | 0.55         | X        | 0.8            | =        | 68.05    | (82) |
| Rooflights 0.9x            | 1            | X           | 1.0          | 5        | X             | 150            | X        | 0.55         | X        | 0.8            | =        | 62.37    | (82) |
| Rooflights 0.9x            | 1            | X           | 1.7          | 9        | X             | 150            | X        | 0.55         | X        | 0.8            | =        | 106.33   | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X           | 1.0          | 5        | X             | 192            | X        | 0.55         | X        | 0.8            | =        | 79.83    | (82) |
| Rooflights 0.9x            | 1            | X           | 1.7          | 9        | x             | 192            | x        | 0.55         | X        | 0.8            | -        | 136.1    | (82) |
| Rooflights 0.9x            | 1            | X           | 1.0          | 5        | x             | 200            | x        | 0.55         | X        | 0.8            | =        | 83.16    | (82) |
| Rooflights 0.9x            | 1            | X           | 1.7          | 9        | x             | 200            | X        | 0.55         | X        | 0.8            | =        | 141.77   | (82) |
| Rooflights 0.9x            | 1            | X           | 1.0          | 5        | x             | 189            | X        | 0.55         | X        | 0.8            | =        | 78.59    | (82) |
| Rooflights 0.9x            | 1            | x           | 1.7          | 9        | x             | 189            | x        | 0.55         | x        | 0.8            |          | 133.97   | (82) |
| Rooflights 0.9x            | 1            | x           | 1.0          | 5        | x             | 157            | x        | 0.55         | х        | 0.8            |          | 65.28    | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X           | 1.7          | 9        | x             | 157            | x        | 0.55         | x        | 0.8            |          | 111.29   | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X           | 1.0          | 5        | x             | 115            | x        | 0.55         | X        | 0.8            |          | 47.82    | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X           | 1.7          | 9        | x             | 115            | x        | 0.55         | x        | 0.8            |          | 81.52    | (82) |
| Rooflights <sub>0.9x</sub> | 1            | ×           | 1.0          | 5        | x             | 66             | j x      | 0.55         | x        | 0.8            |          | 27.44    | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X           | 1.7          | 9        | x             | 66             | x        | 0.55         | X        | 0.8            |          | 46.78    | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X           | 1.0          | 5        | x             | 33             | x        | 0.55         | x        | 0.8            | =        | 13.72    | (82) |
| Rooflights 0.9x            | 1            | x           | 1.7          | 9        | X             | 33             | X        | 0.55         | x        | 0.8            |          | 23.39    | (82) |
| Rooflights 0.9x            | 1            | x           | 1.0          | 5        | x             | 21             | x        | 0.55         | x        | 0.8            | =        | 8.73     | (82) |
| Rooflights 0.9x            | 1            | ×           | 1.7          | 9        | X             | 21             | x        | 0.55         | x        | 0.8            | =        | 14.89    | (82) |
| _                          |              |             |              |          |               |                |          |              |          |                |          |          |      |
| Solar gains in             | watte cald   | rulated     | for each     | n month  | 1             |                | (83)m    | n = Sum(74)m | (82)m    |                |          |          |      |
| (83)m= 97.03               |              | 356.59      | 577.01       | 764.78   | $\overline{}$ | 10.06 759.93   | 612      | <del></del>  | 242.8    |                | 78.98    |          | (83) |
| Total gains – i            | nternal an   | d solar     | (84)m =      | : (73)m  | + (8          | 33)m , watts   | <u> </u> | <u> </u>     |          |                |          |          |      |
| (84)m= 340.99              | 441.65       | 591.18      | 797.96       | 971.53   | 10            | 03.38 944.69   | 800      | .73 627.21   | 451.5    | 4 346.91       | 315.7    |          | (84) |
| 7. Mean inter              | nal tempe    | rature (    | (heating     | season   | )             |                |          |              | ļ        |                |          |          |      |
| Temperature                |              |             | •            |          |               | area from Tal  | hle 0    | Th1 (°C)     |          |                |          | 21       | (85) |
| Utilisation fac            | •            | •           |              |          | -             |                | JIC J    | , 1111 ( 0)  |          |                |          | 21       | (00) |
| Jan                        | Feb Feb      | Mar         | Apr          | May      | Ť             | Jun Jul        | Δ        | ug Sep       | Oct      | Nov            | Dec      |          |      |
| (86)m= 1                   | 0.99         | 0.97        | 0.87         | 0.7      | -             | 0.51 0.38      | 0.4      |              | 0.96     | 0.99           | 1        |          | (86) |
|                            | <u> </u>     | I           | !            |          |               | I              |          |              | 1 0.00   | 0.00           | <u>'</u> |          | ()   |
| Mean interna               |              |             | <del>_</del> |          | _             | i              | _        | <del></del>  | 1 00 05  |                | 40.40    | Ī        | (07) |
| (87)m= 19.17               | 19.43        | 19.89       | 20.46        | 20.82    |               | 0.96 20.99     | 20.      | 98 20.83     | 20.25    | 19.6           | 19.13    |          | (87) |
| Temperature                | <del>_</del> | <del></del> |              |          | _             | <del>_</del>   | able 9   | 9, Th2 (°C)  |          |                |          | •        |      |
| (88)m= 19.55               | 19.55        | 19.56       | 19.56        | 19.56    | 1             | 9.57 19.57     | 19.      | 57 19.57     | 19.56    | 19.56          | 19.56    |          | (88) |
| Utilisation fac            | tor for gai  | ns for r    | est of dv    | welling, | h2,           | m (see Table   | 9a)      |              |          |                |          |          |      |
| (89)m= 0.99                | 0.99         | 0.95        | 0.83         | 0.62     |               | 0.4 0.26       | 0.3      | 33 0.65      | 0.94     | 0.99           | 1        |          | (89) |
| Mean interna               | I temperat   | ture in t   | he rest      | of dwell | ina           | T2 (follow ste | eps 3    | to 7 in Tab  | le 9c)   |                |          | -        |      |
| (90)m= 17.93               |              | 18.64       | 19.17        | 19.47    | Ť             | 9.56 19.57     | 19.      |              | 19       | 18.36          | 17.89    |          | (90) |
| L                          | <u> </u>     |             | [            |          | 1             |                |          | ·            | fLA = Li | ving area ÷ (4 | 1) =     | 0.47     | (91) |
|                            |              |             |              |          |               |                |          |              |          |                |          | <u> </u> |      |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| 18.52   18.77   19.23   19.78   20.11   20.22   20.24   20.23   20.12   19.59   18.95   18.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. Space heating requirement  Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Utilisation factor for gains, hm:  (94)m= 0.99 0.98 0.95 0.84 0.65 0.45 0.32 0.39 0.7 0.94 0.99 1  Useful gains, hmGm , W = (94)m x (84)m  (95)m= 338.81 434.49 561.11 669.92 630.57 453.6 300.28 313.01 436.26 422.78 342.6 314.16  Monthly average external temperature from Table 8  (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2  Heat loss rate for mean internal temperature, Lm , W = ((39)m x ((93)m - (96)m)    (97)m= 1201.22 1170.57 1072.68 911.45 703.6 467.82 303.06 318.93 502.17 752.6 993.43 1199.92  Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m= 641.63 494.65 380.61 173.9 54.33 0 0 0 0 0 245.38 468.6 659.01                                                                                                                                                                                                                                                                |
| 8. Space heating requirement  Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Utilisation factor for gains, hm:  (94)m= 0.99 0.98 0.95 0.84 0.65 0.45 0.32 0.39 0.7 0.94 0.99 1  Useful gains, hmGm , W = (94)m x (84)m  (95)m= 338.81 434.49 561.11 669.92 630.57 453.6 300.28 313.01 436.26 422.78 342.6 314.16  Monthly average external temperature from Table 8  (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2  Heat loss rate for mean internal temperature, Lm , W = ((39)m x ((93)m - (96)m) 1  (97)m= 1201.22 1170.57 1072.68 911.45 703.6 467.82 303.06 318.93 502.17 752.6 993.43 1199.92  Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m= 641.63 494.65 380.61 173.9 54.33 0 0 0 0 0 245.38 468.6 659.01                                                                                                                                                                                                                                                                |
| Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Utilisation factor for gains, hm:  (94)m= 0.99 0.98 0.95 0.84 0.65 0.45 0.32 0.39 0.7 0.94 0.99 1  Useful gains, hmGm , W = (94)m x (84)m  (95)m= 338.81 434.49 561.11 669.92 630.57 453.6 300.28 313.01 436.26 422.78 342.6 314.16  Monthly average external temperature from Table 8  (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2  Heat loss rate for mean internal temperature, Lm , W = (39)m x (93)m - (96)m ]  (97)m= 1201.22 1170.57 1072.68 911.45 703.6 467.82 303.06 318.93 502.17 752.6 993.43 1199.92  Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m= 641.63 494.65 380.61 173.9 54.33 0 0 0 0 0 245.38 468.6 659.01                                                                                                                                                                                                                                                                                                 |
| the utilisation factor for gains using Table 9a  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Utilisation factor for gains, hm:  (94)m= 0.99 0.98 0.95 0.84 0.65 0.45 0.32 0.39 0.7 0.94 0.99 1  Useful gains, hmGm , W = (94)m x (84)m  (95)m= 338.81 434.49 561.11 669.92 630.57 453.6 300.28 313.01 436.26 422.78 342.6 314.16  Monthly average external temperature from Table 8  (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2  Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m - (96)m]  (97)m= 1201.22 1170.57 1072.68 911.45 703.6 467.82 303.06 318.93 502.17 752.6 993.43 1199.92  Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m= 641.63 494.65 380.61 173.9 54.33 0 0 0 0 0 245.38 468.6 659.01                                                                                                                                                                                                                                                                                                                                                                                                             |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           Utilisation factor for gains, hm:           (94)m=         0.99         0.98         0.95         0.84         0.65         0.45         0.32         0.39         0.7         0.94         0.99         1           Useful gains, hmGm , W = (94)m x (84)m           (95)m=         338.81         434.49         561.11         669.92         630.57         453.6         300.28         313.01         436.26         422.78         342.6         314.16           Monthly average external temperature from Table 8           (96)m=         4.3         4.9         6.5         8.9         11.7         14.6         16.6         16.4         14.1         10.6         7.1         4.2           Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m - (96)m]           (97)m=         1201.22         1170.57         1072.68         911.45         703.6         467.82         303.06         318.93         502.17         752.6         993.43         1199.92           Space heating requirement for each month, kWh/mo |
| Utilisation factor for gains, hm:  (94)m= 0.99 0.98 0.95 0.84 0.65 0.45 0.32 0.39 0.7 0.94 0.99 1  Useful gains, hmGm , W = (94)m x (84)m  (95)m= 338.81 434.49 561.11 669.92 630.57 453.6 300.28 313.01 436.26 422.78 342.6 314.16  Monthly average external temperature from Table 8  (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2  Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m - (96)m] (97)m= 1201.22 1170.57 1072.68 911.45 703.6 467.82 303.06 318.93 502.17 752.6 993.43 1199.92  Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m= 641.63 494.65 380.61 173.9 54.33 0 0 0 0 0 245.38 468.6 659.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (94)m=       0.99       0.98       0.95       0.84       0.65       0.45       0.32       0.39       0.7       0.94       0.99       1         Useful gains, hmGm , W = (94)m x (84)m         (95)m=       338.81       434.49       561.11       669.92       630.57       453.6       300.28       313.01       436.26       422.78       342.6       314.16         Monthly average external temperature from Table 8         (96)m=       4.3       4.9       6.5       8.9       11.7       14.6       16.6       16.4       14.1       10.6       7.1       4.2         Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m- (96)m]         (97)m=       1201.22       1170.57       1072.68       911.45       703.6       467.82       303.06       318.93       502.17       752.6       993.43       1199.92         Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m         (98)m=       641.63       494.65       380.61       173.9       54.33       0       0       0       0       245.38       468.6       659.01                                                                                                                     |
| Useful gains, hmGm , W = (94)m x (84)m  (95)m= 338.81  434.49  561.11  669.92  630.57  453.6  300.28  313.01  436.26  422.78  342.6  314.16  Monthly average external temperature from Table 8  (96)m= 4.3  4.9  6.5  8.9  11.7  14.6  16.6  16.4  14.1  10.6  7.1  4.2  Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m]    (97)m= 1201.22  1170.57  1072.68  911.45  703.6  467.82  303.06  318.93  502.17  752.6  993.43  1199.92  Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m= 641.63  494.65  380.61  173.9  54.33  0  0  0  0  245.38  468.6  659.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (95)m= 338.81 434.49 561.11 669.92 630.57 453.6 300.28 313.01 436.26 422.78 342.6 314.16  Monthly average external temperature from Table 8  (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2  Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m= 1201.22 1170.57 1072.68 911.45 703.6 467.82 303.06 318.93 502.17 752.6 993.43 1199.92  Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m= 641.63 494.65 380.61 173.9 54.33 0 0 0 0 245.38 468.6 659.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Monthly average external temperature from Table 8  (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2  Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m - (96)m]  (97)m= 1201.22 1170.57 1072.68 911.45 703.6 467.82 303.06 318.93 502.17 752.6 993.43 1199.92  Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m= 641.63 494.65 380.61 173.9 54.33 0 0 0 0 0 245.38 468.6 659.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (96)m=       4.3       4.9       6.5       8.9       11.7       14.6       16.6       16.4       14.1       10.6       7.1       4.2         Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m – (96)m]         (97)m=       1201.22       1170.57       1072.68       911.45       703.6       467.82       303.06       318.93       502.17       752.6       993.43       1199.92         Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m         (98)m=       641.63       494.65       380.61       173.9       54.33       0       0       0       245.38       468.6       659.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m ]  (97)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (97)m=     1201.22     1170.57     1072.68     911.45     703.6     467.82     303.06     318.93     502.17     752.6     993.43     1199.92       Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m       (98)m=     641.63     494.65     380.61     173.9     54.33     0     0     0     245.38     468.6     659.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m  (98)m= 641.63 494.65 380.61 173.9 54.33 0 0 0 0 245.38 468.6 659.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (98)m= 641.63 494.65 380.61 173.9 54.33 0 0 0 0 245.38 468.6 659.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| T-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Total per year (kWh/year) = $Sum(98)_{15,912}$ = 3118.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Space heating requirement in kWh/m²/year 62.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8c. Space cooling requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Calculated for June, July and August. See Table 10b  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Heat loss rate Lm (calculated using 25°C internal temperature and external temperature from Table 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (100)m= 0 0 0 0 782.57 616.07 632.11 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Utilisation factor for loss hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (101)m= 0 0 0 0 0 0.92 0.95 0.92 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Useful loss, hmLm (Watts) = (100)m x (101)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (102)m= 0 0 0 0 720.58 586.41 582.32 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Gains (solar gains calculated for applicable weather region, see Table 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (103)m= 0 0 0 0 0 1198.95 1131.23 969.98 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Space cooling requirement for month, whole dwelling, continuous ( $kWh$ ) = 0.024 $\times$ [(103) $m$ – (102) $m$ ] $\times$ (41) $m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| set (104)m to zero if (104)m < 3 × (98)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (104)m= 0 0 0 0 0 344.42 405.34 288.42 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total = Sum(1,04) = 1038.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cooled fraction $f C = cooled area \div (4) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Intermittency factor (Table 10b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (106)m= 0 0 0 0 0 0.25 0.25 0.25 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total = Sum(1,04) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Space cooling requirement for month = (104)m × (105) × (106)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (107)m= 0 0 0 0 0 86.1 101.34 72.1 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total = Sum(107) = 259.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Space cooling requirement in kWh/m²/year $(107) \div (4) = 5.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Space cooling requirement in kWh/m²/year $(107) \div (4) = 5.17$ 8f. Fabric Energy Efficiency (calculated only under special conditions, see section 11)  Fabric Energy Efficiency $(99) + (108) = 67.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                            |               |                      |                 |                    | lser D             | etails:          |             |             |            |           |                            |          |
|--------------------------------------------|---------------|----------------------|-----------------|--------------------|--------------------|------------------|-------------|-------------|------------|-----------|----------------------------|----------|
| <b>A N</b> 1                               | 01            | -1-11-1              | - 11            |                    |                    |                  | - 11        |             |            | OTDO      | 040000                     |          |
| Assessor Name Software Name:               | -             | ris Hockn<br>oma FSA | _               |                    |                    | Stroma<br>Softwa |             |             |            |           | 016363<br>on: 1.0.4.16     |          |
| Software Name.                             | Oti           | oma i oz             | (1 Z01Z         | Prop               |                    | Address          |             |             |            | VCISIC    | лт. т.о. <del>ч</del> . то |          |
| Address :                                  |               |                      |                 |                    |                    |                  |             |             |            |           |                            |          |
| 1. Overall dwelling                        | dimension     | s:                   |                 |                    |                    |                  |             |             |            |           |                            |          |
| One and the en                             |               |                      |                 |                    |                    | a(m²)            |             |             | ight(m)    | 1         | Volume(m³)                 | _        |
| Ground floor                               |               |                      |                 |                    | 5                  | 9.25             | (1a) x      | 2           | 2.7        | (2a) =    | 159.98                     | (3a)     |
| Total floor area TFA                       | = (1a)+(1     | b)+(1c)+(1           | d)+(1e)+        | (1n)               | 5                  | 9.25             | (4)         |             |            |           |                            |          |
| Dwelling volume                            |               |                      |                 |                    |                    |                  | (3a)+(3b    | )+(3c)+(3d  | l)+(3e)+   | .(3n) =   | 159.98                     | (5)      |
| 2. Ventilation rate:                       |               |                      |                 |                    |                    |                  |             |             |            |           |                            |          |
|                                            |               | main<br>heating      | secon<br>heati  |                    |                    | other            | _           | total       |            |           | m³ per hour                | _        |
| Number of chimneys                         | •             | 0                    | + 0             |                    | +                  | 0                | ] = [       | 0           | X 4        | 40 =      | 0                          | (6a)     |
| Number of open flue                        | s [           | 0                    | + 0             |                    | +                  | 0                | ] = [       | 0           | x 2        | 20 =      | 0                          | (6b)     |
| Number of intermitte                       | nt fans       |                      |                 |                    |                    |                  | Ī           | 2           | <b>X</b> ' | 10 =      | 20                         | (7a)     |
| Number of passive v                        | ents          |                      |                 |                    |                    |                  | Ī           | 0           | x -        | 10 =      | 0                          | (7b)     |
| Number of flueless g                       | as fires      |                      |                 |                    |                    |                  | Ė           | 0           | X 4        | 40 =      | 0                          | (7c)     |
|                                            |               |                      |                 |                    |                    |                  | _           |             |            |           |                            | _        |
|                                            |               |                      |                 |                    |                    |                  |             |             |            | Air ch    | nanges per ho              | ur       |
| Infiltration due to chi                    | •             |                      |                 |                    |                    |                  | [           | 20          |            | ÷ (5) =   | 0.13                       | (8)      |
| If a pressurisation test Number of storeys |               |                      |                 | oceed to           | ) (1 <i>/</i> ), c | otherwise o      | ontinue fr  | om (9) to ( | (16)       |           | 0                          | (9)      |
| Additional infiltration                    |               | ciiiig (110)         |                 |                    |                    |                  |             |             | [(9)       | -1]x0.1 = | 0                          | (10)     |
| Structural infiltration                    |               | r steel or t         | imber fram      | e or 0.            | 35 for             | · masonr         | y constr    | uction      | 1(-)       |           | 0                          | (11)     |
| if both types of wall                      |               |                      |                 | ng to the          | e greate           | er wall are      | a (after    |             |            |           | -                          | <b>_</b> |
| deducting areas of o                       |               |                      |                 | or () 1 /          | (coalo             | ud) else         | antar N     |             |            |           |                            | 7(42)    |
| If no draught lobby                        |               |                      |                 | JI U. I (          | (Seale             | u), eise         | enter o     |             |            |           | 0                          | (12)     |
| Percentage of win                          |               |                      |                 | ed                 |                    |                  |             |             |            |           | 0                          | (14)     |
| Window infiltration                        |               |                      |                 |                    |                    | 0.25 - [0.2      | x (14) ÷ 1  | 00] =       |            |           | 0                          | (15)     |
| Infiltration rate                          |               |                      |                 |                    |                    | (8) + (10)       | + (11) + (1 | 12) + (13)  | + (15) =   |           | 0                          | (16)     |
| Air permeability va                        | lue, q50,     | expressed            | l in cubic m    | etres p            | er ho              | ur per s         | quare m     | etre of e   | nvelope    | area      | 3                          | (17)     |
| If based on air permo                      | eability va   | lue, then (          | 18) = [(17) ÷ 2 | 20]+(8), 0         | otherwi            | se (18) = (      | 16)         |             |            |           | 0.28                       | (18)     |
| Air permeability value                     |               | ressurisation        | test has beer   | n done d           | or a deg           | gree air pe      | rmeability  | is being u  | sed        |           |                            | _        |
| Number of sides she<br>Shelter factor      | eltered       |                      |                 |                    |                    | (20) = 1 -       | 0 075 x (1  | 19)1 =      |            |           | 3                          | (19)     |
| Infiltration rate incorp                   | oorating st   | nelter facto         | or              |                    |                    | (21) = (18)      | `           | . • /]      |            |           | 0.78                       | (20)     |
| Infiltration rate modif                    | _             |                      |                 |                    |                    | (= -) ( )        | ()          |             |            |           | 0.21                       | (21)     |
| Jan Feb                                    |               | Apr                  | <del>.</del>    | un                 | Jul                | Aug              | Sep         | Oct         | Nov        | Dec       | ]                          |          |
| Monthly average win                        | - 1           | · · ·                | - 1             | 1                  |                    |                  | - 319       | • •         | 1          |           | 1                          |          |
| (22)m= 5.1 5                               | 4.9           | 4.4                  | 4.3 3.          | 8                  | 3.8                | 3.7              | 4           | 4.3         | 4.5        | 4.7       |                            |          |
|                                            | (6.5)         | · · · · ·            |                 |                    |                    |                  | ·           |             | 1          | •         | 1                          |          |
| Wind Factor (22a)m                         | <del>``</del> | т т                  | 100   00        | ) <sub>5</sub>   . | 0.05               | 0.00             | 4           | 1 4 00      | 1 4 40     | 1 10      | 1                          |          |
| (22a)m= 1.27 1.25                          | 1.23          | 1.1                  | 1.08 0.9        | 10 [ (             | 0.95               | 0.92             | 1           | 1.08        | 1.12       | 1.18      | ]                          |          |

| Adjusted infiltra                                                                                                                                                                                                                    | ation rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e (allowi                                                                       | ng for sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nelter an                                         | d wind s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | speed) =                                 | (21a) x                                                                                                                          | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                                       |                   |                       |                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|-------------------|-----------------------|---------------------------------------------------------------------|
| 0.27                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.26                                                                            | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.23                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                      | 0.2                                                                                                                              | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.23                                                              | 0.24                                  | 0.25              | ]                     |                                                                     |
| Calculate effec                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                               | rate for t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he appli                                          | cable ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | se                                       |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                 |                                       |                   |                       |                                                                     |
| If mechanica                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | andiv N. 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2h) = (22a                                       | a) v Emy (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oguation (                               | NEN othor                                                                                                                        | avica (23h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v) = (23a)                                                        |                                       |                   | 0                     | (23a)                                                               |
| If balanced with                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )) = (23a)                                                        |                                       |                   | 0                     | (23b)                                                               |
|                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2h\m + /'                                                         | 22h) v [                              | 1 (220)           | 0                     | (23c)                                                               |
| a) If balance                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 0 (248                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                 | 23D) * [<br>0                         | 0                 | ) + 100]<br>]         | (24a)                                                               |
| b) If balance                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ļ                                                                 |                                       |                   | J                     | (= .0)                                                              |
| (24b)m= 0                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                        | 0                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                 | 0                                     | 0                 | 1                     | (24b)                                                               |
| c) If whole h                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ļ                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | ļ                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                                       | <u> </u>          | J                     |                                                                     |
| if (22b)m                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5 × (23b                                                         | )                                     |                   |                       |                                                                     |
| (24c)m= 0                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                        | 0                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                 | 0                                     | 0                 | ]                     | (24c)                                                               |
| d) If natural v                                                                                                                                                                                                                      | ventilatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n or wh                                                                         | ole hous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | se positiv                                        | ve input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ventilati                                | on from I                                                                                                                        | oft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                 |                                       | •                 | _                     |                                                                     |
| if (22b)m                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ` '                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>                                       | <u>`</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del>                              |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                                       |                   | 7                     |                                                                     |
| (24d)m= 0.54                                                                                                                                                                                                                         | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.53                                                                            | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53                                              | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.52                                     | 0.52                                                                                                                             | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53                                                              | 0.53                                  | 0.53              |                       | (24d)                                                               |
| Effective air                                                                                                                                                                                                                        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>``</del>                                     | <del>´``</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>ŕ `</del>                           | <del> </del>                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                       |                   | 7                     |                                                                     |
| (25)m= 0.54                                                                                                                                                                                                                          | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.53                                                                            | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53                                              | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.52                                     | 0.52                                                                                                                             | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53                                                              | 0.53                                  | 0.53              |                       | (25)                                                                |
| 3. Heat losses                                                                                                                                                                                                                       | s and he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | at loss p                                                                       | paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er:                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                                       |                   |                       |                                                                     |
| ELEMENT                                                                                                                                                                                                                              | Gros<br>area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 | Openin<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   | Net Ar<br>A ,r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | U-valı<br>W/m2                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A X U<br>(W/ł                                                     | <b>〈</b> )                            | k-value<br>kJ/m²· |                       | A X k<br>kJ/K                                                       |
| Doors                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                        | 1.3                                                                                                                              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6                                                               |                                       |                   |                       | (26)                                                                |
| Windows Type                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                                       |                   |                       |                                                                     |
|                                                                                                                                                                                                                                      | 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 8.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>x</u> 1                               | /[1/( 1.3 )+                                                                                                                     | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.21                                                             | =                                     |                   |                       | (27)                                                                |
| Windows Type                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 8.26<br>4.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                                       |                   |                       | (27)<br>(27)                                                        |
| Windows Type Windows Type                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x1                                       | /[1/( 1.3 )+                                                                                                                     | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.21                                                             |                                       |                   |                       |                                                                     |
| •                                                                                                                                                                                                                                    | 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 4.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x1 x1                                    | /[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                     | 0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.21<br>5.2                                                      |                                       |                   |                       | (27)                                                                |
| Windows Type                                                                                                                                                                                                                         | 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 4.21<br>3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x1 x1 x1                                 | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                     | 0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.21<br>5.2<br>3.97                                              |                                       |                   |                       | (27)<br>(27)<br>(27)                                                |
| Windows Type Windows Type                                                                                                                                                                                                            | 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                               | 20.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                 | 4.21<br>3.21<br>4.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x1<br>x1<br>x1<br>x1                     | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                     | 0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.21<br>5.2<br>3.97<br>5.4                                       |                                       |                   | <b>-</b>              | (27)<br>(27)<br>(27)                                                |
| Windows Type Windows Type Rooflights                                                                                                                                                                                                 | 2<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                               | 20.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                 | 4.21<br>3.21<br>4.37<br>1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x1 x1 x1 x1 x1 x1 x1                     | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.6 ) +                                                    | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.21<br>5.2<br>3.97<br>5.4<br>2.576<br>2.84                      |                                       |                   |                       | (27)<br>(27)<br>(27)<br>(27b)<br>(29)                               |
| Windows Type Windows Type Rooflights Walls Type1                                                                                                                                                                                     | 38.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 4.21<br>3.21<br>4.37<br>1.61<br>18.9<br>43.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x1 x1 x1 x1 x1 x x1 x x                  | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13                                          | 0.04] = 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.21<br>5.2<br>3.97<br>5.4<br>2.576<br>2.84<br>5.81              |                                       |                   |                       | (27)<br>(27)<br>(27)<br>(27b)<br>(29)<br>(29)                       |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof                                                                                                                                                                    | 38.99<br>45.4<br>59.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>5                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 4.21<br>3.21<br>4.37<br>1.61<br>18.9<br>43.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x1 x1 x1 x1 x x1 x x x x x x x x x x x   | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.6 ) +                                                    | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | 10.21<br>5.2<br>3.97<br>5.4<br>2.576<br>2.84                      |                                       |                   |                       | (27)<br>(27)<br>(27)<br>(27b)<br>(29)<br>(29)<br>(30)               |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of el                                                                                                                                                   | 38.99<br>45.4<br>59.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>5                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 4.21<br>3.21<br>4.37<br>1.61<br>18.9<br>43.47<br>57.64<br>143.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/(1.6) +<br>0.15<br>0.13                      | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.21<br>5.2<br>3.97<br>5.4<br>2.576<br>2.84<br>5.81<br>5.76      |                                       |                   |                       | (27)<br>(27)<br>(27)<br>(27b)<br>(29)<br>(29)<br>(30)<br>(31)       |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of ele Party wall                                                                                                                                       | 38.99<br>45.4<br>59.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>5                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 4.21<br>3.21<br>4.37<br>1.61<br>18.9<br>43.47<br>57.64<br>143.6<br>25.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13                                          | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | 10.21<br>5.2<br>3.97<br>5.4<br>2.576<br>2.84<br>5.81              |                                       |                   |                       | (27) (27) (27) (27b) (29) (29) (30) (31)                            |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of el                                                                                                                                                   | 38.99<br>45.4<br>59.20<br>Jements,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7<br>5<br>m²                                                                    | 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   | 4.21<br>3.21<br>4.37<br>1.61<br>18.9<br>43.47<br>57.64<br>143.6<br>25.99<br>59.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13 0.1                         | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.21<br>5.2<br>3.97<br>5.4<br>2.576<br>2.84<br>5.81<br>5.76      | s given in                            | paragraph         |                       | (27)<br>(27)<br>(27)<br>(27b)<br>(29)<br>(29)<br>(30)<br>(31)       |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of ele Party wall Party floor                                                                                                                           | 2 2 3 4 4 38.9 45.4 59.2 lements,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7<br>5<br>m²                                                                    | 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | indow U-va                                        | 4.21  3.21  4.37  1.61  18.9  43.47  57.64  143.6  25.99  59.29  alue calculum and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and | x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13 0.1                         | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.21<br>5.2<br>3.97<br>5.4<br>2.576<br>2.84<br>5.81<br>5.76      | s given in                            | paragraph         |                       | (27) (27) (27) (27b) (29) (29) (30) (31)                            |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of el Party wall Party floor * for windows and                                                                                                          | 38.94<br>38.94<br>45.4<br>59.29<br>Ilements,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7<br>5<br>m²<br>ows, use e                                                      | 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | indow U-va                                        | 4.21  3.21  4.37  1.61  18.9  43.47  57.64  143.6  25.99  59.29  alue calculum and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and | x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13 0.1                         | 0.04] =   0.04] =   0.04] =   0.04] =   =   =   =     =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.21<br>5.2<br>3.97<br>5.4<br>2.576<br>2.84<br>5.81<br>5.76      | I I I I I I I I I I I I I I I I I I I | paragrapl         | h 3.2                 | (27) (27) (27) (27b) (29) (29) (30) (31) (32)                       |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of el Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity (                                                      | 38.99<br>45.4<br>59.29<br>lements,<br>roof windows on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on bo | 5  m²  ms, use esides of interest (A x A x k )                                  | 1.61  teffective winternal walk U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | indow U-va                                        | 4.21  3.21  4.37  1.61  18.9  43.47  57.64  143.6  25.98  59.28  alue calculatitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x1 x1 x1 x1 x1 x1 x x x x x x x x x x x  | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13 0.1                                      | 0.04] =   0.04] =   0.04] =   0.04] =   0.04] =     =     =       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.21<br>5.2<br>3.97<br>5.4<br>2.576<br>2.84<br>5.81<br>5.76<br>0 | 2) + (32a).                           |                   |                       | (27) (27) (27) (27b) (29) (30) (31) (32) (32a)                      |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of ele Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity ( Thermal mass                                        | 38.93<br>45.4<br>59.23<br>lements,<br>roof windowns on both as on both as S. W/K = S(A) paramet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m²  m²  m²  sides of in  S (A x A x k)  ter (TMF                                | 1.61  1.61  2  1.61  U)  P = Cm ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | indow U-va<br>Is and pan                          | 4.21 3.21 4.37 1.61 18.9 43.47 57.64 143.6 25.99 59.29 alue calculatitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13 0.1 0 q formula 1. (26)(30) | 0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] | 10.21 5.2 3.97 5.4 2.576 2.84 5.81 5.76 0 ue)+0.04] a             | 2) + (32a).<br>: Medium               | (32e) =           | 44.2                  | (27) (27) (27) (27b) (29) (29) (30) (31) (32) (32a)                 |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of el Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity ( Thermal mass For design assess                       | 38.99<br>45.4<br>59.29<br>lements,<br>roof windows on both as on both as so, W/K =<br>Cm = S(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m²  m²  sides of intermediate (TMF)  ter (TMF)                                  | 2 1.61 1.61  2. If the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of | indow U-va<br>Is and pan                          | 4.21 3.21 4.37 1.61 18.9 43.47 57.64 143.6 25.99 59.29 alue calculatitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13 0.1 0 q formula 1. (26)(30) | 0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] | 10.21 5.2 3.97 5.4 2.576 2.84 5.81 5.76 0 ue)+0.04] a             | 2) + (32a).<br>: Medium               | (32e) =           | 44.2<br>15258.        | (27) (27) (27) (27b) (29) (30) (31) (32) (32a) (33) (6) (34)        |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of ele Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity of Thermal mass For design assess can be used instead | 38.99 45.4 59.20 lements, roof windows on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on both as on bo             | 5 m² sws, use esides of interest (TMF) ere the deailed calculation              | 1.61  1.61  1.61  2  1.61  2  1.61  2  1.61  2  1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | indow U-va<br>ls and part<br>TFA) in<br>construct | 4.21 3.21 4.37 1.61 18.9 43.47 57.64 143.6 25.99 143.6 25.99 alue calculatitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13 0.1 0 q formula 1. (26)(30) | 0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] | 10.21 5.2 3.97 5.4 2.576 2.84 5.81 5.76 0 ue)+0.04] a             | 2) + (32a).<br>: Medium               | (32e) =           | 44.2<br>15258.<br>250 | (27) (27) (27) (27b) (29) (29) (30) (31) (32) (32a) (333) (34) (35) |
| Windows Type Windows Type Rooflights Walls Type1 Walls Type2 Roof Total area of el Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity ( Thermal mass For design assess                       | 38.99<br>45.4<br>59.29<br>lements,<br>roof windons on both as on both as son both as son both as son with a series when ad of a detage and of a detage and of a detage and of a detage as a series when a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series and of a detage as a series a | m²  m²  sides of intermediate (TMF)  ere the de ailed calcux Y) calculate (TMF) | 1.61  2  1.61  2  1.61  2  2  1.61  2  2  1.61  2  2  1.61  2  2  2  1.61  2  2  2  2  2  2  2  2  2  2  2  2  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TFA) ir                                           | 4.21 3.21 4.37 1.61 18.9 43.47 57.64 143.6 25.99 59.29 alue calculatitions  n kJ/m²K ion are no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x | /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.3 )+ /[1/( 1.6 )+ 0.15 0.13 0.1 0 q formula 1. (26)(30) | 0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] | 10.21 5.2 3.97 5.4 2.576 2.84 5.81 5.76 0 ue)+0.04] a             | 2) + (32a).<br>: Medium               | (32e) =           | 44.2<br>15258.        | (27) (27) (27) (27b) (29) (29) (30) (31) (32) (32a) (333) (34) (35) |

| Total fabric h                                | eat loss                 |             |              |             |            |              |                     | (33) +         | (36) =                 |                        |         | 58.77   | (37)         |
|-----------------------------------------------|--------------------------|-------------|--------------|-------------|------------|--------------|---------------------|----------------|------------------------|------------------------|---------|---------|--------------|
| Ventilation he                                | eat loss ca              | alculated   | d monthly    | y           |            |              |                     | (38)m          | = 0.33 × (             | (25)m x (5)            |         |         | ``           |
| Jan                                           | Feb                      | Mar         | Apr          | May         | Jun        | Jul          | Aug                 | Sep            | Oct                    | Nov                    | Dec     |         |              |
| (38)m= 28.35                                  | 28.27                    | 28.2        | 27.85        | 27.78       | 27.48      | 27.48        | 27.42               | 27.6           | 27.78                  | 27.91                  | 28.05   |         | (38)         |
| Heat transfer                                 | coefficie                | nt, W/K     |              |             |            |              |                     | (39)m          | = (37) + (             | 38)m                   |         |         |              |
| (39)m= 87.11                                  | 87.04                    | 86.96       | 86.61        | 86.55       | 86.24      | 86.24        | 86.19               | 86.36          | 86.55                  | 86.68                  | 86.82   |         |              |
| Heat loss par                                 | ameter (I                | HLP), W     | /m²K         |             |            |              |                     |                | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub>  | 12 /12= | 86.61   | (39)         |
| (40)m= 1.47                                   | 1.47                     | 1.47        | 1.46         | 1.46        | 1.46       | 1.46         | 1.45                | 1.46           | 1.46                   | 1.46                   | 1.47    |         |              |
| Number of da                                  | ays in mo                | nth (Tab    | le 1a)       |             |            |              |                     | ,              | Average =              | Sum(40) <sub>1.</sub>  | 12 /12= | 1.46    | (40)         |
| Jan                                           | Feb                      | Mar         | Apr          | May         | Jun        | Jul          | Aug                 | Sep            | Oct                    | Nov                    | Dec     |         |              |
| (41)m= 31                                     | 28                       | 31          | 30           | 31          | 30         | 31           | 31                  | 30             | 31                     | 30                     | 31      |         | (41)         |
|                                               |                          |             |              |             |            |              |                     |                |                        |                        |         |         |              |
| 4. Water hea                                  | ating ene                | rgy requ    | irement:     |             |            |              |                     |                |                        |                        | kWh/ye  | ear:    |              |
| Assumed occ<br>if TFA > 13<br>if TFA £ 13     | .9, N = 1                |             | ː [1 - exp   | (-0.0003    | 349 x (TF  | FA -13.9     | )2)] + 0.(          | 0013 x (       | TFA -13                |                        | 96      |         | (42)         |
| Annual avera Reduce the annu not more that 12 | ge hot wa<br>ual average | hot water   | usage by     | 5% if the a | welling is | designed i   |                     |                | se target o            |                        | .76     |         | (43)         |
| Jan                                           | Feb                      | Mar         | Apr          | May         | Jun        | Jul          | Aug                 | Sep            | Oct                    | Nov                    | Dec     |         |              |
| Hot water usage                               |                          |             |              |             |            |              | Ū                   | ССР            | 00.                    | 1101                   | 200     |         |              |
| (44)m= 88.83                                  | 85.6                     | 82.37       | 79.14        | 75.91       | 72.68      | 72.68        | 75.91               | 79.14          | 82.37                  | 85.6                   | 88.83   |         |              |
| Energy content of                             | of hot water             | used - cal  | culated mo   | onthly = 4. | 190 x Vd,r | n x nm x [   | OTm / 3600          |                |                        | m(44) <sub>112</sub> = |         | 969.1   | (44)         |
| (45)m= 131.74                                 | 115.22                   | 118.9       | 103.66       | 99.46       | 85.83      | 79.53        | 91.26               | 92.35          | 107.63                 | 117.49                 | 127.58  |         |              |
| If instantaneous                              | water heati              | ng at point | t of use (no | hot water   | storage),  | enter 0 in   | boxes (46           |                | Total = Su             | m(45) <sub>112</sub> = |         | 1270.64 | (45)         |
| (46)m= 0                                      | Το                       | 0           | 0            | 0           | 0          | 0            | 0                   | 0              | 0                      | 0                      | 0       |         | (46)         |
| Water storage                                 | e loss:                  |             |              |             |            |              |                     |                | <u> </u>               |                        |         |         |              |
| Storage volur                                 | me (litres)              | ) includir  | ng any so    | olar or W   | /WHRS      | storage      | within sa           | ame ves        | sel                    |                        | 0       |         | (47)         |
| If community                                  | _                        |             |              | -           |            |              | . ,                 |                |                        |                        |         |         |              |
| Otherwise if r                                |                          | hot wate    | er (this in  | icludes i   | nstantar   | neous co     | mbi boil            | ers) ente      | er '0' in (            | 47)                    |         |         |              |
| Water storage a) If manufact                  |                          | eclared I   | oss facto    | or is kno   | wn (kWł    | n/dav):      |                     |                |                        |                        | 0       |         | (48)         |
| Temperature                                   |                          |             |              |             | (          | <b>.,</b> ,. |                     |                |                        |                        | 0       |         | (49)         |
| Energy lost fr                                |                          |             |              | ear         |            |              | (48) x (49)         | ) =            |                        |                        | 0       |         | (50)         |
| b) If manufaction Hot water sto               | cturer's de              | eclared o   | cylinder l   | oss fact    |            | known:       |                     |                |                        |                        | 0       |         | (51)         |
| If community                                  | •                        |             | on 4.3       |             |            |              |                     |                |                        |                        |         |         |              |
| Volume facto                                  |                          |             | . 2h         |             |            |              |                     |                |                        |                        | 0       |         | (52)         |
| Temperature                                   |                          |             |              |             |            |              | (4 <b>7</b> ) (5 1) | ··· (50) · · · | E0)                    |                        | 0       |         | (53)         |
| Energy lost fr<br>Enter (50) or               |                          | _           | e, KVVN/ye   | ғаг         |            |              | (47) x (51)         | ) X (52) X (   | ರ <b>ು)</b> =          | <b>—</b>               | 0       |         | (54)<br>(55) |
| L.11.01 (00) 01                               | (5 1) 111 (6             | ,           |              |             |            |              |                     |                |                        |                        | J       |         | (00)         |

| Water sto                                                                                                                                     | rage loss ca                                                                                                                                                              | lculated t                                                                                                                  | for each                                                                                                         | month                                                                                        |                                                                                                      |                                                                              | ((56)m = (                                                                   | 55) × (41)ı                                                    | m                                             |                                           |                                      |               |                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|--------------------------------------|---------------|----------------------------------------------|
| (56)m=                                                                                                                                        | 0 0                                                                                                                                                                       | 0                                                                                                                           | 0                                                                                                                | 0                                                                                            | 0                                                                                                    | 0                                                                            | 0                                                                            | 0                                                              | 0                                             | 0                                         | 0                                    |               | (56)                                         |
| If cylinder co                                                                                                                                | ontains dedicate                                                                                                                                                          | ed solar sto                                                                                                                | rage, (57)                                                                                                       | m = (56)m                                                                                    | x [(50) – (                                                                                          | H11)] ÷ (5                                                                   | 0), else (5                                                                  | 7)m = (56)                                                     | m where (                                     | H11) is fro                               | m Append                             | ix H          |                                              |
| (57)m=                                                                                                                                        | 0 0                                                                                                                                                                       | 0                                                                                                                           | 0                                                                                                                | 0                                                                                            | 0                                                                                                    | 0                                                                            | 0                                                                            | 0                                                              | 0                                             | 0                                         | 0                                    |               | (57)                                         |
| Primary ci                                                                                                                                    | ircuit loss (a                                                                                                                                                            | nnual) fro                                                                                                                  | m Table                                                                                                          | 3                                                                                            |                                                                                                      |                                                                              |                                                                              |                                                                |                                               |                                           | 0                                    |               | (58)                                         |
| -                                                                                                                                             | ircuit loss ca                                                                                                                                                            | •                                                                                                                           |                                                                                                                  |                                                                                              | 59)m = (                                                                                             | (58) ÷ 36                                                                    | 65 × (41)                                                                    | m                                                              |                                               |                                           |                                      | •             |                                              |
| (modifie                                                                                                                                      | ed by factor f                                                                                                                                                            | rom Tab                                                                                                                     | le H5 if t                                                                                                       | here is s                                                                                    | solar wat                                                                                            | ter heatir                                                                   | ng and a                                                                     | cylinde                                                        | r thermo                                      | stat)                                     |                                      |               |                                              |
| (59)m=                                                                                                                                        | 0 0                                                                                                                                                                       | 0                                                                                                                           | 0                                                                                                                | 0                                                                                            | 0                                                                                                    | 0                                                                            | 0                                                                            | 0                                                              | 0                                             | 0                                         | 0                                    |               | (59)                                         |
| Combi los                                                                                                                                     | s calculated                                                                                                                                                              | for each                                                                                                                    | month (                                                                                                          | (61)m =                                                                                      | (60) ÷ 36                                                                                            | 65 × (41)                                                                    | )m                                                                           |                                                                |                                               |                                           |                                      |               |                                              |
| (61)m=                                                                                                                                        | 0 0                                                                                                                                                                       | 0                                                                                                                           | 0                                                                                                                | 0                                                                                            | 0                                                                                                    | 0                                                                            | 0                                                                            | 0                                                              | 0                                             | 0                                         | 0                                    |               | (61)                                         |
| Total heat                                                                                                                                    | t required for                                                                                                                                                            | water h                                                                                                                     | eating ca                                                                                                        | alculated                                                                                    | l for eac                                                                                            | h month                                                                      | (62)m =                                                                      | 0.85 × (                                                       | (45)m +                                       | (46)m +                                   | (57)m +                              | (59)m + (61)m |                                              |
| (62)m= 11                                                                                                                                     | 1.98 97.94                                                                                                                                                                | 101.06                                                                                                                      | 88.11                                                                                                            | 84.54                                                                                        | 72.95                                                                                                | 67.6                                                                         | 77.57                                                                        | 78.5                                                           | 91.48                                         | 99.86                                     | 108.44                               |               | (62)                                         |
| Solar DHW i                                                                                                                                   | input calculated                                                                                                                                                          | l using App                                                                                                                 | endix G or                                                                                                       | Appendix                                                                                     | H (negati                                                                                            | ve quantity                                                                  | /) (enter '0                                                                 | if no sola                                                     | r contribut                                   | ion to wate                               | er heating)                          | •             |                                              |
| (add addit                                                                                                                                    | tional lines if                                                                                                                                                           | FGHRS                                                                                                                       | and/or \                                                                                                         | WWHRS                                                                                        | applies                                                                                              | , see Ap                                                                     | pendix (                                                                     | €)                                                             |                                               |                                           |                                      |               |                                              |
| (63)m=                                                                                                                                        | 0 0                                                                                                                                                                       | 0                                                                                                                           | 0                                                                                                                | 0                                                                                            | 0                                                                                                    | 0                                                                            | 0                                                                            | 0                                                              | 0                                             | 0                                         | 0                                    |               | (63)                                         |
| Output fro                                                                                                                                    | m water hea                                                                                                                                                               | ater                                                                                                                        | -                                                                                                                | -                                                                                            | -                                                                                                    | -                                                                            | -                                                                            |                                                                |                                               | -                                         | -                                    |               |                                              |
| (64)m= 11                                                                                                                                     | 1.98 97.94                                                                                                                                                                | 101.06                                                                                                                      | 88.11                                                                                                            | 84.54                                                                                        | 72.95                                                                                                | 67.6                                                                         | 77.57                                                                        | 78.5                                                           | 91.48                                         | 99.86                                     | 108.44                               |               |                                              |
|                                                                                                                                               | •                                                                                                                                                                         | •                                                                                                                           |                                                                                                                  |                                                                                              |                                                                                                      |                                                                              | Outp                                                                         | out from wa                                                    | ater heate                                    | r (annual)                                | 12                                   | 1080.05       | (64)                                         |
| Heat gain                                                                                                                                     | s from water                                                                                                                                                              | heating,                                                                                                                    | kWh/m                                                                                                            | onth 0.2                                                                                     | 5 ′ [0.85                                                                                            | × (45)m                                                                      | + (61)m                                                                      | n] + 0.8 x                                                     | ((46)m                                        | + (57)m                                   | + (59)m                              | ]             | _                                            |
| (65)m= 27                                                                                                                                     | 7.99 24.48                                                                                                                                                                | 25.27                                                                                                                       | 22.03                                                                                                            | 21.14                                                                                        | 18.24                                                                                                | 16.9                                                                         | 19.39                                                                        | 19.63                                                          | 22.87                                         | 24.97                                     | 27.11                                |               | (65)                                         |
|                                                                                                                                               |                                                                                                                                                                           |                                                                                                                             |                                                                                                                  |                                                                                              |                                                                                                      |                                                                              | 1 .0.00                                                                      | 10.00                                                          | 22.07                                         | 24.31                                     | 21.11                                |               | ( )                                          |
| include                                                                                                                                       | (57)m in cal                                                                                                                                                              | culation o                                                                                                                  | u<br>of (65)m                                                                                                    | only if c                                                                                    | ylinder i                                                                                            |                                                                              | <u> </u>                                                                     |                                                                |                                               | <u> </u>                                  |                                      | l<br>eating   | ()                                           |
|                                                                                                                                               | (57)m in cal                                                                                                                                                              |                                                                                                                             |                                                                                                                  | •                                                                                            | ylinder i                                                                                            |                                                                              | <u> </u>                                                                     |                                                                |                                               | <u> </u>                                  |                                      | eating        |                                              |
| 5. Intern                                                                                                                                     | al gains (se                                                                                                                                                              | e Table 5                                                                                                                   | and 5a                                                                                                           | •                                                                                            | ylinder i                                                                                            |                                                                              | <u> </u>                                                                     |                                                                |                                               | <u> </u>                                  |                                      | eating        | (12)                                         |
| 5. Intern                                                                                                                                     | • •                                                                                                                                                                       | e Table 5                                                                                                                   | and 5a                                                                                                           | •                                                                                            | ylinder is                                                                                           |                                                                              | <u> </u>                                                                     |                                                                |                                               | <u> </u>                                  |                                      | eating        |                                              |
| 5. Intern                                                                                                                                     | al gains (se                                                                                                                                                              | e Table 5                                                                                                                   | and 5a                                                                                                           | ):                                                                                           |                                                                                                      | s in the d                                                                   | dwelling                                                                     | or hot w                                                       | ater is fr                                    | om com                                    | munity h                             | eating        | (66)                                         |
| 5. Intern Metabolic (66)m= 98                                                                                                                 | gains (Table<br>Jan Feb                                                                                                                                                   | e Table 5<br>e 5), Wat<br>Mar<br>98.02                                                                                      | ts Apr 98.02                                                                                                     | ):<br>May<br>98.02                                                                           | Jun<br>98.02                                                                                         | Jul<br>98.02                                                                 | Aug<br>98.02                                                                 | or hot w<br>Sep<br>98.02                                       | ater is fr                                    | om com                                    | munity h                             | eating        |                                              |
| 5. Intern  Metabolic  (66)m= 98  Lighting g                                                                                                   | gains (Table<br>Jan Feb<br>3.02 98.02                                                                                                                                     | e Table 5<br>e 5), Wat<br>Mar<br>98.02                                                                                      | ts Apr 98.02                                                                                                     | ):<br>May<br>98.02                                                                           | Jun<br>98.02                                                                                         | Jul<br>98.02                                                                 | Aug<br>98.02                                                                 | or hot w<br>Sep<br>98.02                                       | ater is fr                                    | om com                                    | munity h                             | eating        |                                              |
| 5. Intern Metabolic (66)m= 98 Lighting g (67)m= 15                                                                                            | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54                                                                                                                  | e Table 5 e 5), Wat Mar 98.02 ated in Ap 11.02                                                                              | ts Apr 98.02 ppendix 8.34                                                                                        | May<br>98.02<br>L, equat<br>6.23                                                             | Jun<br>98.02<br>ion L9 o                                                                             | Jul<br>98.02<br>r L9a), a                                                    | Aug<br>98.02<br>Iso see                                                      | Sep<br>98.02<br>Table 5                                        | Oct 98.02                                     | Nov<br>98.02                              | Dec 98.02                            | eating        | (66)                                         |
| 5. Intern  Metabolic  (66)m= 98  Lighting g  (67)m= 18  Appliance                                                                             | gains (Table Jan Feb 3.02 98.02 ains (calcula                                                                                                                             | e Table 5 e 5), Wat Mar 98.02 ated in Ap 11.02                                                                              | ts Apr 98.02 ppendix 8.34                                                                                        | May<br>98.02<br>L, equat<br>6.23                                                             | Jun<br>98.02<br>ion L9 o                                                                             | Jul<br>98.02<br>r L9a), a                                                    | Aug<br>98.02<br>Iso see                                                      | Sep<br>98.02<br>Table 5                                        | Oct 98.02                                     | Nov<br>98.02                              | Dec 98.02                            | eating        | (66)                                         |
| 5. Intern  Metabolic  (66)m= 98  Lighting g  (67)m= 15  Appliance  (68)m= 17                                                                  | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 es gains (calc                                                                                                   | Mar 98.02 ated in Ap 11.02 culated in 168.35                                                                                | s and 5a<br>ts Apr<br>98.02<br>ppendix<br>8.34<br>Appendix<br>158.83                                             | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq                                                | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L                                                        | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1                                | Aug<br>98.02<br>lso see<br>7.39<br>3a), also                                 | Sep 98.02 Table 5 9.92 see Ta 130.66                           | Oct 98.02  12.6 ble 5 140.19                  | Nov 98.02                                 | Dec 98.02                            | eating        | (66)<br>(67)                                 |
| 5. Intern  Metabolic  (66)m= 98  Lighting g  (67)m= 15  Appliance  (68)m= 17  Cooking g                                                       | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 es gains (calc                                                                                                   | Mar 98.02 ated in Ap 11.02 culated in 168.35                                                                                | s and 5a<br>ts Apr<br>98.02<br>ppendix<br>8.34<br>Appendix<br>158.83                                             | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq                                                | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L                                                        | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1                                | Aug<br>98.02<br>lso see<br>7.39<br>3a), also                                 | Sep 98.02 Table 5 9.92 see Ta 130.66                           | Oct 98.02  12.6 ble 5 140.19                  | Nov 98.02                                 | Dec 98.02                            | eating        | (66)<br>(67)                                 |
| 5. Intern  Metabolic  (66)m= 98  Lighting g  (67)m= 15  Appliance  (68)m= 17  Cooking g  (69)m= 3                                             | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 es gains (calcula 11.05 172.83 gains (calcula                                                                    | e Table 5 e 5), Wat Mar 98.02 ated in Ap 11.02 culated ir 168.35 ated in A 32.8                                             | ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8                                                             | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq<br>146.81<br>L, equat                          | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>tion L15                                  | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)          | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                       | Sep<br>98.02<br>Table 5<br>9.92<br>see Tal<br>130.66           | Oct 98.02 12.6 ble 5 140.19 5                 | Nov<br>98.02<br>14.7                      | Dec 98.02                            | eating        | (66)<br>(67)<br>(68)                         |
| 5. Intern  Metabolic  (66)m= 98  Lighting g  (67)m= 18  Appliance  (68)m= 17  Cooking g  (69)m= 3                                             | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 es gains (calcula 11.05 172.83 gains (calcula 2.8 32.8                                                           | e Table 5 e 5), Wat Mar 98.02 ated in Ap 11.02 culated ir 168.35 ated in A 32.8                                             | ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8                                                             | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq<br>146.81<br>L, equat                          | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>tion L15                                  | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)          | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                       | Sep<br>98.02<br>Table 5<br>9.92<br>see Tal<br>130.66           | Oct 98.02 12.6 ble 5 140.19 5                 | Nov<br>98.02<br>14.7                      | Dec 98.02                            | eating        | (66)<br>(67)<br>(68)                         |
| 5. Intern  Metabolic  (66)m= 98  Lighting g  (67)m= 18  Appliance  (68)m= 17  Cooking g  (69)m= 3  Pumps an  (70)m=                           | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 es gains (calcula 11.05 172.83 gains (calcula 2.8 32.8 and fans gains                                            | Mar 98.02  ated in Ap 11.02  culated ir 168.35  ated in A 32.8  c (Table \$                                                 | s and 5a<br>ts Apr<br>98.02<br>ppendix<br>8.34<br>Appendix<br>158.83<br>ppendix<br>32.8<br>5a)                   | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq<br>146.81<br>L, equat<br>32.8                  | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8                          | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8 | Sep 98.02 Table 5 9.92 see Ta 130.66 ee Table 32.8             | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov<br>98.02<br>14.7<br>152.21            | Dec 98.02 15.67 163.5                | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Intern  Metabolic  (66)m= 98  Lighting g  (67)m= 18  Appliance  (68)m= 17  Cooking g  (69)m= 3  Pumps an  (70)m= Losses e.                 | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 es gains (calcula 71.05 172.83 gains (calcula 22.8 32.8 and fans gains                                           | Mar 98.02  ated in Ap 11.02  culated ir 168.35  ated in A 32.8  c (Table \$                                                 | s and 5a<br>ts Apr<br>98.02<br>ppendix<br>8.34<br>Appendix<br>158.83<br>ppendix<br>32.8<br>5a)                   | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq<br>146.81<br>L, equat<br>32.8                  | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8                          | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8 | Sep 98.02 Table 5 9.92 see Ta 130.66 ee Table 32.8             | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov<br>98.02<br>14.7<br>152.21            | Dec 98.02 15.67 163.5                | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Intern  Metabolic  (66)m= 98  Lighting g  (67)m= 18  Appliance  (68)m= 17  Cooking g  (69)m= 3  Pumps an  (70)m= Losses e.  (71)m= -7      | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 es gains (calcula 1.05 172.83 gains (calcula 2.8 32.8 and fans gains 0 0 g. evaporation                          | Mar 98.02 ated in Ap 11.02 culated ir 168.35 ated in A 32.8 c (Table { 0 con (nega                                          | ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8 5a) 0 tive valu                                             | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq<br>146.81<br>L, equat<br>32.8                  | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8                          | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8 | Sep 98.02 Table 5 9.92 see Tal 130.66 ee Table 32.8            | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov 98.02 14.7 152.21 32.8                | Dec 98.02 15.67 163.5                | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. Intern  Metabolic  (66)m= 98  Lighting g  (67)m= 15  Appliance  (68)m= 17  Cooking g  (69)m= 3  Pumps an  (70)m=                           | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 es gains (calcula 7.05 172.83 gains (calcula 2.8 32.8 nd fans gains 0 0 g. evaporatic 8.41 -78.41                | Mar 98.02 ated in Ap 11.02 culated ir 168.35 ated in A 32.8 c (Table { 0 con (nega                                          | ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8 5a) 0 tive valu                                             | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq<br>146.81<br>L, equat<br>32.8                  | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8                          | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8 | Sep 98.02 Table 5 9.92 see Tal 130.66 ee Table 32.8            | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov 98.02 14.7 152.21 32.8                | Dec 98.02 15.67 163.5                | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| Metabolic  (66)m= 98  Lighting g (67)m= 18  Appliance (68)m= 17  Cooking g (69)m= 3  Pumps an (70)m= Losses e. (71)m= -7  Water hea (72)m= 33 | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 es gains (calcula 1.05 172.83 gains (calcula 2.8 32.8 nd fans gains 0 0 g. evaporation 8.41 -78.41 ating gains ( | e Table 5 e 5), Wat Mar 98.02 ated in Ap 11.02 culated ir 168.35 ated in A 32.8 c (Table 5 0 on (nega -78.41 Table 5) 33.96 | s and 5a<br>ts Apr<br>98.02<br>opendix<br>8.34<br>n Append<br>158.83<br>opendix<br>32.8<br>5a)<br>0<br>tive valu | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq<br>146.81<br>L, equat<br>32.8<br>0<br>es) (Tab | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8<br>0<br>ole 5)<br>-78.41 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1:<br>127.97<br>or L15a;<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8 | Sep 98.02 Table 5 9.92 See Tal 130.66 ee Table 32.8  0  -78.41 | Oct 98.02  12.6 ble 5 140.19 5 32.8  0 -78.41 | Nov 98.02 14.7 152.21 32.8 0 -78.41 34.67 | Dec 98.02 15.67 163.5 0 -78.41 36.44 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Metabolic  (66)m= 98  Lighting g (67)m= 15  Appliance (68)m= 17  Cooking g (69)m= 3  Pumps an (70)m=                                          | gains (Table Jan Feb 3.02 98.02 ains (calcula 5.25 13.54 as gains (calcula 2.8 32.8 ad fans gains 0 0 g. evaporatio 8.41 -78.41 ating gains (7.63 36.43                   | e Table 5 e 5), Wat Mar 98.02 ated in Ap 11.02 culated ir 168.35 ated in A 32.8 c (Table 5 0 on (nega -78.41 Table 5) 33.96 | s and 5a<br>ts Apr<br>98.02<br>opendix<br>8.34<br>n Append<br>158.83<br>opendix<br>32.8<br>5a)<br>0<br>tive valu | May<br>98.02<br>L, equat<br>6.23<br>dix L, eq<br>146.81<br>L, equat<br>32.8<br>0<br>es) (Tab | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8<br>0<br>ole 5)<br>-78.41 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8  | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8 | Sep 98.02 Table 5 9.92 See Tal 130.66 ee Table 32.8  0  -78.41 | Oct 98.02  12.6 ble 5 140.19 5 32.8  0 -78.41 | Nov 98.02 14.7 152.21 32.8 0 -78.41 34.67 | Dec 98.02 15.67 163.5 0 -78.41 36.44 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | - | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |            | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|------------|--------------|------|
| Northeast 0.9x | 0.77                      | X | 4.21       | x | 11.28            | x | 0.55           | x | 0.7            | =          | 12.67        | (75) |
| Northeast 0.9x | 0.77                      | x | 4.21       | x | 22.97            | x | 0.55           | x | 0.7            | <b>=</b>   | 25.8         | (75) |
| Northeast 0.9x | 0.77                      | x | 4.21       | x | 41.38            | x | 0.55           | x | 0.7            | =          | 46.48        | (75) |
| Northeast 0.9x | 0.77                      | X | 4.21       | x | 67.96            | x | 0.55           | x | 0.7            | <b>=</b>   | 76.33        | (75) |
| Northeast 0.9x | 0.77                      | x | 4.21       | x | 91.35            | x | 0.55           | x | 0.7            | =          | 102.6        | (75) |
| Northeast 0.9x | 0.77                      | x | 4.21       | x | 97.38            | x | 0.55           | x | 0.7            | =          | 109.39       | (75) |
| Northeast 0.9x | 0.77                      | x | 4.21       | x | 91.1             | x | 0.55           | x | 0.7            | <b>=</b>   | 102.33       | (75) |
| Northeast 0.9x | 0.77                      | x | 4.21       | x | 72.63            | x | 0.55           | x | 0.7            | =          | 81.58        | (75) |
| Northeast 0.9x | 0.77                      | X | 4.21       | x | 50.42            | x | 0.55           | x | 0.7            | <b>=</b>   | 56.63        | (75) |
| Northeast 0.9x | 0.77                      | x | 4.21       | x | 28.07            | x | 0.55           | x | 0.7            | =          | 31.53        | (75) |
| Northeast 0.9x | 0.77                      | x | 4.21       | x | 14.2             | x | 0.55           | x | 0.7            | =          | 15.95        | (75) |
| Northeast 0.9x | 0.77                      | X | 4.21       | x | 9.21             | x | 0.55           | x | 0.7            | <b>=</b>   | 10.35        | (75) |
| Northwest 0.9x | 0.77                      | X | 8.26       | x | 11.28            | x | 0.55           | x | 0.7            | <b>=</b>   | 24.87        | (81) |
| Northwest 0.9x | 0.77                      | X | 3.21       | x | 11.28            | x | 0.55           | x | 0.7            | <b>=</b>   | 9.66         | (81) |
| Northwest 0.9x | 0.77                      | X | 4.37       | x | 11.28            | x | 0.55           | x | 0.7            | ] =        | 13.16        | (81) |
| Northwest 0.9x | 0.77                      | x | 8.26       | X | 22.97            | X | 0.55           | X | 0.7            | ] =        | 50.61        | (81) |
| Northwest 0.9x | 0.77                      | x | 3.21       | X | 22.97            | x | 0.55           | X | 0.7            | =          | 19.67        | (81) |
| Northwest 0.9x | 0.77                      | x | 4.37       | x | 22.97            | x | 0.55           | x | 0.7            | =          | 26.78        | (81) |
| Northwest 0.9x | 0.77                      | x | 8.26       | X | 41.38            | X | 0.55           | X | 0.7            | ] =        | 91.19        | (81) |
| Northwest 0.9x | 0.77                      | x | 3.21       | x | 41.38            | x | 0.55           | X | 0.7            | =          | 35.44        | (81) |
| Northwest 0.9x | 0.77                      | x | 4.37       | x | 41.38            | x | 0.55           | x | 0.7            | =          | 48.25        | (81) |
| Northwest 0.9x | 0.77                      | x | 8.26       | X | 67.96            | X | 0.55           | X | 0.7            | ] =        | 149.76       | (81) |
| Northwest 0.9x | 0.77                      | X | 3.21       | x | 67.96            | x | 0.55           | X | 0.7            | ] <b>=</b> | 58.2         | (81) |
| Northwest 0.9x | 0.77                      | X | 4.37       | x | 67.96            | x | 0.55           | x | 0.7            | ] =        | 79.23        | (81) |
| Northwest 0.9x | 0.77                      | x | 8.26       | x | 91.35            | X | 0.55           | X | 0.7            | <b>=</b>   | 201.31       | (81) |
| Northwest 0.9x | 0.77                      | x | 3.21       | x | 91.35            | x | 0.55           | X | 0.7            | ] <b>=</b> | 78.23        | (81) |
| Northwest 0.9x | 0.77                      | x | 4.37       | x | 91.35            | x | 0.55           | x | 0.7            | <b>=</b>   | 106.5        | (81) |
| Northwest 0.9x | 0.77                      | x | 8.26       | x | 97.38            | x | 0.55           | x | 0.7            | <b>=</b>   | 214.62       | (81) |
| Northwest 0.9x | 0.77                      | X | 3.21       | x | 97.38            | x | 0.55           | x | 0.7            | <b>=</b>   | 83.4         | (81) |
| Northwest 0.9x | 0.77                      | X | 4.37       | x | 97.38            | x | 0.55           | X | 0.7            | ] =        | 113.54       | (81) |
| Northwest 0.9x | 0.77                      | x | 8.26       | x | 91.1             | x | 0.55           | X | 0.7            | <b>=</b>   | 200.77       | (81) |
| Northwest 0.9x | 0.77                      | x | 3.21       | x | 91.1             | x | 0.55           | X | 0.7            | ] <b>=</b> | 78.02        | (81) |
| Northwest 0.9x | 0.77                      | x | 4.37       | X | 91.1             | X | 0.55           | X | 0.7            | ] =        | 106.22       | (81) |
| Northwest 0.9x | 0.77                      | x | 8.26       | x | 72.63            | x | 0.55           | X | 0.7            | <b>=</b>   | 160.06       | (81) |
| Northwest 0.9x | 0.77                      | x | 3.21       | x | 72.63            | x | 0.55           | X | 0.7            | ] =        | 62.2         | (81) |
| Northwest 0.9x | 0.77                      | X | 4.37       | x | 72.63            | x | 0.55           | x | 0.7            | ] =        | 84.68        | (81) |
| Northwest 0.9x | 0.77                      | X | 8.26       | x | 50.42            | x | 0.55           | x | 0.7            | ] =        | 111.12       | (81) |
| Northwest 0.9x | 0.77                      | X | 3.21       | × | 50.42            | × | 0.55           | x | 0.7            | j =        | 43.18        | (81) |
| Northwest 0.9x | 0.77                      | X | 4.37       | x | 50.42            | x | 0.55           | x | 0.7            | ] =        | 58.79        | (81) |
|                |                           |   |            | • |                  | - |                | • |                | -          |              | _    |

| _                          |                                                  |          |           |              |               |              | _            |                |             |                |          |        |       |
|----------------------------|--------------------------------------------------|----------|-----------|--------------|---------------|--------------|--------------|----------------|-------------|----------------|----------|--------|-------|
| Northwest <sub>0.9x</sub>  | 0.77                                             | X        | 8.2       | :6           | X             | 28.07        | X            | 0.55           | X           | 0.7            | =        | 61.85  | (81)  |
| Northwest <sub>0.9x</sub>  | 0.77                                             | X        | 3.2       | !1           | X             | 28.07        | X            | 0.55           | X           | 0.7            | =        | 24.04  | (81)  |
| Northwest 0.9x             | 0.77                                             | X        | 4.3       | 57           | X             | 28.07        | X            | 0.55           | X           | 0.7            | =        | 32.72  | (81)  |
| Northwest 0.9x             | 0.77                                             | X        | 8.2       | 16           | X             | 14.2         | X            | 0.55           | X           | 0.7            | =        | 31.29  | (81)  |
| Northwest 0.9x             | 0.77                                             | X        | 3.2       | !1           | X             | 14.2         | x            | 0.55           | x           | 0.7            |          | 12.16  | (81)  |
| Northwest 0.9x             | 0.77                                             | X        | 4.3       | 57           | X             | 14.2         | x            | 0.55           | x           | 0.7            | _        | 16.55  | (81)  |
| Northwest 0.9x             | 0.77                                             | X        | 8.2       | .6           | X             | 9.21         | X            | 0.55           | x           | 0.7            | -        | 20.31  | (81)  |
| Northwest <sub>0.9x</sub>  | 0.77                                             | X        | 3.2       | 1            | X             | 9.21         | x            | 0.55           | x           | 0.7            | =        | 7.89   | (81)  |
| Northwest <sub>0.9x</sub>  | 0.77                                             | X        | 4.3       | 37           | X             | 9.21         | x            | 0.55           | x           | 0.7            | =        | 10.74  | (81)  |
| Rooflights 0.9x            | 1                                                | X        | 1.6       | 1            | X             | 26           | x            | 0.55           | x           | 0.8            | =        | 16.58  | (82)  |
| Rooflights <sub>0.9x</sub> | 1                                                | X        | 1.6       | 51           | X             | 54           | x            | 0.55           | x           | 0.8            | =        | 34.43  | (82)  |
| Rooflights <sub>0.9x</sub> | 1                                                | x        | 1.6       | 51           | X             | 96           | X            | 0.55           | ×           | 0.8            | =        | 61.21  | (82)  |
| Rooflights 0.9x            | 1                                                | x        | 1.6       | 51           | X             | 150          | T x          | 0.55           | ×           | 0.8            | <u> </u> | 95.63  | (82)  |
| Rooflights <sub>0.9x</sub> | 1                                                | x        | 1.6       | 51           | X             | 192          | X            | 0.55           | ×           | 0.8            |          | 122.41 | (82)  |
| Rooflights 0.9x            | 1                                                | x        | 1.6       | 51           | X             | 200          | x            | 0.55           | x           | 0.8            | <u> </u> | 127.51 | (82)  |
| Rooflights <sub>0.9x</sub> | 1                                                | x        | 1.6       | 51           | X             | 189          | Īx           | 0.55           | ×           | 0.8            | <u> </u> | 120.5  | (82)  |
| Rooflights 0.9x            | 1                                                | x        | 1.6       | 51           | X             | 157          | X            | 0.55           | x           | 0.8            | <u> </u> | 100.1  | (82)  |
| Rooflights 0.9x            | 1                                                | x        | 1.6       | 51           | X             | 115          | x            | 0.55           | x           | 0.8            | <u> </u> | 73.32  | (82)  |
| Rooflights 0.9x            | 1                                                | x        | 1.6       | 51           | X             | 66           | Īx           | 0.55           | ×           | 0.8            | <u> </u> | 42.08  | (82)  |
| Rooflights 0.9x            | 1                                                | x        | 1.6       | 1            | X             | 33           | Īx           | 0.55           | x           | 0.8            | =        | 21.04  | (82)  |
| Rooflights 0.9x            | 1                                                | x        | 1.6       | 1            | X             | 21           | Īx           | 0.55           | x           | 0.8            | =        | 13.39  | (82)  |
| •                          |                                                  |          |           |              |               |              | _            |                |             |                |          |        | _     |
| Solar gains in             | watts calc                                       | ulated   | for each  | n montl      | า             |              | (83)m        | n = Sum(74)m . | (82)m       |                |          |        |       |
| (83)m= 76.93               | T T                                              | 82.56    | 459.16    | 611.06       | 1             | 48.46 607.84 | 488          |                | 192.2       | 96.98          | 62.68    | ]      | (83)  |
| Total gains – i            | nternal and                                      | d solar  | (84)m =   | (73)m        | + (           | 33)m , watts |              |                | <u> </u>    | _              | <u> </u> | J      |       |
| (84)m= 353.27              | 432.5 5                                          | 48.29    | 709.33    | 844.92       | 8             | 66.98 816.61 | 700          | .67 563.29     | 428.1       | 5 350.97       | 330.7    | ]      | (84)  |
| 7. Mean inter              | nal temper                                       | ature (  | heating   | seaso        | n)            | ·            | <u> </u>     |                |             | ,              |          |        |       |
| Temperature                |                                                  |          |           |              |               | area from Ta | ble 9        | Th1 (°C)       |             |                |          | 21     | (85)  |
| Utilisation fac            | •                                                | •        |           |              | _             |              |              | , ( • )        |             |                |          |        | (3.3) |
| Jan                        | Feb                                              | Mar      | Apr       | May          | Ť             | Jun Jul      | _            | ug Sep         | Oct         | Nov            | Dec      | ]      |       |
| (86)m= 1                   | <del>                                     </del> | 0.98     | 0.93      | 0.79         | +             | 0.6 0.45     | 0.5          | <del></del>    | 0.98        | 1              | 1        |        | (86)  |
| Mean interna               | l temnerati                                      | ıra in l | ivina ara | <br>22 T1 /- | follo         | w stens 3 to | 7 in 7       | ahle 9c)       |             |                |          | ı      |       |
| (87)m= 19.35               | <del></del>                                      | 19.92    | 20.41     | 20.79        | $\overline{}$ | 0.95 20.99   | 20.          | <del></del>    | 20.28       | 19.72          | 19.31    | ]      | (87)  |
| ` ′                        | <u> </u>                                         | !        |           |              |               |              |              | !              |             | _              |          | J      |       |
| Temperature (88)m= 19.71   |                                                  | 19.71    | 19.72     | 19.72        | $\overline{}$ | 9.72 19.72   | 19.          | <del></del>    | 19.72       | 19.72          | 19.71    | 1      | (88)  |
| ` ′                        | <u> </u>                                         | !        |           |              |               |              |              |                |             | 102            |          |        | ()    |
| Utilisation fac            |                                                  |          |           |              | $\overline{}$ | <u>`</u>     | <del></del>  | 4 0.74         | 0.00        | 1 0 00         |          | 1      | (80)  |
| (89)m= 1                   |                                                  | 0.98     | 0.9       | 0.72         |               | 0.49 0.33    | 0.           | <u>İ</u>       | 0.96        | 0.99           | 1        | J      | (89)  |
| Mean interna               |                                                  |          |           |              | Ť             | <u>`</u>     | <del>-</del> | 1              | <del></del> |                | 1        | 1      |       |
| (90)m= 18.23               | 18.42                                            | 18.79    | 19.27     | 19.59        |               | 19.7 19.72   | 19.          |                | 19.15       |                | 18.19    |        | (90)  |
|                            |                                                  |          |           |              |               |              |              | 1              | rLA = Liv   | ving area ÷ (4 | 4) =     | 0.47   | (91)  |
| Maan interne               |                                                  | /5       | ماند مطاء | مرام مارد    | منالم         | ~\ _ fl      | . /1         | fl V \ ^ TO    |             |                |          |        |       |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m=                                                                                                             | 18.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.95                                                                                       | 19.32                                                                                                                       | 19.8                                                                            | 20.15                                                        | 20.28                                                        | 20.31                                                                   | 20.3                                                                           | 20.17                               | 19.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.12                                                            | 18.71                                 |                        | (92)                                               |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|------------------------|----------------------------------------------------|
| Apply                                                                                                              | adjustn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nent to the                                                                                 | ne mean                                                                                                                     | internal                                                                        | temper                                                       | ature fro                                                    | m Table                                                                 | 4e, whe                                                                        | re appro                            | priate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  | •                                     | l                      |                                                    |
| (93)m=                                                                                                             | 18.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.95                                                                                       | 19.32                                                                                                                       | 19.8                                                                            | 20.15                                                        | 20.28                                                        | 20.31                                                                   | 20.3                                                                           | 20.17                               | 19.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.12                                                            | 18.71                                 |                        | (93)                                               |
| 8. Sp                                                                                                              | ace hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ting requ                                                                                   | uirement                                                                                                                    |                                                                                 |                                                              |                                                              |                                                                         |                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                       |                        |                                                    |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                             | •                                                                               |                                                              | ed at ste                                                    | ep 11 of                                                                | Table 9l                                                                       | o, so tha                           | t Ti,m=(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76)m an                                                          | d re-calc                             | ulate                  |                                                    |
| the u                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                             | using Ta                                                                        |                                                              |                                                              |                                                                         |                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                       |                        |                                                    |
| 1.169                                                                                                              | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                         | Mar                                                                                                                         | Apr                                                                             | May                                                          | Jun                                                          | Jul                                                                     | Aug                                                                            | Sep                                 | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov                                                              | Dec                                   |                        |                                                    |
|                                                                                                                    | ation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.99                                                                                        | ains, hm<br><sub>0.97</sub>                                                                                                 | 0.9                                                                             | 0.74                                                         | 0.54                                                         | 0.39                                                                    | 0.47                                                                           | 0.78                                | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                             | 1 4                                   |                        | (94)                                               |
| (94)m=                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                             |                                                                                 |                                                              | 0.54                                                         | 0.39                                                                    | 0.47                                                                           | 0.76                                | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99                                                             | 1                                     |                        | (34)                                               |
| (95)m=                                                                                                             | 351.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 428.74                                                                                      | 533.29                                                                                                                      | 4)m x (84<br>639.96                                                             | 628.94                                                       | 469.54                                                       | 316.2                                                                   | 328.18                                                                         | 437.7                               | 411.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 348.46                                                           | 329.77                                |                        | (95)                                               |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                             | perature                                                                        |                                                              |                                                              | 310.2                                                                   | 020.10                                                                         | 407.7                               | 411.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 040.40                                                           | 323.77                                |                        | (00)                                               |
| (96)m=                                                                                                             | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.9                                                                                         | 6.5                                                                                                                         | 8.9                                                                             | 11.7                                                         | 14.6                                                         | 16.6                                                                    | 16.4                                                                           | 14.1                                | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1                                                              | 4.2                                   |                        | (96)                                               |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                             | al tempe                                                                        |                                                              |                                                              |                                                                         |                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1                                                              | 7.2                                   |                        | (00)                                               |
| (97)m=                                                                                                             | 1258.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1222.65                                                                                     |                                                                                                                             |                                                                                 | 731.34                                                       | 490.27                                                       | 320.11                                                                  | 336.5                                                                          | 524.56                              | 785.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1042.04                                                          | 1259.95                               |                        | (97)                                               |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                             | r each m                                                                        |                                                              | <u> </u>                                                     | <u> </u>                                                                |                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1)m                                                              |                                       |                        |                                                    |
| (98)m=                                                                                                             | 674.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 533.51                                                                                      | 432.54                                                                                                                      | 219.23                                                                          | 76.19                                                        | 0                                                            | 0                                                                       | 0                                                                              | 0                                   | 278.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 499.38                                                           | 692.06                                |                        |                                                    |
| , ,                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                             |                                                                                 |                                                              |                                                              |                                                                         | Tota                                                                           | l per year                          | (kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) = Sum(9                                                        | 8) <sub>15.912</sub> =                | 3405.7                 | (98)                                               |
| Snac                                                                                                               | o hoatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a require                                                                                   | amont in                                                                                                                    | kWh/m²                                                                          | ?/vear                                                       |                                                              |                                                                         |                                                                                | . ,                                 | ` ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , ,                                                              | ,                                     | 57.48                  | (99)                                               |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • ,                                                                                         |                                                                                                                             |                                                                                 | /yeai                                                        |                                                              |                                                                         |                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                       | 37.40                  | (99)                                               |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | luiremen                                                                                                                    |                                                                                 |                                                              |                                                              |                                                                         |                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                       |                        |                                                    |
| Calcu                                                                                                              | lated fo<br>Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                             | August.                                                                         |                                                              | ole 10b                                                      |                                                                         |                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                       | ı                      |                                                    |
|                                                                                                                    | ı Jan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                             | Λ                                                                               | 1 1/0.                                                       | ا ۱۰۰۰۰۰                                                     | l 1ı l                                                                  | ۸                                                                              | Can                                 | O-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nave                                                             | Dag                                   |                        |                                                    |
| Heat                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feb                                                                                         | Mar                                                                                                                         | Apr                                                                             | May<br>5°C inter                                             | Jun<br>nal temr                                              | Jul                                                                     | Aug                                                                            | Sep                                 | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov<br>e from T                                                  | Dec                                   |                        |                                                    |
|                                                                                                                    | loss rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ELm (ca                                                                                     | lculated                                                                                                                    | using 25                                                                        | 5°C inter                                                    | nal temp                                                     | perature                                                                | and exte                                                                       | ernal ten                           | nperatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e from T                                                         | able 10)                              |                        | (100)                                              |
| (100)m=                                                                                                            | loss rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Lm (ca                                                                                    | lculated<br>0                                                                                                               |                                                                                 |                                                              | ı                                                            | l                                                                       |                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                       |                        | (100)                                              |
| (100)m=<br>Utilisa                                                                                                 | loss rate  0  ation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ELm (ca                                                                                     | lculated<br>0<br>ess hm                                                                                                     | using 25                                                                        | 5°C inter                                                    | nal temp<br>810.7                                            | 638.21                                                                  | and exte                                                                       | ernal ten                           | nperatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e from T                                                         | able 10)                              |                        | (100)                                              |
| (100)m=<br>Utilisa<br>(101)m=                                                                                      | loss rate  0 ation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Lm (ca<br>0<br>tor for lo                                                                 | lculated<br>0<br>ss hm<br>0                                                                                                 | using 25                                                                        | 5°C inter<br>0                                               | nal temp<br>810.7<br>0.9                                     | perature                                                                | and exte                                                                       | ernal ten                           | nperatur<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e from T                                                         | able 10)                              |                        | , ,                                                |
| (100)m=<br>Utilisa<br>(101)m=<br>Usefu                                                                             | loss rate  0 ation fac  0 ul loss, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Lm (ca<br>0<br>tor for lo                                                                 | lculated<br>0<br>ss hm<br>0                                                                                                 | using 25                                                                        | 5°C inter<br>0                                               | nal temp<br>810.7<br>0.9                                     | 638.21<br>0.94                                                          | and exte<br>655.03                                                             | ernal ten                           | nperatur<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e from T                                                         | able 10)                              |                        | , ,                                                |
| (100)m=<br>Utilisa<br>(101)m=<br>Usefu<br>(102)m=                                                                  | loss rate 0 ation fac 0 ul loss, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Lm (ca<br>0<br>tor for lc<br>0<br>mLm (W                                                  | lculated 0 ess hm 0 /atts) = (                                                                                              | using 25<br>0<br>0                                                              | 0<br>0<br>0<br>(101)m                                        | 810.7<br>0.9                                                 | 0.94<br>599.75                                                          | and exte<br>655.03<br>0.9                                                      | ernal ten 0 0                       | nperatur<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e from T<br>0                                                    | able 10)<br>0                         |                        | (101)                                              |
| (100)m=<br>Utilisa<br>(101)m=<br>Usefu<br>(102)m=                                                                  | loss rate 0 ation face 0 ul loss, h 0 s (solar o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Lm (ca<br>0<br>tor for lc<br>0<br>mLm (W                                                  | lculated 0 ess hm 0 /atts) = (                                                                                              | 0<br>0<br>100)m x                                                               | 0<br>0<br>0<br>(101)m                                        | 728.95<br>eather re                                          | 0.94<br>599.75                                                          | and exte<br>655.03<br>0.9<br>591.9<br>ee Table                                 | ernal ten 0 0                       | nperatur<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e from T<br>0                                                    | able 10)<br>0                         |                        | (101)                                              |
| (100)m= Utilisa (101)m= Useft (102)m= Gains (103)m=                                                                | loss rate 0 ation face 0 ul loss, h 0 s (solar q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Lm (ca<br>0<br>otor for lo<br>0<br>mLm (W<br>0<br>gains ca<br>0                           | lculated 0 ess hm 0 /atts) = ( 0 lculated 0                                                                                 | 0<br>(100)m x<br>0<br>for appli                                                 | 0<br>0<br>(101)m<br>0<br>cable we                            | 728.95<br>eather re                                          | 0.94<br>599.75<br>egion, se                                             | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02                        | 0<br>0<br>0<br>10)                  | o<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0 0                                                            | able 10) 0 0                          |                        | (101)                                              |
| (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1                                                   | loss rate 0 ation face 0 ul loss, h 0 s (solar q 0 e cooling 04)m to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Lm (ca  0  tor for lo  0  mLm (W  0  gains ca  0  grequire                                | lculated 0 ess hm 0 /atts) = ( 0 culated 0 ement fo                                                                         | 0<br>(100)m x<br>0<br>for appli                                                 | 0 0 (101)m 0 cable we 0 whole c                              | 728.95<br>eather re                                          | 0.94<br>599.75<br>egion, se                                             | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02                        | 0<br>0<br>0<br>10)                  | o<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0 0                                                            | able 10) 0 0 0                        |                        | (101)                                              |
| (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m=                                                                | loss rate 0 ation face 0 ul loss, h 0 s (solar q 0 e cooling 04)m to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Lm (ca  0  tor for lo  0  mLm (W  0  gains ca  0  grequire                                | lculated 0 ess hm 0 /atts) = ( 0 culated 0 ement fo                                                                         | o  100)m x  o  for appli  r month,                                              | 0 0 (101)m 0 cable we 0 whole c                              | 728.95<br>eather re                                          | 0.94<br>599.75<br>egion, se                                             | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02                        | 0 0 0 10) 0 /h) = 0.0               | 0<br>0<br>0<br>0<br>24 x [(10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | able 10) 0 0 0                        |                        | (101)<br>(102)<br>(103)                            |
| (100)m= Utilisa (101)m= Useft (102)m= Gains (103)m= Space set (1 (104)m=                                           | loss rate 0 ation face 0 ul loss, h 0 s (solar o c cooling 04)m to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Lm (ca<br>0<br>ttor for lo<br>0<br>mLm (W<br>0<br>gains ca<br>0<br>g require<br>zero if ( | lculated  0 oss hm 0 /atts) = ( 0 culated 0 ement fo 104)m <                                                                | 0<br>100)m x<br>0<br>for appli<br>0<br>r month,                                 | o<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o            | 728.95 eather readwelling,                                   | 0.94<br>599.75<br>egion, se<br>1005.97                                  | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02<br>ous ( kW            | 0 0 10) 0 7h) = 0.0                 | 0 0 0 24 x [(10 0 = Sum(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0 0 0 102)m] 2                        | x (41)m<br>754.89      | (101)<br>(102)<br>(103)                            |
| (100)m= Utilisa (101)m= Useft (102)m= Gains (103)m= Space set (1 (104)m=                                           | loss rate 0 ation factor ation factor s (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (solar (sol | e Lm (ca  0  ttor for lo  0  mLm (W  0  gains ca  0  g require zero if (                    | lculated  0 oss hm 0 /atts) = ( 0 lculated 0 ement for 104)m <                                                              | 0 (100)m x 0 for appli 0 r month, 3 × (98)                                      | o<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o            | 728.95 eather readwelling,                                   | 0.94<br>599.75<br>egion, se<br>1005.97                                  | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02<br>ous ( kW            | 0 0 10) 0 7h) = 0.0                 | 0<br>0<br>0<br>0<br>24 x [(10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0 0 0 102)m] 2                        | x (41)m                | (101)<br>(102)<br>(103)                            |
| Utilisa<br>(101)m=<br>Usefu<br>(102)m=<br>Gains<br>(103)m=<br>Spac<br>set (1<br>(104)m=<br>Cooled<br>Interm        | loss rate 0 ation face 0 ul loss, h 0 s (solar ( 0 04)m to d fraction ittency face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Lm (ca 0 ttor for lo 0 mLm (W 0 gains ca 0 g require zero if ( 0 actor (Ta                | lculated 0 ss hm 0 /atts) = ( 0 lculated 0 ement for 104)m < 0                                                              | 0<br>(100)m x<br>0<br>for appli<br>0<br>r month,<br>3 × (98                     | o<br>cable we<br>whole o                                     | 728.95<br>eather re<br>1065.09<br>dwelling,                  | 0.94<br>599.75<br>egion, se<br>1005.97<br>continuo                      | and exte<br>655.03<br>0.9<br>591.9<br>ee Table<br>875.02<br>ous ( kW           | 0 0 10) 0 Total f C =               | 0 0 0 24 x [(10 0 = Sum(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0 0 0 102)m] >                        | x (41)m<br>754.89      | (101)<br>(102)<br>(103)                            |
| (100)m= Utilisa (101)m= Useft (102)m= Gains (103)m= Spac set (1 (104)m=                                            | loss rate 0 ation face 0 ul loss, h 0 s (solar ( 0 04)m to d fraction ittency face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Lm (ca  0  ttor for lo  0  mLm (W  0  gains ca  0  g require zero if (                    | lculated  0 oss hm 0 /atts) = ( 0 lculated 0 ement for 104)m <                                                              | 0 (100)m x 0 for appli 0 r month, 3 × (98)                                      | o<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o            | 728.95 eather readwelling,                                   | 0.94<br>599.75<br>egion, se<br>1005.97                                  | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02<br>ous ( kW            | 0 0 0 10) 0 Total f C =             | 0 0 0 24 x [(10 0 = Sum( cooled a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | able 10)  0  0  0  102)m ] 3  = 4) =  | x (41)m<br>754.89<br>1 | (101)<br>(102)<br>(103)<br>(104)<br>(105)          |
| (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Spac set (1 (104)m=  Cooled Interm (106)m=                     | loss rate 0 ation face 0 al loss, h 0 s (solar of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of the cooling of t | e Lm (ca  0  ttor for lo  0  mLm (W  0  gains ca  0  g require zero if (  0  n  actor (Ta   | lculated 0 ess hm 0 /atts) = ( 0 culated 0 ement for 104)m < 0 able 10b 0                                                   | 0<br>(100)m x<br>0<br>for appli<br>0<br>r month,<br>3 × (98<br>0                | o<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o<br>)m<br>0 | 728.95<br>eather re<br>1065.09<br>welling,<br>242.02         | 0.94<br>599.75<br>egion, se<br>1005.97<br>continuo<br>302.23            | and exte<br>655.03<br>0.9<br>591.9<br>ee Table<br>875.02<br>ous ( kW<br>210.64 | 0 0 0 10) 0 Total f C =             | 0 0 0 24 x [(10 0 = Sum(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0 0 0 102)m] >                        | x (41)m<br>754.89      | (101)<br>(102)<br>(103)                            |
| (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Cooled Interm (106)m=                     | loss rate 0 ation face 0 ul loss, h 0 s (solar q 0 d fraction ittency for cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Lm (ca  0  ttor for lo  0  mLm (W  0  gains ca  0  g require zero if (  0  n  actor (Ta   | lculated 0 ess hm 0 /atts) = ( 0 culated 0 ement for 104)m < 0 able 10b 0                                                   | 0<br>(100)m x<br>0<br>for appli<br>0<br>r month,<br>3 × (98                     | o<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o<br>)m<br>0 | 728.95<br>eather re<br>1065.09<br>welling,<br>242.02         | 0.94<br>599.75<br>egion, se<br>1005.97<br>continuo<br>302.23            | and exte<br>655.03<br>0.9<br>591.9<br>ee Table<br>875.02<br>ous ( kW<br>210.64 | 0 0 0 10) 0 Total f C =             | 0 0 0 24 x [(10 0 = Sum( cooled a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | able 10)  0  0  0  102)m ] 3  = 4) =  | x (41)m<br>754.89<br>1 | (101)<br>(102)<br>(103)<br>(104)<br>(105)          |
| (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Coolec Interm (106)m=                     | loss rate 0 ation face 0 ul loss, h 0 s (solar q 0 d fraction ittency for cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Lm (ca 0 tor for lo 0 mLm (W 0 gains ca 0 g require zero if ( 0 n actor (Ta 0             | lculated 0 sss hm 0 /atts) = ( 0 lculated 0 ement for 104)m < 0 ment for                                                    | o 100)m x 0 for appli 0 r month, 3 × (98 0                                      | 0 (101)m 0 cable we 0 whole c )m 0                           | 728.95 eather re 1065.09 welling, 242.02  × (105)            | 0.94  599.75 egion, se 1005.97  continuo 302.23  0.25  × (106)r         | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02<br>ous ( kW<br>210.64  | 0 0 0 10) 0 Total f C =             | 0 0 0 24 x [(10 0 = Sum( cooled a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | x (41)m<br>754.89<br>1 | (101)<br>(102)<br>(103)<br>(104)<br>(105)          |
| (100)m= Utilisa (101)m= Useft (102)m= Gains (103)m= Space set (1 (104)m=  Coolect Interm (106)m=  Space (107)m=    | loss rate  0 ation factor s (solar of the cooling) cooling 0 cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Lm (ca  0  ttor for lo  0  mLm (W  0  gains ca  0  g require zero if (  0  requirer  0    | lculated 0 oss hm 0 /atts) = ( 0 culated 0 ement for 104)m < 0 ment for 0                                                   | 0 (100)m x 0 for appli 0 r month, 3 × (98 0 ) 0                                 | 0 (101)m 0 cable we 0 whole c )m 0                           | 728.95 eather re 1065.09 welling, 242.02  × (105)            | 0.94  599.75 egion, se 1005.97  continuo 302.23  0.25  × (106)r         | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02<br>ous ( kW<br>210.64  | 0 0 0 10) 0 Total f C = 0 Total     | 0 0 0 24 x [(10 0 = Sum( cooled :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | x (41)m  754.89  1  0  | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106) |
| (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Cooled Interm (106)m= Space (107)m=       | loss rate 0 ation face 0 ul loss, h 0 s (solar q 0 d fraction ittency f 0 cooling 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Lm (ca 0 tor for lo 0 mLm (W 0 gains ca 0 g require zero if ( 0 requirer 0                | lculated 0 sss hm 0 /atts) = ( 0 lculated 0 ement for 0 able 10b 0 ment for 0                                               | o<br>100)m x<br>0<br>100)m x<br>0<br>for appli<br>0<br>r month,<br>3 × (98<br>0 | 0 (101)m 0 cable we 0 whole c )m 0                           | 728.95 eather re 1065.09 welling, 242.02  0.25 × (105) 60.51 | 0.94  599.75 egion, see 1005.97  continuo 302.23  0.25  × (106)r  75.56 | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02<br>ous ( kW<br>210.64  | 0 0 10) 0 Total f C = 0 Total (107) | 0 0 0 24 x [(10 0 = Sum( cooled a 0 = Sum( 0 = Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + S | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | x (41)m<br>754.89<br>1 | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106) |
| (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Coolec Interm (106)m= Space (107)m= Space | loss rate 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation face 0 ation  | e Lm (ca 0 tor for lo 0 mLm (W 0 gains ca 0 g require zero if ( 0 requirer 0                | lculated 0 loss hm 0 l/atts) = ( 0 lculated 0 lculated 0 lement fo 104)m < 0 ment for 0 ment for 0 ment in k lency (called) | 0 (100)m x 0 for appli 0 r month, 3 × (98 0 ) 0                                 | 0 (101)m 0 cable we 0 whole c )m 0                           | 728.95 eather re 1065.09 welling, 242.02  0.25 × (105) 60.51 | 0.94  599.75 egion, see 1005.97  continuo 302.23  0.25  × (106)r  75.56 | and exte<br>655.03<br>0.9<br>591.9<br>e Table<br>875.02<br>ous ( kW<br>210.64  | 0 0 10) 0 Total f C = 0 Total (107) | 0 0 0 24 x [(10 0 = Sum( cooled a 0 = Sum( 0 = Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + Sum( 0 + S | e from T 0 0 0 0 0 03)m - ( 0 1,0,4) area ÷ (4 0 1,0,4) 0 1,0,7) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | x (41)m  754.89  1  0  | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106) |

| Stroma Number:   STRO016363   Software Name:   Stroma FSAP 2012   Software Version:   Version: 1.0.4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Software Name: Stroma FSAP 2012   Software Version: Version: 1.0.4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Address:  1. Overall dwelling dimensions:  Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Area(m²)   Av. Height(m)   Volume(m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ground floor  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1d)+((1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1d)+((1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+((1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+((1n)  Total floor area TFA = (1a)+(1b)+(1c)+((1n)  Total floor area TFA = (1a)+(1b)+(1c)+((1n)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+((1n)  Total floor area TFA = (1a)+(1b)+(1c)+((1n))  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+((1n))  Total floor area TFA = (1a)+(1b)+(1c)+((1n))  Total floor area TFA = (1a)+(1b)+(1c)+((1n))  Total floor area TFA = (1a)+(1b)+((1n))  Total floor area TFA = (1a)+((1n))  
| Dwelling volume $ (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 196.69 $ (5) $ 2. \text{ Ventilation rate:} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2. Ventilation rate:    main heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2. Ventilation rate:    main heating heating heating heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of chimneys    Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Number of chimneys $0 + 0 + 0 + 0 = 0$ $\times 40 = 0$ (6a)  Number of open flues $0 + 0 + 0 + 0 = 0$ $\times 20 = 0$ (6b)  Number of intermittent fans $0 + 0 + 0 = 0$ $\times 20 = 0$ (6b)  Number of intermittent fans $0 \times 10 = 0$ (7a)  Number of passive vents $0 \times 10 = 0$ (7b)  Number of flueless gas fires $0 \times 40 = 0$ (7c)  Air changes per hour  Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ (7c)  Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ (7c)  Number of storeys in the dwelling (ns)  Additional infiltration $0 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Number of intermittent fans  Number of passive vents  Number of flueless gas fires  Number of flueless gas fires  Air changes per hour  Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Number of passive vents  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of flueless gas fires  Air changes per hour  Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Air changes per hour  Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)  Number of storeys in the dwelling (ns)  Additional infiltration  Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction  if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Number of storeys in the dwelling (ns)  Additional infiltration  Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction  if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction  o (11)  if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| deducting areas of openings); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| If no draught lobby, enter 0.05, else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Percentage of windows and doors draught stripped $ 0 (14) $ Window infiltration $ 0.25 - [0.2 \times (14) \div 100] = 0 $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Window infiltration $0.25 - [0.2 \times (14) \div 100] = 0$ (15)  Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area  (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Number of sides sheltered $3$ (19) Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.78$ (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.23$ $(21)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Infiltration rate modified for monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Monthly average wind speed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Adjusted infiltra                                                          | ation rate   | e (allowi                 | ng for sh                | nelter an  | d wind s       | speed) =                                         | : (21a) x                                        | (22a)m                                          |                                                  |             |                                                   |                    |               |
|----------------------------------------------------------------------------|--------------|---------------------------|--------------------------|------------|----------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------|---------------------------------------------------|--------------------|---------------|
| 0.3                                                                        | 0.29         | 0.29                      | 0.26                     | 0.25       | 0.22           | 0.22                                             | 0.22                                             | 0.23                                            | 0.25                                             | 0.26        | 0.28                                              | ]                  |               |
| Calculate effec                                                            |              | •                         | rate for t               | he appli   | cable ca       | se                                               |                                                  |                                                 |                                                  |             | •                                                 |                    |               |
| If mechanica                                                               |              |                           | andiv N. (O              | 2h) - (22a | a) v Emy (4    | aguatian (                                       | NEW atho                                         | nuina (22h                                      | ·) = (22a)                                       |             |                                                   | 0                  | (23a          |
| If exhaust air he                                                          |              | 0                         |                          | , ,        | , ,            | . `                                              | ,, .                                             | `                                               | )) = (23a)                                       |             |                                                   | 0                  | (231          |
| If balanced with                                                           |              | -                         | -                        | _          |                |                                                  |                                                  |                                                 | <b>.</b>                                         |             | 4 (22.)                                           | 0                  | (230          |
| a) If balance                                                              |              |                           |                          |            | ·              | <del>,                                    </del> | <del>1                                    </del> | <del>í `</del>                                  | <del>,                                    </del> | <del></del> | <del>- `                                   </del> | ) ÷ 100]<br>1      | (24)          |
| (24a)m= 0                                                                  | 0            | 0                         | 0                        | 0          | 0              | 0                                                | 0                                                | 0                                               | 0                                                | 0           | 0                                                 | J                  | (248          |
| b) If balance                                                              | a mecna      | anicai ve                 | ntilation                | without    | neat red       | overy (I                                         | VIV) (24)<br>T 0                                 | $\int_{0}^{\infty} \int_{0}^{\infty} dt = (22)$ | 2b)m + (2<br>  0                                 | <del></del> | 0                                                 | 1                  | (24           |
| ` ′                                                                        |              |                           |                          |            | <u> </u>       |                                                  |                                                  | <u> </u>                                        | 0                                                | 0           | 0                                                 | ]                  | (24)          |
| c) If whole ho<br>if (22b)m                                                |              |                           |                          | •          | •              |                                                  |                                                  |                                                 | 5 x (23h                                         | 1)          |                                                   |                    |               |
| (24c)m= 0                                                                  | 0            | 0                         | 0                        | 0          | 0              | 0                                                | 0                                                | 0                                               | 0                                                | 0           | 0                                                 | 1                  | (24           |
| d) If natural v                                                            | ventilatio   | n or wh                   | ole hous                 | L nositiv  | l<br>ve input  | L<br>ventilati                                   | on from                                          | l<br>loft                                       | ļ                                                |             | <u> </u>                                          | J                  |               |
| if (22b)m                                                                  |              |                           |                          | •          | •              |                                                  |                                                  |                                                 | 0.5]                                             |             |                                                   |                    |               |
| (24d)m= 0.54                                                               | 0.54         | 0.54                      | 0.53                     | 0.53       | 0.52           | 0.52                                             | 0.52                                             | 0.53                                            | 0.53                                             | 0.53        | 0.54                                              | ]                  | (24           |
| Effective air                                                              | change       | rate - er                 | nter (24a                | ) or (24k  | o) or (24      | c) or (24                                        | ld) in bo                                        | x (25)                                          |                                                  |             | •                                                 | •                  |               |
| (25)m= 0.54                                                                | 0.54         | 0.54                      | 0.53                     | 0.53       | 0.52           | 0.52                                             | 0.52                                             | 0.53                                            | 0.53                                             | 0.53        | 0.54                                              | ]                  | (25           |
| 3. Heat losses                                                             | e and ho     | at loce i                 | aramoto                  | or:        |                |                                                  |                                                  |                                                 |                                                  |             |                                                   | •                  |               |
| ELEMENT                                                                    | Gros<br>area | ss                        | Openin<br>m              | gs         | Net Ar<br>A ,r |                                                  | U-val<br>W/m2                                    |                                                 | A X U<br>(W/I                                    | <b>〈</b> )  | k-value                                           |                    | A X k<br>kJ/K |
| Doors                                                                      | J J.J.       | ( )                       | •••                      |            | 2              | <br>x                                            | 1.3                                              | <br>=                                           | 2.6                                              | ,<br>       |                                                   |                    | (26           |
| Nindows Type                                                               | 1            |                           |                          |            | 7.1            | _                                                | /[1/( 1.3 )+                                     | 0.04] =                                         | 8.77                                             | =           |                                                   |                    | (27           |
| Nindows Type                                                               |              |                           |                          |            | 9.86           | _                                                | /[1/( 1.3 )+                                     |                                                 | 12.18                                            | =           |                                                   |                    | (27           |
| Windows Type                                                               |              |                           |                          |            | 7.48           | 〓 .                                              | /[1/( 1.3 )+                                     |                                                 | 9.24                                             | ╡           |                                                   |                    | (27           |
| Windows Type                                                               |              |                           |                          |            | 1.53           | =                                                | /[1/( 1.3 )+                                     |                                                 | 1.89                                             | =           |                                                   |                    | (27           |
| Rooflights                                                                 | •            |                           |                          |            |                | =                                                | /[1/(1.6) +                                      |                                                 |                                                  | =           |                                                   |                    |               |
| · ·                                                                        | 40.5         |                           | 05.00                    |            | 1.14           | =                                                |                                                  |                                                 | 1.824                                            | 륵 ,         |                                                   |                    | (27           |
| Walls Type1                                                                | 40.5         |                           | 25.9                     | <u>/</u>   | 14.61          | =                                                | 0.15                                             | ╡ -                                             | 2.19                                             | 닠 ¦         |                                                   |                    | (29           |
| Walls Type2                                                                | 56.9         | <del></del>               | 2                        | _          | 54.98          | =                                                | 0.13                                             |                                                 | 7.34                                             | 닠 ¦         |                                                   | $\exists$ $\vdash$ | (29)          |
| Roof                                                                       | 72.8         |                           | 1.14                     |            | 71.71          | ×                                                | 0.1                                              | =                                               | 7.17                                             |             |                                                   |                    | (30           |
| Total area of el                                                           | iements      | , m <u>*</u>              |                          |            | 170.4          | 1                                                |                                                  |                                                 |                                                  |             |                                                   |                    | (31           |
| Party wall                                                                 |              |                           |                          |            | 23.2           | X                                                | 0                                                | =                                               | 0                                                |             |                                                   | _                  | (32           |
| Party floor                                                                |              |                           |                          |            | 72.85          |                                                  |                                                  |                                                 |                                                  | L           |                                                   |                    | (32           |
| * for windows and i<br>** include the area                                 |              |                           |                          |            |                | ated using                                       | g formula 1                                      | /[(1/U-valu                                     | ue)+0.04] a                                      | s given in  | paragraph                                         | n 3.2              |               |
| abric heat los                                                             |              |                           |                          | o ana pan  |                |                                                  | (26)(30                                          | ) + (32) =                                      |                                                  |             |                                                   | 53.1               | 1 (33         |
| Heat capacity (                                                            |              | •                         | ,                        |            |                |                                                  |                                                  |                                                 | (30) + (32                                       | 2) + (32a). | (32e) =                                           | 17245.             |               |
|                                                                            | ,            | ,                         | 2 - Cm -                 | - TFΔ) ir  | n k l/m²K      |                                                  |                                                  | ,                                               | ative Value                                      | , , ,       | • /                                               | 250                | (35           |
| Thermal mass                                                               | parame       |                           | - CIII ·                 | 11/\/      | 1 100/111 10   |                                                  |                                                  |                                                 |                                                  |             |                                                   |                    | (00           |
| For design assessi                                                         | ments wh     | ere the de                | tails of the             | ,          |                |                                                  | recisely the                                     | e indicative                                    | e values of                                      | TMP in T    | able 1f                                           |                    |               |
| Thermal mass<br>For design assessi<br>can be used instea<br>Thermal bridge | ments who    | ere the de<br>tailed calc | tails of the<br>ulation. | construct  | ion are no     | t known pi                                       | recisely the                                     | e indicative                                    | e values of                                      | TMP in T    | able 1f                                           | 16.3 <sup>-</sup>  | 1 (36         |

| Total fabric he                 | at loss       |             |             |                |             |            |             | (33) +       | (36) =                 |                                       | ı                                     | 69.42   | (37) |
|---------------------------------|---------------|-------------|-------------|----------------|-------------|------------|-------------|--------------|------------------------|---------------------------------------|---------------------------------------|---------|------|
| Ventilation hea                 |               | alculated   | l monthly   | /              |             |            |             | ` '          | ` ,                    | 25)m x (5)                            |                                       | 09.42   | (0,) |
| Jan                             | Feb           | Mar         | Apr         | May            | Jun         | Jul        | Aug         | Sep          | Oct                    | Nov                                   | Dec                                   |         |      |
| (38)m= 35.35                    | 35.24         | 35.13       | 34.61       | 34.52          | 34.06       | 34.06      | 33.98       | 34.24        | 34.52                  | 34.71                                 | 34.92                                 |         | (38) |
| Heat transfer of                | coefficier    | nt, W/K     |             |                |             | ı          |             | (39)m        | = (37) + (37)          | 38)m                                  |                                       | l       |      |
| (39)m= 104.78                   | 104.66        | 104.55      | 104.03      | 103.94         | 103.49      | 103.49     | 103.4       | 103.66       | 103.94                 | 104.13                                | 104.34                                |         |      |
| Heat loss para                  | meter (F      | HLP), W     | ′m²K        |                |             | •          |             |              | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub> (4)             | 12 /12=                               | 104.03  | (39) |
| (40)m= 1.44                     | 1.44          | 1.44        | 1.43        | 1.43           | 1.42        | 1.42       | 1.42        | 1.42         | 1.43                   | 1.43                                  | 1.43                                  |         |      |
| Number of day                   | ys in moi     | nth (Tab    | le 1a)      |                |             |            |             | ,            | Average =              | Sum(40) <sub>1.</sub>                 | 12 /12=                               | 1.43    | (40) |
| Jan                             | Feb           | Mar         | Apr         | May            | Jun         | Jul        | Aug         | Sep          | Oct                    | Nov                                   | Dec                                   |         |      |
| (41)m= 31                       | 28            | 31          | 30          | 31             | 30          | 31         | 31          | 30           | 31                     | 30                                    | 31                                    |         | (41) |
|                                 |               |             |             |                |             |            |             |              |                        |                                       |                                       |         |      |
| 4. Water hea                    | tina enei     | rav reau    | rement:     |                |             |            |             |              |                        |                                       | kWh/ye                                | ear:    |      |
|                                 |               | 9) 10 40    |             |                |             |            |             |              |                        |                                       | , , , , , , , , , , , , , , , , , , , |         |      |
| Assumed occu                    |               |             | [4 ava      | / n nnnn       | )40 v /TI   | -          | )           | 2012 v /     | TEA 40                 |                                       | 31                                    |         | (42) |
| if TFA > 13.9<br>if TFA £ 13.9  |               | + 1.76 X    | [i - exp    | (-0.0003       | 649 X (11   | -A -13.9   | )2)] + 0.0  | JU 13 X (    | IFA - 13.              | 9)                                    |                                       |         |      |
| Annual average                  | •             | ater usag   | ge in litre | s per da       | ay Vd,av    | erage =    | (25 x N)    | + 36         |                        | 89                                    | .14                                   |         | (43) |
| Reduce the annua                | _             |             |             |                | -           | -          | to achieve  | a water us   | se target o            |                                       |                                       |         | . ,  |
| not more that 125               | litres per p  | person pei  | day (all w  | ater use, l    | hot and co  | ld)        |             |              |                        |                                       |                                       |         |      |
| Jan                             | Feb           | Mar         | Apr         | May            | Jun         | Jul        | Aug         | Sep          | Oct                    | Nov                                   | Dec                                   |         |      |
| Hot water usage i               | in litres per | day for ea  | ach month   | Vd,m = fa      | ctor from   | Table 1c x | (43)        |              |                        |                                       |                                       |         |      |
| (44)m= 98.05                    | 94.49         | 90.92       | 87.36       | 83.79          | 80.23       | 80.23      | 83.79       | 87.36        | 90.92                  | 94.49                                 | 98.05                                 |         | _    |
| Energy content of               | f hot water   | used - cal  | culated mo  | onthly = $4$ . | 190 x Vd,r  | n x nm x C | OTm / 3600  |              |                        | m(44) <sub>112</sub> =<br>ables 1b, 1 |                                       | 1069.69 | (44) |
| (45)m= 145.41                   | 127.18        | 131.24      | 114.42      | 109.78         | 94.74       | 87.79      | 100.74      | 101.94       | 118.8                  | 129.68                                | 140.82                                |         |      |
|                                 |               |             |             |                | ļ           |            |             | _            | Total = Su             | m(45) <sub>112</sub> =                |                                       | 1402.53 | (45) |
| If instantaneous w              | vater heatii  | ng at point | of use (no  | hot water      | storage),   | enter 0 in | boxes (46)  | ) to (61)    |                        |                                       | '                                     |         |      |
| (46)m= 0                        | 0             | 0           | 0           | 0              | 0           | 0          | 0           | 0            | 0                      | 0                                     | 0                                     |         | (46) |
| Water storage                   |               |             |             |                |             |            |             |              |                        |                                       |                                       |         |      |
| Storage volum                   | , ,           |             |             |                |             | •          |             | ame ves      | sel                    |                                       | 0                                     |         | (47) |
| If community h                  | •             |             |             | _              |             |            | , ,         |              |                        | \                                     |                                       |         |      |
| Otherwise if no                 |               | hot wate    | er (this in | icludes i      | nstantar    | neous co   | mbi boil    | ers) ente    | er '0' in (            | 47)                                   |                                       |         |      |
| Water storage  a) If manufact   |               | eclared I   | nee fact    | nr is kno      | wn (k\//h   | J/day).    |             |              |                        |                                       | 0                                     |         | (48) |
| Temperature f                   |               |             |             | ) 13 KHO       | vvii (ivvii | "day).     |             |              |                        |                                       | 0                                     |         |      |
| •                               |               |             |             | oor            |             |            | (40) × (40) | \ _          |                        |                                       | 0                                     |         | (49) |
| Energy lost from b) If manufact |               | _           | -           |                | or is not   |            | (48) x (49) | ) =          |                        |                                       | 0                                     |         | (50) |
| Hot water stor                  |               |             | -           |                |             |            |             |              |                        |                                       | 0                                     |         | (51) |
| If community h                  | neating s     | ee secti    | on 4.3      | ·              |             | - /        |             |              |                        |                                       |                                       |         | . ,  |
| Volume factor                   |               |             |             |                |             |            |             |              |                        |                                       | 0                                     |         | (52) |
| Temperature f                   | actor fro     | m Table     | 2b          |                |             |            |             |              |                        |                                       | 0                                     |         | (53) |
| Energy lost fro                 | om water      | storage     | , kWh/ye    | ear            |             |            | (47) x (51) | ) x (52) x ( | 53) =                  |                                       | 0                                     |         | (54) |
| Enter (50) or                   | (54) in (5    | 55)         |             |                |             |            |             |              |                        |                                       | 0                                     |         | (55) |
|                                 |               |             |             |                |             |            |             |              |                        |                                       |                                       |         |      |

| Water storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | loss cal                                                                                                  | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or each                                                                                              | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                                                | ((56)m = (                                                                          | 55) × (41)ı                                                                      | m                                              |                                               |                                 |               |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------|---------------|----------------------------------------------|
| (56)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (56)                                         |
| If cylinder contain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s dedicate                                                                                                | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)ı                                                                                          | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                 | H11)] ÷ (5                                                                     | 0), else (5                                                                         | 7)m = (56)                                                                       | m where (                                      | H11) is fro                                   | m Append                        | ix H          |                                              |
| (57)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (57)                                         |
| Primary circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t loss (ar                                                                                                | nnual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m Table                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                |                                                                                     |                                                                                  |                                                |                                               | 0                               |               | (58)                                         |
| Primary circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59)m = (                                                                    | (58) ÷ 36                                                                      | 55 × (41)                                                                           | m                                                                                |                                                |                                               |                                 |               |                                              |
| (modified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | factor f                                                                                                  | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                           | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                   | er heatir                                                                      | ng and a                                                                            | cylinde                                                                          | r thermo                                       | stat)                                         |                                 |               |                                              |
| (59)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (59)                                         |
| Combi loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lculated                                                                                                  | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                              | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                   | 65 × (41)                                                                      | )m                                                                                  |                                                                                  |                                                |                                               |                                 |               |                                              |
| (61)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (61)                                         |
| Total heat req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uired for                                                                                                 | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                            | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for eac                                                                     | h month                                                                        | (62)m =                                                                             | 0.85 × (                                                                         | (45)m +                                        | (46)m +                                       | (57)m +                         | (59)m + (61)m |                                              |
| (62)m= 123.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.1                                                                                                     | 111.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.25                                                                                                | 93.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.53                                                                       | 74.62                                                                          | 85.63                                                                               | 86.65                                                                            | 100.98                                         | 110.23                                        | 119.7                           |               | (62)                                         |
| Solar DHW input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | calculated                                                                                                | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                                           | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                   | ve quantity                                                                    | /) (enter '0                                                                        | ' if no sola                                                                     | r contribut                                    | ion to wate                                   | er heating)                     |               |                                              |
| (add additiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al lines if                                                                                               | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or V                                                                                             | <b>WHRS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | applies                                                                     | , see Ap                                                                       | pendix (                                                                            | 3)                                                                               |                                                |                                               |                                 |               |                                              |
| (63)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 0                                                                              | 0                                                                                   | 0                                                                                | 0                                              | 0                                             | 0                               |               | (63)                                         |
| Output from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ater hea                                                                                                  | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                |                                                                                     |                                                                                  |                                                |                                               |                                 |               |                                              |
| (64)m= 123.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.1                                                                                                     | 111.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.25                                                                                                | 93.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.53                                                                       | 74.62                                                                          | 85.63                                                                               | 86.65                                                                            | 100.98                                         | 110.23                                        | 119.7                           |               |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                | Outp                                                                                | out from wa                                                                      | ater heate                                     | r (annual)₁                                   | 12                              | 1192.15       | (64)                                         |
| Heat gains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m water                                                                                                   | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/mo                                                                                               | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                   | × (45)m                                                                        | + (61)m                                                                             | n] + 0.8 x                                                                       | ((46)m                                         | + (57)m                                       | + (59)m                         | ]             | _                                            |
| (65)m= 30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.03                                                                                                     | 27.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.31                                                                                                | 23.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.13                                                                       | 18.65                                                                          | 24.44                                                                               | 24.00                                                                            | 25.25                                          | 07.50                                         | 00.00                           | <u>-</u>      | (65)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.10                                                                       | 10.00                                                                          | 21.41                                                                               | 21.66                                                                            | 25.25                                          | 27.56                                         | 29.93                           |               | (03)                                         |
| include (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m in cal                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                    | <u> </u>                                                                       |                                                                                     |                                                                                  |                                                | <u> </u>                                      | <u> </u>                        | eating        | (00)                                         |
| include (57) 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           | culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m                                                                                             | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                    | <u> </u>                                                                       |                                                                                     |                                                                                  |                                                | <u> </u>                                      | <u> </u>                        | eating        | (03)                                         |
| 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see                                                                                                 | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                   | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                    | <u> </u>                                                                       |                                                                                     |                                                                                  |                                                | <u> </u>                                      | <u> </u>                        | eating        | (03)                                         |
| · ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ains (see                                                                                                 | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                   | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                    | <u> </u>                                                                       |                                                                                     | or hot w                                                                         |                                                | <u> </u>                                      | <u> </u>                        | eating        | (03)                                         |
| 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see                                                                                                 | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                   | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                   | s in the d                                                                     | dwelling                                                                            |                                                                                  | ater is fr                                     | om com                                        | munity h                        | eating        | (66)                                         |
| 5. Internal games Metabolic gair Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ains (see<br>ns (Table<br>Feb<br>115.66                                                                   | e Table 5<br>e 5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66                                                            | only if c ):  May 115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun                                                                         | Jul 115.66                                                                     | Aug<br>115.66                                                                       | or hot w<br>Sep<br>115.66                                                        | ater is fr                                     | om com                                        | munity h                        | eating        |                                              |
| 5. Internal games Metabolic gair Jan (66)m= 115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ains (see<br>ns (Table<br>Feb<br>115.66                                                                   | e Table 5<br>e 5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66                                                            | only if c ):  May 115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun                                                                         | Jul 115.66                                                                     | Aug<br>115.66                                                                       | or hot w<br>Sep<br>115.66                                                        | ater is fr                                     | om com                                        | munity h                        | eating        |                                              |
| 5. Internal games  Metabolic gain  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | res (Table Feb 115.66 (calcula 16.14                                                                      | E Table 5 E 5), Wat Mar 115.66 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m and 5a ts Apr 115.66 ppendix 9.94                                                           | May 115.66 L, equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun<br>115.66<br>ion L9 o                                                   | Jul<br>115.66<br>r L9a), a                                                     | Aug<br>115.66<br>Iso see                                                            | Sep<br>115.66<br>Table 5                                                         | Oct 115.66                                     | Nov                                           | Dec                             | eating        | (66)                                         |
| 5. Internal gain  Metabolic gain  Jan  (66)m= 115.66  Lighting gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | res (Table Feb 115.66 (calcula 16.14                                                                      | E Table 5 E 5), Wat Mar 115.66 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m and 5a ts Apr 115.66 ppendix 9.94                                                           | May 115.66 L, equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun<br>115.66<br>ion L9 o                                                   | Jul<br>115.66<br>r L9a), a                                                     | Aug<br>115.66<br>Iso see                                                            | Sep<br>115.66<br>Table 5                                                         | Oct 115.66                                     | Nov                                           | Dec                             | eating        | (66)                                         |
| 5. Internal games  Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances games  (68)m= 203.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | res (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>tins (calcula<br>205.97                               | culation of Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 culated in 200.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Appendix<br>189.29                   | only if controls:  May  115.66  L, equation  7.43  dix L, equation  174.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1:<br>152.51                      | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                       | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta                                      | Oct 115.66 15.01 ble 5 167.07                  | Nov<br>115.66                                 | Dec 115.66                      | eating        | (66)<br>(67)                                 |
| 5. Internal gi Metabolic gair Jan (66)m= 115.66 Lighting gains (67)m= 18.17 Appliances ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | res (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>tins (calcula<br>205.97                               | culation of Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 culated in 200.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Appendix<br>189.29                   | only if controls:  May  115.66  L, equation  7.43  dix L, equation  174.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1:<br>152.51                      | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                       | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta                                      | Oct 115.66 15.01 ble 5 167.07                  | Nov<br>115.66                                 | Dec 115.66                      | eating        | (66)<br>(67)                                 |
| 5. Internal graph Metabolic gain Jan (66)m= 115.66 Lighting gains (67)m= 18.17 Appliances ga (68)m= 203.86 Cooking gains (69)m= 34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | res (Table Feb 115.66 (calcula 16.14 lins (calcula 205.97 s (calcula 34.57                                | culation of Earlie Solution of Earlie Earlie Solution of Earlie Earlie Solution of Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Ear | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Append<br>189.29<br>opendix<br>34.57 | May 115.66 L, equati 7.43 dix L, equati 174.97 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jun 115.66 ion L9 of 6.27 uation L 161.5                                    | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)           | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39                             | Sep 115.66 Table 5 11.82 see Tall 155.72 ee Table                                | Oct 115.66  15.01 ble 5 167.07                 | Nov<br>115.66<br>17.52                        | Dec 115.66 18.68                | eating        | (66)<br>(67)<br>(68)                         |
| 5. Internal games  Metabolic gain  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances games  (68)m= 203.86  Cooking gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | res (Table Feb 115.66 (calcula 16.14 lins (calcula 205.97 s (calcula 34.57                                | culation of Earlie Solution of Earlie Earlie Solution of Earlie Earlie Solution of Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Earlie Ear | of (65)m<br>and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Append<br>189.29<br>opendix<br>34.57 | May 115.66 L, equati 7.43 dix L, equati 174.97 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jun 115.66 ion L9 of 6.27 uation L 161.5                                    | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)           | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39                             | Sep 115.66 Table 5 11.82 see Tall 155.72 ee Table                                | Oct 115.66  15.01 ble 5 167.07                 | Nov<br>115.66<br>17.52                        | Dec 115.66 18.68                | eating        | (66)<br>(67)<br>(68)                         |
| 5. Internal given by the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | res (Table Feb 115.66 (calcula 16.14 ins (calcula 205.97 c (calcula 34.57 ins gains 0                     | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0                         | only if controls:  May  115.66  L, equati  7.43  dix L, equati  174.97  L, equati  34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>ion L15<br>34.57 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57       | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86 34.57   | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Internal given by Metabolic gain Jan (66)m= 115.66 Lighting gains (67)m= 18.17 Appliances ga (68)m= 203.86 Cooking gains (69)m= 34.57 Pumps and fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | res (Table Feb 115.66 (calcula 16.14 ins (calcula 205.97 c (calcula 34.57 ins gains 0                     | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0                         | only if controls:  May  115.66  L, equati  7.43  dix L, equati  174.97  L, equati  34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>ion L15<br>34.57 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57       | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86         | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Internal gives Metabolic gair Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances gains  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 0  Losses e.g. ev  (71)m= -92.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | res (Table Feb 115.66 (calcula 16.14 tins (calcula 34.57 res gains 0 vaporatio -92.53                     | culation of the Table 5  2 5), Wat Mar 115.66  ted in Ap 13.13  culated in 200.64  ated in Ap 34.57  (Table 5 0 on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0 tive value            | only if controls:  May  115.66  L, equation   7.43  dix L, equation   174.97  L, equation   34.57  0  es) (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0                   | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86 34.57   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 0  Losses e.g. ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | res (Table Feb 115.66 (calcula 16.14 tins (calcula 34.57 res gains 0 vaporatio -92.53                     | culation of the Table 5  2 5), Wat Mar 115.66  ted in Ap 13.13  culated in 200.64  ated in Ap 34.57  (Table 5 0 on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) on (negation of the period) of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of the period of | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0 tive value            | only if controls:  May  115.66  L, equation   7.43  dix L, equation   174.97  L, equation   34.57  0  es) (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0                   | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86 34.57   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 0  Losses e.g. ev  (71)m= -92.53  Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | res (Table Feb 115.66 (calcula 16.14 lins (calcula 34.57 res gains 0 reporation 92.53 gains (Table 140.22 | culation of the Table 5  2 5), Wat Mar 115.66  ted in Ap 13.13  culated in 200.64  ated in Ap 34.57  (Table 5 0 on (negation of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part o | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29 ppendix 34.57 5a) 0 tive valu -92.53      | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0 le 5) -92.53      | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1:<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57<br>0 | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57<br>0 | Oct 115.66 15.01 ble 5 167.07 5 34.57 0 -92.53 | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>0 | Dec 115.66 18.68 194.86 34.57 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 0  Losses e.g. ev  (71)m= -92.53  Water heating  (72)m= 41.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | res (Table Feb 115.66 (calcula 16.14 lins (calcula 34.57 res gains 0 reporation 92.53 gains (Table 140.22 | culation of the Table 5  2 5), Wat Mar 115.66  ted in Ap 13.13  culated in 200.64  ated in Ap 34.57  (Table 5 0 on (negation of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part o | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29 ppendix 34.57 5a) 0 tive valu -92.53      | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0 le 5) -92.53      | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57  | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57<br>0 | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57<br>0 | Oct 115.66 15.01 ble 5 167.07 5 34.57 0 -92.53 | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>0 | Dec 115.66 18.68 194.86 34.57 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x | 0.77                      | X | 1.53       | x | 11.28            | x | 0.55           | x | 0.7            | =   | 4.61         | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 22.97            | x | 0.55           | x | 0.7            | =   | 9.38         | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 41.38            | x | 0.55           | x | 0.7            | =   | 16.89        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 67.96            | x | 0.55           | x | 0.7            | =   | 27.74        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 91.35            | x | 0.55           | x | 0.7            | =   | 37.29        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 97.38            | x | 0.55           | x | 0.7            | =   | 39.75        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 91.1             | x | 0.55           | x | 0.7            | ] = | 37.19        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 72.63            | x | 0.55           | x | 0.7            | =   | 29.65        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 50.42            | x | 0.55           | x | 0.7            | =   | 20.58        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 28.07            | x | 0.55           | x | 0.7            | =   | 11.46        | (75) |
| Northeast 0.9x | 0.77                      | X | 1.53       | x | 14.2             | X | 0.55           | X | 0.7            | =   | 5.8          | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 9.21             | x | 0.55           | x | 0.7            | =   | 3.76         | (75) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 36.79            | x | 0.55           | x | 0.7            | =   | 69.7         | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 36.79            | x | 0.55           | x | 0.7            | =   | 96.79        | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 36.79            | x | 0.55           | x | 0.7            | =   | 73.43        | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 62.67            | x | 0.55           | X | 0.7            | =   | 118.72       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 62.67            | x | 0.55           | x | 0.7            | =   | 164.87       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 62.67            | x | 0.55           | x | 0.7            | =   | 125.08       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 85.75            | x | 0.55           | X | 0.7            | =   | 162.44       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 85.75            | x | 0.55           | x | 0.7            | =   | 225.59       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 85.75            | x | 0.55           | x | 0.7            | =   | 171.14       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 106.25           | x | 0.55           | X | 0.7            | =   | 201.27       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 106.25           | x | 0.55           | x | 0.7            | =   | 279.52       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 106.25           | x | 0.55           | x | 0.7            | =   | 212.05       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 119.01           | x | 0.55           | X | 0.7            | =   | 225.44       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 119.01           | x | 0.55           | x | 0.7            | =   | 313.08       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 119.01           | x | 0.55           | x | 0.7            | =   | 237.51       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.1        | x | 118.15           | X | 0.55           | X | 0.7            | =   | 223.81       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 118.15           | x | 0.55           | x | 0.7            | =   | 310.82       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 118.15           | x | 0.55           | x | 0.7            | =   | 235.79       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 113.91           | x | 0.55           | x | 0.7            | =   | 215.78       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 113.91           | x | 0.55           | x | 0.7            | =   | 299.66       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 113.91           | x | 0.55           | x | 0.7            | ] = | 227.33       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 104.39           | x | 0.55           | x | 0.7            | =   | 197.75       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 104.39           | x | 0.55           | x | 0.7            | =   | 274.62       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.48       | x | 104.39           | x | 0.55           | x | 0.7            | ] = | 208.33       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.1        | x | 92.85            | x | 0.55           | x | 0.7            | ] = | 175.89       | (77) |
| Southeast 0.9x | 0.77                      | X | 9.86       | x | 92.85            | × | 0.55           | x | 0.7            | ] = | 244.27       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.48       | x | 92.85            | x | 0.55           | x | 0.7            | ] = | 185.3        | (77) |
|                |                           |   |            | - |                  | - |                | • |                | -   |              | _    |

| Southeast 0.9x     | 0.77                  | x                     | 7.4                 |          | x             | CO 27          | 1 x        | 0.55           | ×              | 0.7            |        | 424.24         | (77)                              |
|--------------------|-----------------------|-----------------------|---------------------|----------|---------------|----------------|------------|----------------|----------------|----------------|--------|----------------|-----------------------------------|
| Southeast 0.9x     | 0.77                  | -                     | 7.1                 |          |               | 69.27          | 1          | 0.55           | =              | 0.7            |        | 131.21         | ╡` ′                              |
| Southeast 0.9x     | 0.77                  | ] X<br>]              | 9.86                |          | X             | 69.27          | ] X<br>]   | 0.55           | X              | 0.7            |        | 182.22         | (77)                              |
| Southeast 0.9x     | 0.77                  | ]                     | 7.48                |          | X             | 69.27          | ] X<br>] v | 0.55           | x<br>x         | 0.7            |        | 138.24         | (77)<br>(77)                      |
| Southeast 0.9x     | 0.77                  | ] X<br>] .,           | 7.1                 | =        | X             | 44.07          | ] X<br>]   | 0.55           | ╡              | 0.7            |        | 83.48          | ╡` ′                              |
| Southeast 0.9x     | 0.77                  | ] X<br>] ,            | 9.86                |          | X             | 44.07          | X          | 0.55           | _ X            | 0.7            |        | 115.94         | $= \frac{1}{1} \frac{(77)}{(77)}$ |
| Southeast 0.9x     | 0.77                  | ] X<br>] ,            | 7.48                | <u> </u> | X             | 44.07          | ] X<br>] , | 0.55           | _ X            | 0.7            |        | 87.95          | $ = \frac{1}{(77)} $              |
| Southeast 0.9x     | 0.77                  | ] X<br>] ,            | 7.1                 |          | X             | 31.49          | ] X<br>] , | 0.55           | _ X            | 0.7            |        | 59.65          | ╡` ′                              |
| Southeast 0.9x     | 0.77                  | ] X<br>] ,            | 9.86                |          | X             | 31.49          | X          | 0.55           | _ X            | 0.7            |        | 82.83          | $= \frac{1}{1} \frac{(77)}{(77)}$ |
| Rooflights 0.9x    | 0.77                  | ] x<br>] <sub>v</sub> | 7.48                | _        | X             | 31.49          | ] X<br>] v | 0.55           | _ X            | 0.7            |        | 62.84          | (82)                              |
| Rooflights 0.9x    | 1                     | ] X<br>] ,            | 1.14                |          | X             | 26             | ] X<br>] , | 0.55           | _ X            | 0.8            |        | 11.74          | ╡` ′                              |
| Rooflights 0.9x    | 1                     | ] X<br>] ,            | 1.14                |          | X             | 54             | X          | 0.55           | _ X            | 0.8            | =      | 24.38          | (82)                              |
| Rooflights 0.9x    | 1                     | ] X<br>]              | 1.14                | =        | X             | 96             | ] X<br>]   | 0.55           | X              | 0.8            | =      | 43.34          | (82)                              |
| Rooflights 0.9x    | 1                     | ] X<br>]              | 1.14                |          | X             | 150            | ] X<br>]   | 0.55           | ן ×<br>ה       | 0.8            | =      | 67.72          | (82)                              |
| Rooflights 0.9x    | 1                     | ] X<br>]              | 1.14                |          | X             | 192            | ] X<br>]   | 0.55           | X              | 0.8            | =      | 86.68          | (82)                              |
| Rooflights 0.9x    | 1                     | ] X<br>] .,           | 1.14                | =        | X             | 200            | ] X<br>]   | 0.55           | _ X            | 0.8            |        | 90.29<br>85.32 | (82)                              |
| Rooflights 0.9x    | 1                     | x<br>x                | 1.14                |          | X<br>X        | 189            | x<br>x     | 0.55           | X<br>X         | 0.8            |        | 70.88          | (82)                              |
| Rooflights 0.9x    | 1                     | ] ^<br>] x            | 1.14                |          | x             | 157<br>115     | ] ^<br>] x | 0.55<br>0.55   | ^<br>  x       | 0.8            | = -    | 51.92          | (82)                              |
| Rooflights 0.9x    | 1                     | ] ^<br>] x            | 1.14                | ==       | x             | 66             | ] ^<br>] x | 0.55           | -              | 0.8            | =      | 29.8           | (82)                              |
| Rooflights 0.9x    | <u>'</u>              | ] ^<br>] x            | 1.14                |          | x             | 33             | ] ^<br>] x | 0.55           | ^<br>  x       | 0.8            | =      | 14.9           | (82)                              |
| Rooflights 0.9x    | <u>'</u>              | ]                     | 1.14                |          | x             | 21             | ] ^<br>] x | 0.55           | ×              | 0.8            | = =    | 9.48           | (82)                              |
| 3 1 0.0X           | '                     | ] ^                   | 1.14                |          | ^             | 21             | ] ^        | 0.55           | ^              | 0.0            |        | 9.40           | (02)                              |
| Solar gains in wa  | itte calcul           | atad                  | for each            | month    | ,             |                | (83)m      | n = Sum(74)m . | (82)m          |                |        |                |                                   |
| <del>1 1</del>     | 42.43 619             |                       | 788.29              | 900      | T             | 00.46 865.28   | 781        |                | 492.9          | 3 308.06       | 218.56 |                | (83)                              |
| Total gains – inte | rnal and s            | olar                  | $\frac{1}{(84)m} =$ | (73)m    | + (8          | 33)m , watts   | <u> </u>   | <u> </u>       |                |                |        |                |                                   |
| (84)m= 577.53 7    | 62.46 928             | 3.35                  | 1078.99             | 1171.45  | 1             | 153.9 1107.34  | 102        | 6.9 933.29     | 766.6          | 4 602.96       | 530.03 |                | (84)                              |
| 7. Mean internal   | l temperat            | ure (                 | heating             | seasor   | 1)            | •              |            | •              |                | •              |        |                |                                   |
| Temperature du     | ·                     |                       |                     |          | 1             | area from Tal  | ole 9      | Th1 (°C)       |                |                |        | 21             | (85)                              |
| Utilisation factor | •                     | •                     |                     |          | _             |                |            |                |                |                |        |                |                                   |
|                    |                       | 1ar                   | Apr                 | May      | Ť             | Jun Jul        | Α          | ug Sep         | Oct            | Nov            | Dec    |                |                                   |
| (86)m= 0.99        | 0.98 0.9              | 95                    | 0.87                | 0.72     | (             | 0.41           | 0.4        | 5 0.69         | 0.92           | 0.99           | 1      |                | (86)                              |
| Mean internal te   | emperature            | e in li               | iving are           | a T1 (f  | ollo          | w steps 3 to 7 | in T       | able 9c)       |                | •              |        | 1              |                                   |
|                    | 19.85 20.             | $\overline{}$         | 20.6                | 20.86    | _             | 0.97 20.99     | 20.        | <u> </u>       | 20.54          | 19.95          | 19.5   |                | (87)                              |
| Temperature du     | ıring heati           | na ne                 | eriods in           | rest of  | dw            | elling from Ta | hle (      | Th2 (°C)       |                | - <b>!</b>     |        |                |                                   |
| · — —              |                       | .74                   | 19.74               | 19.74    | _             | 9.75 19.75     | 19.        | <u> </u>       | 19.74          | 19.74          | 19.74  |                | (88)                              |
| Utilisation factor | for gains             | for r                 | ect of du           | elling   | h2            | m (see Table   | 02/        | !              |                |                |        |                |                                   |
|                    | 0.97 0.9              |                       | 0.83                | 0.65     | $\overline{}$ | 0.45 0.29      | 0.3        | 3 0.59         | 0.89           | 0.98           | 0.99   |                | (89)                              |
| ` '                |                       | !                     |                     |          |               | ļ.             |            |                |                |                |        | 1              | •                                 |
| Mean internal te   | mperature<br>18.74 19 |                       | 19.45               | 19.66    | Ť             | 9.73 19.75     | 19.        |                | e 9c)<br>19.41 | 18.85          | 18.4   |                | (90)                              |
| (00)1112 10.40 1   | 19                    |                       | 10.70               | 10.00    | <u> </u>      | 0.70 19.70     | 19.        |                |                | ring area ÷ (4 |        | 0.45           | (91)                              |
|                    |                       |                       |                     |          |               |                |            |                |                | .5 3.50        | ,      | 0.40           |                                   |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18                                                                                                                                                            | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.24                                                                                          | 19.6                                                                                    | 19.97                                                        | 20.19                                             | 20.29                                                                                 | 20.3                                                                   | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.25                               | 19.91                                                                  | 19.34                                                            | 18.89                                      |                             | (92)                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|-----------------------------|----------------------------------------------------|
| Apply ad                                                                                                                                                             | justme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt to th                                                                                       | ne mean                                                                                 | internal                                                     | temper                                            | ature fro                                                                             | m Table                                                                | 4e, whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ere appro                           | priate                                                                 |                                                                  |                                            |                             |                                                    |
| (93)m= 18                                                                                                                                                            | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.24                                                                                          | 19.6                                                                                    | 19.97                                                        | 20.19                                             | 20.29                                                                                 | 20.3                                                                   | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.25                               | 19.91                                                                  | 19.34                                                            | 18.89                                      |                             | (93)                                               |
| 8. Space                                                                                                                                                             | heatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng requ                                                                                        | iirement                                                                                |                                                              |                                                   |                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                        |                                                                  |                                            |                             |                                                    |
| Set Ti to the utilisa                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                         |                                                              |                                                   | ed at ste                                                                             | ep 11 of                                                               | Table 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o, so tha                           | t Ti,m=(                                                               | 76)m an                                                          | d re-calc                                  | ulate                       |                                                    |
|                                                                                                                                                                      | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                            | Mar                                                                                     | Apr                                                          | May                                               | Jun                                                                                   | Jul                                                                    | Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sep                                 | Oct                                                                    | Nov                                                              | Dec                                        |                             |                                                    |
| <u>۔                                    </u>                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                         |                                                              | iviay                                             | oun                                                                                   | Jul                                                                    | Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ОСР                                 | Oct                                                                    | 1404                                                             | Dec                                        |                             |                                                    |
|                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.97                                                                                           | 0.93                                                                                    | 0.83                                                         | 0.68                                              | 0.5                                                                                   | 0.34                                                                   | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.63                                | 0.89                                                                   | 0.98                                                             | 0.99                                       |                             | (94)                                               |
| Useful ga                                                                                                                                                            | ains, hı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mGm,                                                                                           | W = (94                                                                                 | 1)m x (84                                                    | 1)m                                               |                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                        |                                                                  | ļ                                          |                             |                                                    |
|                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 740.32                                                                                         | 861.81                                                                                  | 900.45                                                       | 798.17                                            | 571.49                                                                                | 380.55                                                                 | 398.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 591                                 | 682.7                                                                  | 589.4                                                            | 526.14                                     |                             | (95)                                               |
| Monthly a                                                                                                                                                            | averag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | je exte                                                                                        | rnal tem                                                                                | perature                                                     | from Ta                                           | able 8                                                                                |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                        |                                                                  |                                            |                             |                                                    |
| (96)m= 4                                                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.9                                                                                            | 6.5                                                                                     | 8.9                                                          | 11.7                                              | 14.6                                                                                  | 16.6                                                                   | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.1                                | 10.6                                                                   | 7.1                                                              | 4.2                                        |                             | (96)                                               |
| Heat loss                                                                                                                                                            | s rate f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or mea                                                                                         | an intern                                                                               | al tempe                                                     | erature,                                          | Lm , W =                                                                              | =[(39)m :                                                              | x [(93)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | – (96)m                             | ]                                                                      |                                                                  |                                            |                             |                                                    |
| (97)m= 153                                                                                                                                                           | 34.88 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500.75                                                                                         | 1369.69                                                                                 | 1151.33                                                      | 882.85                                            | 588.34                                                                                | 383.29                                                                 | 403.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 637.03                              | 968.12                                                                 | 1275.03                                                          | 1532.67                                    |                             | (97)                                               |
| Space he                                                                                                                                                             | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |                                                                                         | r each m                                                     | nonth, k\                                         | Wh/mont                                                                               | h = 0.02                                                               | 4 x [(97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )m – (95                            | <u> </u>                                                               | 1)m                                                              | 1                                          |                             |                                                    |
| (98)m= 71                                                                                                                                                            | 6.64 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 511.01                                                                                         | 377.86                                                                                  | 180.63                                                       | 63                                                | 0                                                                                     | 0                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                   | 212.35                                                                 | 493.66                                                           | 748.86                                     |                             | _                                                  |
|                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                         |                                                              |                                                   |                                                                                       |                                                                        | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l per year                          | (kWh/year                                                              | ) = Sum(9                                                        | 8) <sub>15,912</sub> =                     | 3304.01                     | (98)                                               |
| Space he                                                                                                                                                             | eating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | require                                                                                        | ement in                                                                                | kWh/m²                                                       | /year                                             |                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                        |                                                                  |                                            | 45.35                       | (99)                                               |
| 8c. Spac                                                                                                                                                             | e cooli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing req                                                                                        | uiremen                                                                                 | nt                                                           |                                                   |                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                        |                                                                  |                                            |                             |                                                    |
| Calcu <u>late</u>                                                                                                                                                    | ed for J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | June, J                                                                                        | uly and                                                                                 | August.                                                      | See Tal                                           | ole 10b                                                                               |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                        |                                                                  |                                            |                             |                                                    |
|                                                                                                                                                                      | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ᄃᇷᅵ                                                                                            | N 4                                                                                     |                                                              |                                                   |                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                        |                                                                  |                                            |                             |                                                    |
|                                                                                                                                                                      | , and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Feb                                                                                            | Mar                                                                                     | Apr                                                          | May                                               | Jun                                                                                   | Jul                                                                    | Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sep                                 | Oct                                                                    | Nov                                                              | Dec                                        |                             |                                                    |
| Heat loss                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                         |                                                              |                                                   | nal temp                                                                              | perature                                                               | and exte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                 |                                                                        |                                                                  |                                            |                             |                                                    |
| Heat loss                                                                                                                                                            | s rate L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _m (cal<br>0                                                                                   | lculated<br>0                                                                           |                                                              |                                                   |                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                 |                                                                        |                                                                  |                                            |                             | (100)                                              |
| Heat loss (100)m= Utilisation                                                                                                                                        | s rate L<br>0<br>n facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _m (cal<br>0<br>or for lo                                                                      | lculated<br>0<br>ss hm                                                                  | using 25                                                     | 5°C inter                                         | nal temp<br>972.76                                                                    | perature<br>765.79                                                     | and exte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ernal ten                           | nperatur<br>0                                                          | e from T                                                         | able 10)                                   |                             |                                                    |
| Heat loss (100)m= Utilisation (101)m=                                                                                                                                | o rate L<br>o n facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m (cal                                                                                         | o<br>ss hm                                                                              | using 25<br>0                                                | 5°C inter                                         | nal temp<br>972.76<br>0.93                                                            | perature                                                               | and exte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ernal ten                           | nperatur                                                               | e from T                                                         | able 10)                                   |                             | (100)<br>(101)                                     |
| Heat loss (100)m= Utilisation (101)m= Useful lo                                                                                                                      | o rate L<br>o n facto<br>o ss, hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _m (cal<br>0<br>or for lo<br>0<br>oLm (W                                                       | o<br>ss hm<br>o<br>/atts) = (                                                           | using 25<br>0<br>0<br>(100)m x                               | 5°C inter<br>0<br>0                               | 972.76<br>0.93                                                                        | 765.79<br>0.96                                                         | and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and e | ernal ten                           | nperatur<br>0                                                          | e from T<br>0                                                    | able 10) 0                                 |                             | (101)                                              |
| Heat loss (100)m= Utilisation (101)m= Useful lo. (102)m=                                                                                                             | n facto ss, hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _m (cal<br>0<br>or for lo<br>0<br>nLm (W                                                       | 0 ss hm 0 /atts) = (                                                                    | 0<br>0<br>100)m x                                            | 0<br>0<br>(101)m                                  | 972.76<br>0.93                                                                        | 0.96<br>735.61                                                         | and exter<br>785.85<br>0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ernal ten 0 0                       | nperatur<br>0                                                          | e from T                                                         | able 10)                                   |                             |                                                    |
| Heat loss (100)m= Utilisation (101)m= Useful lo. (102)m= Gains (sc                                                                                                   | n facto  ss, hm  olar ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m (cal<br>or for lo<br>on Lm (W<br>on Lm cal                                                   | o<br>ss hm<br>o<br>/atts) = (<br>o<br>culated                                           | using 25<br>0<br>0<br>100)m x<br>0<br>for appli              | 0<br>0<br>(101)m<br>0<br>cable we                 | 972.76<br>0.93<br>901.81<br>eather re                                                 | 0.96<br>735.61<br>egion, se                                            | and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and e | ernal ten  0  0  10)                | o<br>0<br>0                                                            | e from T<br>0<br>0                                               | able 10) 0 0                               |                             | (101)                                              |
| Heat loss (100)m=  Utilisation (101)m=  Useful lo. (102)m=  Gains (so (103)m=                                                                                        | s rate L  0  n facto 0  ss, hm 0  olar ga 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m (cal<br>0<br>or for lo<br>0<br>oLm (W<br>0<br>uins cal<br>0                                  | culated                                                                                 | 0<br>(100)m x<br>0<br>for appli                              | 0<br>0<br>(101)m<br>0<br>cable we                 | 972.76<br>0.93<br>901.81<br>eather re                                                 | 0.96<br>735.61<br>egion, se                                            | and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and e | 0<br>0<br>0<br>10)                  | o<br>0<br>0                                                            | 0 0 0                                                            | able 10) 0 0 0                             | « (41)m                     | (101)                                              |
| Heat loss (100)m= Utilisation (101)m= Useful lo. (102)m= Gains (sc                                                                                                   | on facto on facto on facto on facto on facto on facto on facto on facto on facto on facto on facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m (cal 0 0 or for lo 0 oLm (W 0 olins cal 0 orequire                                           | culated  0 ss hm 0 /atts) = ( 0 culated 0                                               | 0 (100)m x 0 for appli 0 r month,                            | 0 0 (101)m 0 cable we 0 whole c                   | 972.76<br>0.93<br>901.81<br>eather re                                                 | 0.96<br>735.61<br>egion, se                                            | and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and e | 0 0 10) 0                           | o<br>0<br>0                                                            | 0 0 0                                                            | able 10) 0 0 0                             | x (41)m                     | (101)                                              |
| Heat loss (100)m=  Utilisation (101)m=  Useful los (102)m=  Gains (so (103)m=  Space co set (104)                                                                    | on facto on facto on facto on facto on facto on facto on facto on facto on facto on facto on facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m (cal 0 0 or for lo 0 oLm (W 0 olins cal 0 orequire                                           | culated  0 ss hm 0 /atts) = ( 0 culated 0                                               | 0 (100)m x 0 for appli 0 r month,                            | 0 0 (101)m 0 cable we 0 whole c                   | 972.76<br>0.93<br>901.81<br>eather re                                                 | 0.96<br>735.61<br>egion, se                                            | and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and e | 0 0 10) 0                           | o<br>0<br>0                                                            | 0 0 0                                                            | able 10) 0 0 0                             | x (41)m                     | (101)                                              |
| Heat loss (100)m=  Utilisation (101)m=  Useful lo. (102)m=  Gains (sc (103)m=  Space cc set (104) (104)m=                                                            | s rate L  0  n facto 0  sss, hm 0  olar ga 0  om to ze 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m (cal 0 or for lo 0 on Lm (W 0 on lins cal 0 or equire ero if (                               | culated  0 ss hm 0 /atts) = ( 0 culated 0 ement for 104)m <                             | 0<br>100)m x<br>0<br>for appli<br>0<br>r month,              | o<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o | 972.76<br>0.93<br>901.81<br>eather re<br>1419.39                                      | 0.96<br>735.61<br>egion, se<br>1364.06                                 | and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and e | 0 0 10) 0 7/h) = 0.00               | 0 0 0 24 x [(10 0 = Sum(                                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | able 10)  0  0  102)m] 3                   | c (41)m<br>1234.34          | (101)                                              |
| Heat loss  (100)m=  Utilisation  (101)m=  Useful lo.  (102)m=  Gains (sc  (103)m=  Space cc  set (104)  (104)m=  Cooled fra                                          | n facto n facto sss, hm o olar ga oooling i m to ze o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m (cal 0 or for lo 0 olum (W 0 olins cal 0 require ero if (                                    | ss hm 0 /atts) = ( 0 culated 0 ment for 104)m <                                         | 0 (100)m x 0 for appli 0 r month, 3 × (98)                   | o<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o | 972.76<br>0.93<br>901.81<br>eather re<br>1419.39                                      | 0.96<br>735.61<br>egion, se<br>1364.06                                 | and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and e | 0 0 10) 0 7/h) = 0.00               | 0<br>0<br>0<br>0<br>24 x [(10                                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | able 10)  0  0  102)m] 3                   | . ,                         | (101)<br>(102)<br>(103)                            |
| Heat loss (100)m= Utilisation (101)m= Useful lo. (102)m= Gains (sc (103)m= Space cc set (104) (104)m=  Cooled fra Intermitter                                        | n facto n facto n facto o sss, hm o olar ga ooling r om to z o action ncy fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m (cal 0 0 or for lo 0 on Lm (W 0 onins cal 0 orequire ero if (0 0 ottor (Ta                   | culated  0 ss hm  0 /atts) = (  0 culated  0 ment for 104)m <  0                        | 0<br>(100)m x<br>0<br>for appli<br>0<br>r month,<br>3 × (98) | o<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o | 972.76<br>0.93<br>901.81<br>eather re<br>1419.39<br>dwelling,<br>372.66               | 0.96<br>735.61<br>egion, se<br>1364.06<br>continuo                     | and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermin | 0 0 10) 0 Total f C =               | 0 0 0 24 x [(10 0 = Sum(                                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | able 10)  0  0  102)m ] 3                  | 1234.34                     | (101)<br>(102)<br>(103)                            |
| Heat loss (100)m= Utilisation (101)m= Useful lo. (102)m= Gains (sc (103)m= Space cc set (104) (104)m= Cooled fra Intermitter                                         | n facto n facto sss, hm o olar ga oooling i m to ze o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m (cal 0 or for lo 0 olum (W 0 olins cal 0 require ero if (                                    | ss hm 0 /atts) = ( 0 culated 0 ment for 104)m <                                         | 0 (100)m x 0 for appli 0 r month, 3 × (98)                   | o<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o | 972.76<br>0.93<br>901.81<br>eather re<br>1419.39                                      | 0.96<br>735.61<br>egion, se<br>1364.06                                 | and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and external and e | 0 0 10) 0 Total f C =               | 0 0 0 24 x [(10 0 = Sum( cooled a                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | able 10)  0  0  0  102)m ] 3  = 4) =       | 1234.34                     | (101)<br>(102)<br>(103)<br>(104)<br>(105)          |
| Heat loss (100)m= Utilisation (101)m= Useful lo (102)m= Gains (sc (103)m= Space cc set (104) (104)m=  Cooled fra Intermitter (106)m=                                 | n facto n facto ss, hm olar ga ooling i m to z o action ncy fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m (cal 0 or for lo 0 on Lm (W 0 inins cal 0 require ero if (' 0 ctor (Ta                       | culated                                                                                 | 0 (100)m x 0 for appli 0 r month, 3 × (98 0                  | 0<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o | 972.76  0.93  901.81 eather re 1419.39 dwelling, 372.66                               | 0.96  735.61 egion, se 1364.06 continuo 467.56                         | and exter 785.85  0.95  744.14  ee Table 1273.87  ous ( kW 394.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 10) 0 Total f C =               | 0 0 0 24 x [(10 0 = Sum(                                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | able 10)  0  0  102)m ] 3                  | 1234.34                     | (101)<br>(102)<br>(103)                            |
| Heat loss (100)m= Utilisation (101)m= Useful lo. (102)m= Gains (sc (103)m= Space cc set (104) (104)m= Cooled fra Intermitter (106)m= Space coc                       | n facto n facto ss, hm olar ga ooling i m to z o action ncy fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m (cal 0 or for lo 0 on Lm (W 0 inins cal 0 require ero if (' 0 ctor (Ta                       | culated                                                                                 | 0 (100)m x 0 for appli 0 r month, 3 × (98 0                  | 0<br>0<br>(101)m<br>0<br>cable we<br>0<br>whole o | 972.76  0.93  901.81 eather re 1419.39 dwelling, 372.66                               | 0.96  735.61 egion, se 1364.06 continuo 467.56                         | and extermination and extermination and extermination of the second second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination of the second and extermination o | 0 0 10) 0 Total f C =               | 0 0 0 24 x [(10 0 = Sum( cooled a                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | able 10)  0  0  0  102)m ] 3  = 4) =       | 1234.34                     | (101)<br>(102)<br>(103)<br>(104)<br>(105)          |
| Heat loss (100)m= Utilisation (101)m= Useful loc (102)m= Gains (sc (103)m= Space cc set (104) (104)m= Cooled fra Intermitter (106)m=                                 | n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n facto n fact | m (cal 0 or for lo 0 on Lm (W 0 on scal 0 or require ero if (' 0 or ctor (Ta 0 or cal equiren  | culated  0 ss hm  0 /atts) = ( 0 culated 0 ment for 0 able 10b 0                        | 0 100)m x 0 for appli 0 r month, 3 × (98) 0                  | 0 (104)m 0 (104)m                                 | 972.76  0.93  901.81  eather reconstruction 1419.39  dwelling,  372.66  0.25  × (105) | 0.96  735.61 egion, se 1364.06  continue 467.56  0.25  × (106)r        | and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermin | 0 0 10) 0 Total f C =               | 0 0 0 24 x [(10 0 = Sum( cooled a                                      | e from T 0 0 0 0 0 03)m - ( 0 1,04) area ÷ (4 0 (1,04)           | able 10)  0  0  102)m]  0  = 4) =          | 1234.34                     | (101)<br>(102)<br>(103)<br>(104)<br>(105)          |
| Heat loss (100)m= Utilisation (101)m= Useful lo. (102)m= Gains (sc (103)m= Space cc set (104) (104)m=  Cooled fra Intermitter (106)m=  Space coc (107)m=             | n facto n facto ss, hm o olar ga ooling i m to z o action ncy facto o oling re o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m (cal 0 or for lo 0 on Lm (W 0 onins cal 0 require ero if ( 0 ctor (Ta 0 equiren 0            | culated                                                                                 | 0 (100)m x 0 for appli 0 r month, 3 × (98) 0 ) 0             | 0 (104)m 0 (104)m 0                               | 972.76  0.93  901.81  eather reconstruction 1419.39  dwelling,  372.66  0.25  × (105) | 0.96  735.61 egion, se 1364.06  continue 467.56  0.25  × (106)r        | and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermin | 0 0 10) 0 Total f C = 0 Total       | 0 0 0 24 x [(10 0 = Sum( cooled a                                      | e from T 0 0 0 0 0 03)m - ( 0 1,04) area ÷ (4 0 (1,04)           | able 10)  0  0  0  102)m ] 3  = 4) =  0  0 | 1234.34<br>1<br>0<br>308.59 | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106) |
| Heat loss  (100)m=  Utilisation  (101)m=  Useful loc  (102)m=  Gains (sc  (103)m=  Space cc  set (104)  (104)m=  Cooled fra Intermitter  (106)m=  Space coc  (107)m= | s rate L  o  n facto  sss, hm  o  olar ga  om to ze  om to ze  one coling re  oling re  oling re  oling re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m (cal 0 or for lo 0 on Lm (W 0 on lins cal 0 orequire ero if (' 0 ctor (Ta 0 equiren 0        | lculated 0 ss hm 0 /atts) = ( 0 culated 0 ment for 0 nent for 0 nent in k               | 0 100)m x 0 for appli 0 r month, 3 × (98) 0  month = 0       | 0 (104)m 0 (104)m 0 (104)m                        | 972.76  0.93  901.81  eather re 1419.39  dwelling, 372.66  0.25  × (105) 93.17        | 0.96  735.61 egion, se 1364.06  continue 467.56  0.25  × (106)r 116.89 | and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermin | 0 0 10) 0 Total f C = 0 Total (107) | 0 0 0 24 x [(10 0 = Sum( cooled a 0 = Sum( 0 = Sum( 0 + Sum( 0 + (4) = | e from T 0 0 0 0 0 03)m - ( 0 1,04) area ÷ (4 0 (1,04)           | able 10)  0  0  0  102)m ] 3  = 4) =  0  0 | 1234.34                     | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106) |
| Heat loss (100)m= Utilisation (101)m= Useful lo. (102)m= Gains (sc (103)m= Space cc set (104) (104)m=  Cooled fra Intermitter (106)m=  Space coc (107)m=             | n facto n facto n facto n facto n facto n sss, hm n o n lolar ga n o n olar ga n to z n o n oling re n o n oling re n o loling re n o loling re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m (cal 0 or for lo 0 on Lm (W 0 onins cal 0 orequire ero if (' 0 equiren 0 equiren 0 y Efficie | culated  0 ss hm  0 /atts) = (  0 culated  0 ment for  0 nent for  0 nent in k ency (ca | 0 100)m x 0 for appli 0 r month, 3 × (98) 0  month = 0       | 0 (104)m 0 (104)m 0 (104)m                        | 972.76  0.93  901.81  eather re 1419.39  dwelling, 372.66  0.25  × (105) 93.17        | 0.96  735.61 egion, se 1364.06  continue 467.56  0.25  × (106)r 116.89 | and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermination and extermin | 0 0 10) 0 Total f C = 0 Total (107) | 0 0 0 24 x [(10 0 = Sum( cooled a 0 = Sum( 0 = Sum( 0 + Sum( 0 + (4) = | e from T 0 0 0 0 0 03)m - ( 0 1,0,4) area ÷ (4 0 1,0,4) 0 1,0,7) | able 10)  0  0  0  102)m ] 3  = 4) =  0  0 | 1234.34<br>1<br>0<br>308.59 | (101)<br>(102)<br>(103)<br>(104)<br>(105)<br>(106) |

| Assessor Name:   Chris Hocknell   Stroma Number:   STRO016363   Software Name:   Stroma FSAP 2012   Software Version:   Version: 1.0.4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Software Name: Stroma FSAP 2012         Software Version: Version: 1.0.4.16           Property Address: Apartment 4           Address: Apartment 4           Address: Apartment 4           Area(m²) Av. Height(m) Volume(m³)           Ground floor         61.4 (1a) x 2.7 (2a) = 165.78 (3a)           Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) 61.4 (4)         (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 165.78 (5)           Dwelling volume         (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 165.78 (5)           2. Ventilation rate:         main heating heating heating         + 0 + 0 = 0 x40 = 0 (6a)           Number of chimneys         0 + 0 + 0 = 0 x20 = 0 (6b)           Number of open flues         0 + 0 + 0 = 0 x20 = 0 (6b)           Number of passive vents         0 x10 = 0 (7b)           Number of flueless gas fires         0 x40 = 0 (7c) |
| Address:  1. Overall dwelling dimensions:  Area(m²) Av. Height(m) Volume(m³)  Ground floor  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) 61.4 (4)  Dwelling volume  (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 165.78 (5)  2. Ventilation rate:  Number of chimneys 0 + 0 + 0 = 0 × 40 = 0 (6a)  Number of open flues 0 + 0 + 0 = 0 × 20 = 0 (6b)  Number of intermittent fans  Number of passive vents  Number of flueless gas fires  Area(m²) Av. Height(m) Volume(m³)  (3a)  (3a)  (3a)  (5)  2. Ventilation rate:  0 × 40 = 0 (6a)  (6b)  Number of open flues 0 + 0 + 0 = 0 × 20 = 0 (6b)  Number of passive vents  Number of flueless gas fires  0 × 40 = 0 (7b)                                                                                                                                                                                                   |
| Area(m²)   Av. Height(m)   Volume(m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Area(m²) Av. Height(m) Volume(m³)  Ground floor  61.4 (1a) x 2.7 (2a) = 165.78 (3a)  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) 61.4 (4)  Dwelling volume  (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 165.78 (5)   2. Ventilation rate:  Number of chimneys  0 + 0 + 0 = 0 x40 = 0 (6a)  Number of open flues  0 + 0 + 0 = 0 x20 = 0 (6b)  Number of intermittent fans  Number of passive vents  Number of flueless gas fires  0 x40 = 0 (7b)  Number of flueless gas fires                                                                                                                                                                                                                                                                                                                                                                                            |
| Ground floor  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Dwelling volume  (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 165.78 (5)  2. Ventilation rate:    Main heating heating heating heating heating heating heating hour of open flues   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2. Ventilation rate:    Main heating   Number of chimneys   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. Ventilation rate:           main heating         secondary heating         other         total         m³ per hour           Number of chimneys         0         +         0         +         0         =         0         x 40 =         0         (6a)           Number of open flues         0         +         0         +         0         =         0         x 20 =         0         (6b)           Number of intermittent fans         2         x 10 =         20         (7a)           Number of passive vents         0         x 10 =         0         (7b)           Number of flueless gas fires         0         x 40 =         0         (7c)                                                                                                                                                                                             |
| Number of chimneys         0         +         0         +         0         =         0         x 40         =         0         (6a)           Number of open flues         0         +         0         +         0         =         0         x 20         =         0         (6b)           Number of intermittent fans         2         x 10         =         20         (7a)           Number of passive vents         0         x 10         =         0         (7b)           Number of flueless gas fires         0         x 40         =         0         (7c)                                                                                                                                                                                                                                                                                     |
| Number of chimneys       0       +       0       +       0       +       0       =       0       x 40 =       0       (6a)         Number of open flues       0       +       0       +       0       =       0       x 20 =       0       (6b)         Number of intermittent fans       2       x 10 =       20       (7a)         Number of passive vents       0       x 10 =       0       (7b)         Number of flueless gas fires       0       x 40 =       0       (7c)                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of intermittent fans $ \begin{array}{cccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of passive vents $ \begin{array}{c ccccc} 0 & x & 10 & = & 0 & (7b) \\ \hline Number of flueless gas fires & 0 & x & 40 & = & 0 & (7c) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of flueless gas fires $0 	 x = 0 	 (7c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Trainiser of nacious gas mos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Air changes per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Air changes per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$ 20 $\div (5) =$ 0.12 (8)  If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Number of storeys in the dwelling (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Additional infiltration $[(9)-1] \times 0.1 = 0 $ (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction  o (11)  if both types of wall are present, use the value corresponding to the greater wall area (after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| deducting areas of openings); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| If no draught lobby, enter 0.05, else enter 0  0 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Percentage of windows and doors draught stripped $0.25 - [0.2 \times (14) \div 100] = 0 \tag{14}$ Window infiltration $0.25 - [0.2 \times (14) \div 100] = 0 \tag{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Infiltration rate $ (8) + (10) + (11) + (12) + (13) + (15) = 0 $ (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.27 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered  2 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Number of sides sheltered $2 	mtext{(19)}$<br>Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.85 	mtext{(20)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.23$ $(21)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Infiltration rate modified for monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Monthly average wind speed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Adjusted infiltra                                      | ition rate (allow                        | ving for sl                  | nelter an | nd wind s      | speed) =   | : (21a) x     | (22a)m       |               |             |                  |               |               |
|--------------------------------------------------------|------------------------------------------|------------------------------|-----------|----------------|------------|---------------|--------------|---------------|-------------|------------------|---------------|---------------|
| 0.29                                                   | 0.29 0.28                                | 0.25                         | 0.25      | 0.22           | 0.22       | 0.21          | 0.23         | 0.25          | 0.26        | 0.27             | ]             |               |
| Calculate effec                                        | •                                        | rate for t                   | he appli  | cable ca       | se         |               |              |               | <u> </u>    |                  | _             |               |
| If mechanical                                          |                                          |                              |           |                |            |               |              |               |             |                  | 0             | (23a          |
|                                                        | at pump using App                        |                              |           |                |            |               |              | o) = (23a)    |             |                  | 0             | (23b          |
|                                                        | heat recovery: effi                      | -                            | _         |                |            |               |              |               |             |                  | 0             | (230          |
| a) If balanced                                         | d mechanical v                           | entilation                   | with he   | at recove      | ery (MV    | HR) (24a      | a)m = (2)    | 2b)m + (      | 23b) × [    | 1 – (23c         | ) ÷ 100]      |               |
| (24a)m= 0                                              | 0 0                                      | 0                            | 0         | 0              | 0          | 0             | 0            | 0             | 0           | 0                |               | (24a          |
| b) If balanced                                         | d mechanical v                           | entilation                   | without   | heat red       | covery (I  | MV) (24b      | o)m = (2     | 2b)m + (2     | 23b)        | 1                | 7             |               |
| (24b)m= 0                                              | 0 0                                      | 0                            | 0         | 0              | 0          | 0             | 0            | 0             | 0           | 0                |               | (24b          |
| ,                                                      | buse extract ve $< 0.5 \times (23b)$ ,   |                              | •         | •              |            |               |              | .5 × (23b     | ))          |                  |               |               |
| (24c)m= 0                                              | 0 0                                      | 0                            | 0         | 0              | 0          | 0             | 0            | 0             | 0           | 0                |               | (240          |
| ,                                                      | rentilation or w<br>= 1, then (24c       |                              | •         | •              |            |               |              | 0.5]          |             |                  | _             |               |
| (24d)m= 0.54                                           | 0.54 0.54                                | 0.53                         | 0.53      | 0.52           | 0.52       | 0.52          | 0.53         | 0.53          | 0.53        | 0.54             |               | (240          |
| Effective air of                                       | change rate - e                          | enter (24a                   | ) or (24l | b) or (24      | c) or (24  | ld) in bo     | x (25)       |               | -           | -                | _             |               |
| (25)m= 0.54                                            | 0.54 0.54                                | 0.53                         | 0.53      | 0.52           | 0.52       | 0.52          | 0.53         | 0.53          | 0.53        | 0.54             |               | (25)          |
| 3. Heat losses                                         | and heat loss                            | paramet                      | er:       | •              |            |               | •            |               |             |                  | _             |               |
| ELEMENT                                                | Gross<br>area (m²)                       | Openin<br>m                  |           | Net Ar<br>A ,r |            | U-val<br>W/m2 |              | A X U<br>(W/I | <b>〈</b> )  | k-valu<br>kJ/m²· |               | A X k<br>kJ/K |
| Doors                                                  |                                          |                              |           | 2              | x          | 1.3           | =            | 2.6           |             |                  |               | (26)          |
| Windows Type                                           | 1                                        |                              |           | 3.7            | x1         | /[1/( 1.3 )+  | 0.04] =      | 4.57          |             |                  |               | (27)          |
| Windows Type                                           | 2                                        |                              |           | 0.91           | x1         | /[1/( 1.3 )+  | 0.04] =      | 1.12          |             |                  |               | (27)          |
| Windows Type                                           | 3                                        |                              |           | 6.29           | x1         | /[1/( 1.3 )+  | 0.04] =      | 7.77          |             |                  |               | (27)          |
| Windows Type                                           | 4                                        |                              |           | 8.37           | x1         | /[1/( 1.3 )+  | 0.04] =      | 10.34         | =           |                  |               | (27)          |
| Windows Type                                           | 5                                        |                              |           | 6.29           | x1         | /[1/( 1.3 )+  | 0.04] =      | 7.77          | =           |                  |               | (27)          |
| Walls Type1                                            | 51.43                                    | 29.2                         | 6         | 22.17          | =          | 0.15          |              | 3.33          | =           |                  | $\neg \vdash$ | (29)          |
| Walls Type2                                            | 35.95                                    | 2                            |           | 33.95          | =          | 0.13          |              | 4.53          | 륵 ¦         |                  | ╡ 누           | (29)          |
| Roof                                                   | 61.4                                     | 0                            | =         | 61.4           | =          | 0.13          |              | 6.14          | 륵 ¦         |                  | 북 누           | (30)          |
| Total area of el                                       |                                          |                              |           |                | =          | 0.1           |              | 0.14          |             |                  |               |               |
|                                                        | ements, m                                |                              |           | 148.7          | =          |               |              |               |             |                  |               | (31)          |
| Party wall                                             |                                          |                              |           | 17.92          | =          | 0             | =            | 0             |             |                  | ╡             | (32)          |
| Party floor                                            |                                          |                              |           | 61.4           |            |               |              | \ 0.047       | . <u>.</u>  |                  |               | (32a          |
| * for windows and i<br>** include the areas            |                                          |                              |           |                | atea using | g tormula 1   | 1/[(1/U-vail | ue)+0.04] a   | is given in | i paragrapi      | n 3.2         |               |
| Fabric heat loss                                       |                                          |                              | <i>p</i>  |                |            | (26)(30       | ) + (32) =   |               |             |                  | 52.76         | (33)          |
| Heat capacity C                                        |                                          | ,                            |           |                |            |               | ((28).       | (30) + (32    | 2) + (32a). | (32e) =          | 14029         |               |
| . ,                                                    | ` ,                                      |                              |           |                |            |               |              |               |             | *                |               |               |
| Thermal mass i                                         | parameter (TM                            | 1P = Cm -                    | + TFA) ir | า kJ/m²K       |            |               | Indica       | ative Value:  | iviedium    |                  | 250           | [(35)         |
| Thermal mass  <br>For design assessican be used instea | ments where the a                        | letails of the               | ,         |                |            | recisely the  |              |               |             | able 1f          | 250           | (35)          |
| •                                                      | ments where the a<br>d of a detailed cal | letails of the<br>Iculation. | construct | tion are not   | t known p  | recisely the  |              |               |             | able 1f          | 250           |               |

| Total fabric h                                     | eat loss                  |              |            |             |             |            |             | (33) +     | (36) =                 |                                       |         | 68.55   | (37) |
|----------------------------------------------------|---------------------------|--------------|------------|-------------|-------------|------------|-------------|------------|------------------------|---------------------------------------|---------|---------|------|
| Ventilation he                                     | eat loss ca               | alculated    | l monthly  | y           |             |            |             | (38)m      | = 0.33 × (             | 25)m x (5)                            |         |         | `    |
| Jan                                                | Feb                       | Mar          | Apr        | May         | Jun         | Jul        | Aug         | Sep        | Oct                    | Nov                                   | Dec     |         |      |
| (38)m= 29.71                                       | 29.62                     | 29.53        | 29.11      | 29.03       | 28.66       | 28.66      | 28.59       | 28.8       | 29.03                  | 29.19                                 | 29.35   |         | (38) |
| Heat transfer                                      | coefficie                 | nt, W/K      |            |             |             |            |             | (39)m      | = (37) + (37)          | 38)m                                  |         |         |      |
| (39)m= 98.26                                       | 98.17                     | 98.08        | 97.66      | 97.58       | 97.21       | 97.21      | 97.15       | 97.36      | 97.58                  | 97.74                                 | 97.91   |         |      |
| Heat loss par                                      | rameter (I                | HLP), W      | /m²K       |             |             |            |             |            | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub>                 | 12 /12= | 97.66   | (39) |
| (40)m= 1.6                                         | 1.6                       | 1.6          | 1.59       | 1.59        | 1.58        | 1.58       | 1.58        | 1.59       | 1.59                   | 1.59                                  | 1.59    |         |      |
| Number of da                                       | ays in mo                 | nth (Tab     | le 1a)     |             |             |            |             | ,          | Average =              | Sum(40) <sub>1.</sub>                 | 12 /12= | 1.59    | (40) |
| Jan                                                | Feb                       | Mar          | Apr        | May         | Jun         | Jul        | Aug         | Sep        | Oct                    | Nov                                   | Dec     |         |      |
| (41)m= 31                                          | 28                        | 31           | 30         | 31          | 30          | 31         | 31          | 30         | 31                     | 30                                    | 31      |         | (41) |
|                                                    |                           | •            |            |             |             |            | •           |            | •                      |                                       |         | •       |      |
| 4. Water he                                        | ating ene                 | rgy requi    | irement:   |             |             |            |             |            |                        |                                       | kWh/ye  | ear:    |      |
| Assumed occif TFA > 13                             | 3.9, N = 1                |              | [1 - exp   | (-0.0003    | 349 x (TF   | FA -13.9   | )2)] + 0.0  | 0013 x (   | TFA -13.               |                                       | 02      |         | (42) |
| Annual avera<br>Reduce the ann<br>not more that 12 | nge hot wa<br>ual average | hot water    | usage by   | 5% if the a | welling is  | designed i |             |            | se target o            |                                       | 2.2     |         | (43) |
| Jan                                                | Feb                       | Mar          | Apr        | May         | Jun         | Jul        | Aug         | Sep        | Oct                    | Nov                                   | Dec     |         |      |
| Hot water usage                                    | in litres per             | r day for ea | ach month  | Vd,m = fa   | ctor from T | Table 1c x | (43)        |            |                        |                                       |         |         |      |
| (44)m= 90.42                                       | 87.13                     | 83.84        | 80.55      | 77.27       | 73.98       | 73.98      | 77.27       | 80.55      | 83.84                  | 87.13                                 | 90.42   |         | _    |
| Energy content                                     | of hot water              | used - cal   | culated mo | onthly = 4. | 190 x Vd,r  | n x nm x E | OTm / 3600  |            |                        | m(44) <sub>112</sub> =<br>ables 1b, 1 |         | 986.36  | (44) |
| (45)m= 134.09                                      | 117.27                    | 121.01       | 105.5      | 101.23      | 87.36       | 80.95      | 92.89       | 94         | 109.55                 | 119.58                                | 129.85  |         |      |
| If instantaneous                                   | water heati               | ng at point  | of use (no | hot water   | storage),   | enter 0 in | boxes (46)  |            | Total = Su             | m(45) <sub>112</sub> =                |         | 1293.28 | (45) |
| (46)m= 0                                           | 0                         | 0            | 0          | 0           | 0           | 0          | 0           | 0          | 0                      | 0                                     | 0       |         | (46) |
| Water storag                                       |                           |              |            |             |             |            |             |            |                        |                                       |         | •       |      |
| Storage volu                                       | ` '                       |              |            |             |             | •          |             | ame ves    | sel                    |                                       | 0       |         | (47) |
| If community Otherwise if                          | no stored                 |              |            | -           |             |            | . ,         | ers) ente  | er '0' in (            | 47)                                   |         |         |      |
| Water storag  a) If manufa                         |                           | eclared I    | oss facto  | or is kno   | wn (kWh     | n/day):    |             |            |                        |                                       | 0       |         | (48) |
| Temperature                                        | factor fro                | m Table      | 2b         |             |             | • ,        |             |            |                        |                                       | 0       |         | (49) |
| Energy lost fi                                     | rom water                 | storage      | , kWh/ye   | ear         |             |            | (48) x (49) | ) =        |                        |                                       | 0       |         | (50) |
| b) If manufactory                                  | rage loss                 | factor fr    | om Tabl    |             |             |            |             |            |                        |                                       | 0       |         | (51) |
| If community Volume factor                         | •                         |              | on 4.3     |             |             |            |             |            |                        |                                       | 0       |         | (52) |
| Temperature                                        |                           |              | 2b         |             |             |            |             |            |                        |                                       | 0       |         | (52) |
| Energy lost fi                                     |                           |              |            | ear         |             |            | (47) x (51) | x (52) x ( | 53) =                  |                                       | 0       |         | (54) |
| Enter (50) or                                      |                           | _            | ,          |             |             |            | . ,         | •          |                        | -                                     | 0       |         | (55) |
|                                                    |                           |              |            |             |             |            |             |            |                        |                                       |         | •       |      |

|                                                                                        | storage                                                                               | loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culated f                                                                                                        | or each                                                                                                   | month                                                                 |                                                                     |                                                                            | ((56)m = (                                                                  | 55) × (41)                                                        | m                                            |                                                  |                                        |               |                                      |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------------------|---------------|--------------------------------------|
| (56)m=                                                                                 | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                | 0                                                                                                         | 0                                                                     | 0                                                                   | 0                                                                          | 0                                                                           | 0                                                                 | 0                                            | 0                                                | 0                                      |               | (56)                                 |
| If cylinde                                                                             | er contains                                                                           | dedicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d solar sto                                                                                                      | rage, (57)ı                                                                                               | n = (56)m                                                             | x [(50) – (                                                         | H11)] ÷ (5                                                                 | 0), else (5                                                                 | 7)m = (56)                                                        | m where (                                    | H11) is fro                                      | m Append                               | ı<br>ix H     |                                      |
| (57)m=                                                                                 | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                | 0                                                                                                         | 0                                                                     | 0                                                                   | 0                                                                          | 0                                                                           | 0                                                                 | 0                                            | 0                                                | 0                                      |               | (57)                                 |
| Primary                                                                                | y circuit                                                                             | loss (an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nual) fro                                                                                                        | m Table                                                                                                   | 3                                                                     |                                                                     |                                                                            |                                                                             |                                                                   |                                              |                                                  | 0                                      |               | (58)                                 |
| Primar                                                                                 | y circuit                                                                             | loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culated t                                                                                                        | for each                                                                                                  | month (                                                               | 59)m = (                                                            | (58) ÷ 36                                                                  | 65 × (41)                                                                   | m                                                                 |                                              |                                                  |                                        | •             |                                      |
| (mod                                                                                   | dified by                                                                             | factor fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | om Tab                                                                                                           | le H5 if t                                                                                                | here is s                                                             | solar wat                                                           | ter heatii                                                                 | ng and a                                                                    | cylinde                                                           | r thermo                                     | stat)                                            |                                        |               |                                      |
| (59)m=                                                                                 | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                | 0                                                                                                         | 0                                                                     | 0                                                                   | 0                                                                          | 0                                                                           | 0                                                                 | 0                                            | 0                                                | 0                                      |               | (59)                                 |
| Combi                                                                                  | loss cal                                                                              | culated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for each                                                                                                         | month (                                                                                                   | 61)m =                                                                | (60) ÷ 36                                                           | 65 × (41)                                                                  | )m                                                                          |                                                                   |                                              |                                                  |                                        |               |                                      |
| (61)m=                                                                                 | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                | 0                                                                                                         | 0                                                                     | 0                                                                   | 0                                                                          | 0                                                                           | 0                                                                 | 0                                            | 0                                                | 0                                      |               | (61)                                 |
| Total h                                                                                | eat requ                                                                              | uired for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | water he                                                                                                         | eating ca                                                                                                 | alculated                                                             | for eac                                                             | h month                                                                    | (62)m =                                                                     | 0.85 × (                                                          | (45)m +                                      | (46)m +                                          | (57)m +                                | (59)m + (61)m |                                      |
| (62)m=                                                                                 | 113.97                                                                                | 99.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.86                                                                                                           | 89.68                                                                                                     | 86.05                                                                 | 74.25                                                               | 68.81                                                                      | 78.96                                                                       | 79.9                                                              | 93.11                                        | 101.64                                           | 110.38                                 |               | (62)                                 |
| Solar DH                                                                               | -IW input o                                                                           | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | using App                                                                                                        | endix G oı                                                                                                | Appendix                                                              | H (negati                                                           | ve quantity                                                                | /) (enter '0                                                                | if no sola                                                        | r contribut                                  | ion to wate                                      | er heating)                            | '             |                                      |
| (add ad                                                                                | dditional                                                                             | lines if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FGHRS                                                                                                            | and/or \                                                                                                  | VWHRS                                                                 | applies                                                             | , see Ap                                                                   | pendix (                                                                    | €)                                                                |                                              |                                                  |                                        |               |                                      |
| (63)m=                                                                                 | 0                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                | 0                                                                                                         | 0                                                                     | 0                                                                   | 0                                                                          | 0                                                                           | 0                                                                 | 0                                            | 0                                                | 0                                      |               | (63)                                 |
| Output                                                                                 | from wa                                                                               | ater hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ter                                                                                                              |                                                                                                           |                                                                       | -                                                                   | -                                                                          |                                                                             |                                                                   | -                                            | -                                                | -                                      |               |                                      |
| (64)m=                                                                                 | 113.97                                                                                | 99.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.86                                                                                                           | 89.68                                                                                                     | 86.05                                                                 | 74.25                                                               | 68.81                                                                      | 78.96                                                                       | 79.9                                                              | 93.11                                        | 101.64                                           | 110.38                                 |               |                                      |
| •                                                                                      |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                           |                                                                       |                                                                     |                                                                            | Outp                                                                        | out from wa                                                       | ater heate                                   | r (annual)₁                                      | 12                                     | 1099.29       | (64)                                 |
| Heat ga                                                                                | ains fror                                                                             | n water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating,                                                                                                         | kWh/m                                                                                                     | onth 0.2                                                              | 5 ′ [0.85                                                           | × (45)m                                                                    | + (61)m                                                                     | n] + 0.8 x                                                        | κ [(46)m                                     | + (57)m                                          | + (59)m                                | ]             | _                                    |
| (65)m=                                                                                 | 28.49                                                                                 | 24.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.72                                                                                                            | 22.42                                                                                                     | 21.51                                                                 | 18.56                                                               | 17.2                                                                       | 19.74                                                                       | 19.97                                                             | 23.28                                        | 25.41                                            | 27.59                                  |               | (65)                                 |
| inclu                                                                                  | ude (57)r                                                                             | n in calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of                                                                                                      | of (65)m                                                                                                  | only if c                                                             | ylinder i                                                           | s in the o                                                                 | dwelling                                                                    | or hot w                                                          | ater is fr                                   | om com                                           | munity h                               | eating        |                                      |
|                                                                                        | . , ,                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 5                                                                                                          |                                                                                                           |                                                                       | •                                                                   |                                                                            |                                                                             |                                                                   |                                              |                                                  | •                                      |               |                                      |
|                                                                                        |                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5), Wat                                                                                                          |                                                                                                           | <b>,</b>                                                              |                                                                     |                                                                            |                                                                             |                                                                   |                                              |                                                  |                                        |               |                                      |
| Wetabe                                                                                 | Jan                                                                                   | 3 (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  | te                                                                                                        |                                                                       |                                                                     |                                                                            |                                                                             |                                                                   |                                              |                                                  |                                        |               |                                      |
| (66)m=                                                                                 |                                                                                       | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar                                                                                                              |                                                                                                           | May                                                                   | Jun                                                                 | Jul                                                                        | Aug                                                                         | Sep                                                               | Oct                                          | Nov                                              | Dec                                    |               |                                      |
| (66)m=                                                                                 | 101.05                                                                                | Feb<br>101.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  | Apr<br>101.05                                                                                             | May<br>101.05                                                         | Jun<br>101.05                                                       | Jul<br>101.05                                                              | Aug<br>101.05                                                               | Sep<br>101.05                                                     | Oct                                          | Nov<br>101.05                                    | Dec<br>101.05                          |               | (66)                                 |
| ` ′ [                                                                                  |                                                                                       | 101.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mar<br>101.05                                                                                                    | Apr<br>101.05                                                                                             | 101.05                                                                | 101.05                                                              | 101.05                                                                     | 101.05                                                                      | 101.05                                                            | -                                            |                                                  |                                        |               | (66)                                 |
| Lighting                                                                               |                                                                                       | 101.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mar<br>101.05                                                                                                    | Apr<br>101.05                                                                                             | 101.05                                                                | 101.05                                                              | -                                                                          | 101.05                                                                      | 101.05                                                            | -                                            |                                                  |                                        |               | (66)<br>(67)                         |
| Lighting<br>(67)m=                                                                     | g gains<br>15.73                                                                      | 101.05<br>(calculat<br>13.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mar<br>101.05<br>ted in Ap<br>11.36                                                                              | Apr<br>101.05<br>opendix<br>8.6                                                                           | 101.05<br>_, equat                                                    | 101.05<br>ion L9 o                                                  | 101.05<br>r L9a), a<br>5.87                                                | 101.05<br>Iso see                                                           | 101.05<br>Table 5                                                 | 101.05                                       | 101.05                                           | 101.05                                 |               | , ,                                  |
| Lighting (67)m=  Appliar                                                               | g gains<br>15.73<br>nces gai                                                          | 101.05<br>(calculat<br>13.97<br>ns (calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mar<br>101.05<br>ted in Ap<br>11.36<br>ulated in                                                                 | Apr<br>101.05<br>ppendix<br>8.6<br>Append                                                                 | 101.05<br>L, equat<br>6.43<br>dix L, eq                               | 101.05<br>ion L9 o<br>5.43<br>uation L                              | 101.05<br>r L9a), a<br>5.87<br>13 or L1                                    | 101.05<br>Iso see<br>7.63<br>3a), also                                      | 101.05<br>Table 5<br>10.23<br>see Ta                              | 101.05<br>13<br>ble 5                        | 101.05                                           | 101.05                                 |               | (67)                                 |
| Lighting (67)m= Appliar (68)m=                                                         | g gains<br>15.73<br>nces gai                                                          | 101.05<br>(calculat<br>13.97<br>ns (calc<br>178.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar<br>101.05<br>ted in Ap<br>11.36<br>ulated in                                                                 | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86                                                       | 101.05<br>L, equat<br>6.43<br>dix L, eq                               | 101.05<br>ion L9 of<br>5.43<br>uation L                             | 101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02                          | 101.05<br>Iso see 7.63<br>3a), also                                         | 101.05<br>Table 5<br>10.23<br>see Ta                              | 13 ble 5 144.62                              | 101.05                                           | 101.05                                 |               | , ,                                  |
| Lighting (67)m= Appliar (68)m=                                                         | g gains<br>15.73<br>nces gai                                                          | 101.05<br>(calculat<br>13.97<br>ns (calc<br>178.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar<br>101.05<br>ted in Ap<br>11.36<br>ulated in                                                                 | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86                                                       | 101.05<br>L, equat<br>6.43<br>dix L, eq                               | 101.05<br>ion L9 of<br>5.43<br>uation L                             | 101.05<br>r L9a), a<br>5.87<br>13 or L1                                    | 101.05<br>Iso see 7.63<br>3a), also                                         | 101.05<br>Table 5<br>10.23<br>see Ta                              | 13 ble 5 144.62                              | 101.05                                           | 101.05                                 |               | (67)                                 |
| Lighting (67)m= Appliar (68)m= Cookin (69)m=                                           | g gains 15.73 nces gai 176.46 ng gains 33.1                                           | 101.05<br>(calculated 13.97)<br>ns (calculated 178.29)<br>(calculated 133.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mar<br>101.05<br>ted in Ap<br>11.36<br>ulated in<br>173.68<br>ted in A<br>33.1                                   | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86<br>ppendix<br>33.1                                    | 101.05<br>L, equat<br>6.43<br>dix L, eq<br>151.46<br>L, equat         | 101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15         | 101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a               | 101.05<br>Iso see 7.63<br>3a), also 130.18                                  | 101.05<br>Table 5<br>10.23<br>see Ta<br>134.8<br>ee Table         | 101.05<br>13<br>ble 5<br>144.62              | 101.05<br>15.17<br>157.02                        | 101.05<br>16.17<br>168.68              |               | (67)<br>(68)                         |
| Lighting (67)m=  Appliar (68)m=  Cookin (69)m=  Pumps                                  | g gains 15.73 nces gai 176.46 ng gains 33.1                                           | 101.05<br>(calculated 13.97)<br>ns (calculated 178.29)<br>(calculated 133.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mar<br>101.05<br>ted in Ap<br>11.36<br>ulated in<br>173.68<br>ted in A                                           | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86<br>ppendix<br>33.1                                    | 101.05<br>L, equat<br>6.43<br>dix L, eq<br>151.46<br>L, equat         | 101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15         | 101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a               | 101.05<br>Iso see 7.63<br>3a), also 130.18                                  | 101.05<br>Table 5<br>10.23<br>see Ta<br>134.8<br>ee Table         | 101.05<br>13<br>ble 5<br>144.62              | 101.05<br>15.17<br>157.02                        | 101.05<br>16.17<br>168.68              |               | (67)<br>(68)                         |
| Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m=                              | g gains 15.73 nces gai 176.46 ng gains 33.1 s and far                                 | 101.05<br>(calculated 13.97)<br>ns (calculated 178.29)<br>(calculated 33.1)<br>ns gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar 101.05 ted in Ap 11.36 ulated in 173.68 ted in Ap 33.1 (Table 5                                              | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86<br>ppendix<br>33.1<br>5a)                             | 101.05<br>L, equat<br>6.43<br>dix L, eq<br>151.46<br>L, equat<br>33.1 | 101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1 | 101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1      | 101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1      | 101.05<br>Table 5<br>10.23<br>see Ta<br>134.8<br>ee Table<br>33.1 | 101.05<br>13<br>ble 5<br>144.62<br>5<br>33.1 | 101.05<br>15.17<br>157.02<br>33.1                | 101.05<br>16.17<br>168.68<br>33.1      |               | (67)<br>(68)<br>(69)                 |
| Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m=                              | g gains 15.73 nces gai 176.46 ng gains 33.1 s and far                                 | 101.05<br>(calculated 13.97)<br>ns (calculated 178.29)<br>(calculated 33.1)<br>ns gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar<br>101.05<br>ted in Ap<br>11.36<br>ulated in<br>173.68<br>ted in A<br>33.1<br>(Table 5                       | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86<br>ppendix<br>33.1<br>5a)                             | 101.05<br>L, equat<br>6.43<br>dix L, eq<br>151.46<br>L, equat<br>33.1 | 101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1 | 101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1      | 101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1      | 101.05<br>Table 5<br>10.23<br>see Ta<br>134.8<br>ee Table<br>33.1 | 101.05<br>13<br>ble 5<br>144.62<br>5<br>33.1 | 101.05<br>15.17<br>157.02<br>33.1                | 101.05<br>16.17<br>168.68<br>33.1      |               | (67)<br>(68)<br>(69)                 |
| Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m=                | g gains 15.73 nces gai 176.46 ng gains 33.1 s and far 0 s e.g. ev -80.84              | 101.05<br>(calcular<br>13.97<br>ns (calc<br>178.29<br>(calcula<br>33.1<br>ns gains<br>0<br>aporatio<br>-80.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mar<br>101.05<br>ted in Ap<br>11.36<br>ulated in<br>173.68<br>ted in A<br>33.1<br>(Table 5<br>0<br>on (negating) | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86<br>ppendix<br>33.1<br>5a)<br>0                        | 101.05 L, equat 6.43 dix L, eq 151.46 L, equat 33.1 0 es) (Tab        | 101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1 | 101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1      | 101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>0, also se<br>33.1      | 101.05<br>Table 5<br>10.23<br>see Ta<br>134.8<br>ee Table<br>33.1 | 101.05<br>13<br>ble 5<br>144.62<br>5<br>33.1 | 101.05<br>15.17<br>157.02<br>33.1                | 101.05<br>16.17<br>168.68<br>33.1      |               | (67)<br>(68)<br>(69)<br>(70)         |
| Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m=                | g gains 15.73 nces gai 176.46 ng gains 33.1 s and far 0 s e.g. ev -80.84              | 101.05 (calculated 13.97) ns (calculated 178.29) (calculated 33.1) ns gains 0 aporatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mar<br>101.05<br>ted in Ap<br>11.36<br>ulated in<br>173.68<br>ted in A<br>33.1<br>(Table 5<br>0<br>on (negating) | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86<br>ppendix<br>33.1<br>5a)<br>0                        | 101.05 L, equat 6.43 dix L, eq 151.46 L, equat 33.1 0 es) (Tab        | 101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1 | 101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1      | 101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>0, also se<br>33.1      | 101.05<br>Table 5<br>10.23<br>see Ta<br>134.8<br>ee Table<br>33.1 | 101.05<br>13<br>ble 5<br>144.62<br>5<br>33.1 | 101.05<br>15.17<br>157.02<br>33.1                | 101.05<br>16.17<br>168.68<br>33.1      |               | (67)<br>(68)<br>(69)<br>(70)         |
| Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m= Water I (72)m= | g gains 15.73 nces gai 176.46 ng gains 33.1 s and far 0 s e.g. ev -80.84 heating 38.3 | 101.05 (calculated 13.97) ns (calculated 178.29) (calculated 33.1) ns gains 0 aporation -80.84 gains (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar 101.05 ted in Ap 11.36 ulated in 173.68 ted in Ap 33.1 (Table 5 0 in (negation -80.84 Table 5) 34.56         | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86<br>ppendix<br>33.1<br>5a)<br>0<br>tive valu<br>-80.84 | 101.05 L, equat 6.43 dix L, eq 151.46 L, equat 33.1  0 es) (Tab       | 101.05 ion L9 of 5.43 uation L 139.8 ion L15 33.1  0 le 5) -80.84   | 101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1      | 101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>0, also se<br>33.1<br>0 | 101.05 Table 5 10.23 see Ta 134.8 ee Table 33.1 0 -80.84          | 101.05  13 ble 5 144.62 5 33.1  0 -80.84     | 101.05<br>15.17<br>157.02<br>33.1<br>0<br>-80.84 | 101.05<br>16.17<br>168.68<br>33.1<br>0 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m= Water I (72)m= | g gains 15.73 nces gai 176.46 ng gains 33.1 s and far 0 s e.g. ev -80.84 heating 38.3 | 101.05 (calculated 13.97) ns (calculated 178.29) (calculated 33.1) ns gains 0 aporation -80.84 gains (Taggins ( | Mar 101.05 ted in Ap 11.36 ulated in 173.68 ted in Ap 33.1 (Table 5 0 in (negation -80.84 Table 5) 34.56         | Apr<br>101.05<br>ppendix<br>8.6<br>Append<br>163.86<br>ppendix<br>33.1<br>5a)<br>0<br>tive valu<br>-80.84 | 101.05 L, equat 6.43 dix L, eq 151.46 L, equat 33.1  0 es) (Tab       | 101.05 ion L9 of 5.43 uation L 139.8 ion L15 33.1  0 le 5) -80.84   | 101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1<br>0 | 101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>0, also se<br>33.1<br>0 | 101.05 Table 5 10.23 see Ta 134.8 ee Table 33.1 0 -80.84          | 101.05  13 ble 5 144.62 5 33.1  0 -80.84     | 101.05<br>15.17<br>157.02<br>33.1<br>0<br>-80.84 | 101.05<br>16.17<br>168.68<br>33.1<br>0 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |            | Gains<br>(W) |      |
|---------------------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|------------|--------------|------|
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 36.79            |   | 0.55           | x | 0.7            | =          | 82.17        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 36.79            |   | 0.55           | x | 0.7            | <b>=</b>   | 61.75        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 62.67            |   | 0.55           | x | 0.7            | =          | 139.96       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 62.67            |   | 0.55           | x | 0.7            | =          | 105.18       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 85.75            |   | 0.55           | x | 0.7            | =          | 191.5        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 85.75            |   | 0.55           | x | 0.7            | =          | 143.91       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 106.25           |   | 0.55           | x | 0.7            | <b>=</b>   | 237.28       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 106.25           |   | 0.55           | x | 0.7            | =          | 178.31       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 119.01           |   | 0.55           | x | 0.7            | <b>=</b>   | 265.77       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 119.01           |   | 0.55           | x | 0.7            | =          | 199.72       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 118.15           |   | 0.55           | x | 0.7            | =          | 263.85       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 118.15           |   | 0.55           | x | 0.7            | <b>=</b>   | 198.28       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 113.91           |   | 0.55           | x | 0.7            | <b>=</b>   | 254.38       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 113.91           |   | 0.55           | x | 0.7            | <b>=</b>   | 191.16       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | X | 104.39           |   | 0.55           | x | 0.7            | ] =        | 233.12       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | X | 104.39           |   | 0.55           | X | 0.7            | ] =        | 175.19       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | X | 92.85            |   | 0.55           | X | 0.7            | =          | 207.35       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 92.85            |   | 0.55           | x | 0.7            | =          | 155.82       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | X | 69.27            |   | 0.55           | X | 0.7            | ] =        | 154.69       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | X | 69.27            |   | 0.55           | X | 0.7            | =          | 116.25       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | X | 44.07            |   | 0.55           | x | 0.7            | ] =        | 98.42        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | X | 44.07            |   | 0.55           | X | 0.7            | ] =        | 73.96        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | X | 31.49            |   | 0.55           | X | 0.7            | ] <b>=</b> | 70.32        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | X | 31.49            |   | 0.55           | X | 0.7            | ] =        | 52.84        | (79) |
| Northwest 0.9x            | 0.77                      | x | 3.7        | X | 11.28            | X | 0.55           | X | 0.7            | <b>=</b>   | 22.28        | (81) |
| Northwest 0.9x            | 0.77                      | x | 0.91       | x | 11.28            | x | 0.55           | x | 0.7            | =          | 2.74         | (81) |
| Northwest 0.9x            | 0.77                      | x | 6.29       | x | 11.28            | x | 0.55           | x | 0.7            | =          | 18.94        | (81) |
| Northwest 0.9x            | 0.77                      | X | 3.7        | X | 22.97            | X | 0.55           | X | 0.7            | =          | 45.34        | (81) |
| Northwest 0.9x            | 0.77                      | x | 0.91       | X | 22.97            | X | 0.55           | x | 0.7            | =          | 5.58         | (81) |
| Northwest 0.9x            | 0.77                      | x | 6.29       | x | 22.97            | x | 0.55           | x | 0.7            | =          | 38.54        | (81) |
| Northwest 0.9x            | 0.77                      | x | 3.7        | x | 41.38            | x | 0.55           | x | 0.7            | =          | 81.7         | (81) |
| Northwest 0.9x            | 0.77                      | x | 0.91       | x | 41.38            | x | 0.55           | x | 0.7            | =          | 10.05        | (81) |
| Northwest 0.9x            | 0.77                      | x | 6.29       | x | 41.38            | x | 0.55           | x | 0.7            | <b>=</b>   | 69.44        | (81) |
| Northwest 0.9x            | 0.77                      | x | 3.7        | X | 67.96            | X | 0.55           | X | 0.7            | <b>=</b>   | 134.17       | (81) |
| Northwest 0.9x            | 0.77                      | x | 0.91       | X | 67.96            | x | 0.55           | x | 0.7            | ] =        | 16.5         | (81) |
| Northwest 0.9x            | 0.77                      | X | 6.29       | x | 67.96            | x | 0.55           | x | 0.7            | ] =        | 114.04       | (81) |
| Northwest 0.9x            | 0.77                      | X | 3.7        | x | 91.35            | x | 0.55           | x | 0.7            | ] =        | 180.35       | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.91       | x | 91.35            | x | 0.55           | x | 0.7            | j =        | 22.18        | (81) |
| Northwest 0.9x            | 0.77                      | X | 6.29       | x | 91.35            | x | 0.55           | x | 0.7            | ] =        | 153.3        | (81) |
|                           |                           |   |            | - |                  | - |                | • |                | =          |              |      |

| Northwest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _           |                                             | 1        |               |             |                |              |        | ٦          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------|----------|---------------|-------------|----------------|--------------|--------|------------|
| Northwest 0.9x 0.77 x 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X           | 97.38                                       | X        | 0.55          | X           | 0.7            | _ =          | 192.27 | (81)       |
| Northwest 0.9x 0.77 x 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×           | 97.38                                       | X        | 0.55          | ×           | 0.7            | _ =          | 23.64  | (81)       |
| Northwest 0.9x 0.77 x 6.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X           | 97.38                                       | X        | 0.55          | X           | 0.7            | =            | 163.43 | (81)       |
| Northwest 0.9x 0.77 x 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X           | 91.1                                        | X        | 0.55          | X           | 0.7            | =            | 179.87 | (81)       |
| Northwest 0.9x 0.77 x 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X           | 91.1                                        | X        | 0.55          | X           | 0.7            | =            | 22.12  | (81)       |
| Northwest 0.9x 0.77 x 6.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X           | 91.1                                        | X        | 0.55          | X           | 0.7            | =            | 152.89 | (81)       |
| Northwest 0.9x 0.77 x 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X           | 72.63                                       | X        | 0.55          | X           | 0.7            | =            | 143.39 | (81)       |
| Northwest 0.9x 0.77 x 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X           | 72.63                                       | X        | 0.55          | x           | 0.7            | =            | 17.63  | (81)       |
| Northwest 0.9x 0.77 x 6.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X           | 72.63                                       | X        | 0.55          | x           | 0.7            | =            | 121.88 | (81)       |
| Northwest 0.9x 0.77 x 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X           | 50.42                                       | X        | 0.55          | x           | 0.7            | =            | 99.55  | (81)       |
| Northwest 0.9x 0.77 x 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X           | 50.42                                       | X        | 0.55          | x           | 0.7            | =            | 12.24  | (81)       |
| Northwest 0.9x 0.77 x 6.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x           | 50.42                                       | X        | 0.55          | x           | 0.7            |              | 84.62  | (81)       |
| Northwest 0.9x 0.77 x 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X           | 28.07                                       | X        | 0.55          | x           | 0.7            | =            | 55.41  | (81)       |
| Northwest 0.9x 0.77 x 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×           | 28.07                                       | X        | 0.55          | ×           | 0.7            |              | 6.81   | (81)       |
| Northwest 0.9x 0.77 x 6.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×           | 28.07                                       | X        | 0.55          | x           | 0.7            | =            | 47.1   | (81)       |
| Northwest 0.9x 0.77 x 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×           | 14.2                                        | X        | 0.55          | ×           | 0.7            | <del>-</del> | 28.03  | (81)       |
| Northwest 0.9x 0.77 x 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×           | 14.2                                        | x        | 0.55          | x           | 0.7            | ╡ =          | 3.45   | (81)       |
| Northwest 0.9x 0.77 x 6.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×           | 14.2                                        | X        | 0.55          | ×           | 0.7            | =            | 23.83  | (81)       |
| Northwest 0.9x 0.77 x 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×           | 9.21                                        | j×       | 0.55          | ×           | 0.7            | _ =          | 18.19  | (81)       |
| Northwest 0.9x 0.77 x 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = x         | 9.21                                        | X        | 0.55          | x           | 0.7            | = =          | 2.24   | (81)       |
| Northwest 0.9x 0.77 x 6.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×           | 9.21                                        | )<br>  x | 0.55          | x           | 0.7            | =            | 15.46  | (81)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <u> </u>                                    | _        |               | _           | -              |              |        | <b>_</b>   |
| Solar gains in watts, calculated for each mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nth         |                                             | (83)m    | n = Sum(74)m  | (82)m       |                |              |        |            |
| (83)m= 187.86 334.6 496.59 680.3 821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 41.47 800.41                                | 691      |               | 380.26      | 227.68         | 159.05       | ]      | (83)       |
| Total gains – internal and solar (84)m = (73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br>)m + (  | 83)m , watts                                |          | !             |             |                | <u> </u>     | J      |            |
| (84)m= 471.67 617.27 769.52 937.21 106 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 065.8 1014.73                               | 908      | .87 785.67    | 622.48      | 3 488.47       | 434.3        | ]      | (84)       |
| 7. Mean internal temperature (heating sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oon)        |                                             | ļ        |               |             |                | l .          |        |            |
| Temperature during heating periods in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | aroa from Tak                               | hla O    | Th1 (°C)      |             |                |              | 21     | (85)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           |                                             | DIE 9    | , 1111 ( C)   |             |                |              | 21     | (03)       |
| Utilisation factor for gains for living area, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ť           |                                             | T _      | Can           | Oct         | Nov            | Daa          | l      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ay          | Jun         Jul           0.55         0.41 | 0.4      | ug Sep        | Oct<br>0.94 | Nov<br>0.99    | Dec          |        | (86)       |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                             |          | !             | 0.94        | 0.99           | 1            |        | (00)       |
| Mean internal temperature in living area T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | <del>i</del>                                | 1        | <del> </del>  |             |                |              | 1      | (0-)       |
| (87)m= 19.34 19.62 20.03 20.49 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81   2      | 20.95 20.99                                 | 20.      | 98 20.86      | 20.39       | 19.76          | 19.28        |        | (87)       |
| Temperature during heating periods in res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t of dv     | elling from Ta                              | able 9   | 9, Th2 (°C)   |             |                |              |        |            |
| (88)m= 19.61 19.61 19.62 19.62 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62          | 19.63                                       | 19.      | 63 19.62      | 19.62       | 19.62          | 19.62        |        | (88)       |
| Utilisation factor for gains for rest of dwelli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng, h2      | ,m (see Table                               | 9a)      |               |             |                |              |        |            |
| (89)m= 0.99 0.98 0.94 0.84 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 0.45 0.29                                   | 0.3      | 34 0.63       | 0.91        | 0.98           | 0.99         |        | (89)       |
| Mean internal temperature in the rest of dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | velling     | T2 (follow sta                              | ene 3    | to 7 in Table | 2 9c)       | •              | •            |        |            |
| (90)m= 18.15 18.43 18.82 19.25 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del> | 12 (10110W Ste                              | 19.      |               | 19.17       | 18.57          | 18.09        | ]      | (90)       |
| (47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 1 .5.52                                     | 1        |               |             | ring area ÷ (4 |              | 0.5    | (91)       |
| Managinta malitary and the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control o | منالمييا    | ~\ = fl A × T1                              | . /1     | fl A \ v TO   |             |                |              | L      | <b>`</b> ′ |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m=      | 18.74   | 19.02     | 19.42           | 19.87                | 20.16     | 20.28     | 20.3       | 20.3       | 20.21       | 19.78              | 19.16     | 18.69      |         | (92)  |
|-------------|---------|-----------|-----------------|----------------------|-----------|-----------|------------|------------|-------------|--------------------|-----------|------------|---------|-------|
| Apply a     | ıdjustm | ent to th | ne mean         | internal             | temper    | ature fro | m Table    | 4e, whe    | re appro    | opriate            |           |            |         |       |
| (93)m=      | 18.74   | 19.02     | 19.42           | 19.87                | 20.16     | 20.28     | 20.3       | 20.3       | 20.21       | 19.78              | 19.16     | 18.69      |         | (93)  |
| 8. Spac     | ce heat | ing requ  | iirement        |                      |           |           |            |            |             |                    |           |            |         |       |
|             |         |           |                 |                      |           | ed at ste | ep 11 of   | Table 9    | o, so tha   | t Ti,m=(           | 76)m an   | d re-calc  | ulate   |       |
| the utilis  | - 1     | i         |                 | using Ta             |           | lum       | 11         | ۸۰۰۰       | Con         | Oat                | Nov       | Daa        |         |       |
| Litilicati  | Jan     | Feb       | Mar<br>ains, hm | Apr                  | May       | Jun       | Jul        | Aug        | Sep         | Oct                | Nov       | Dec        |         |       |
|             | 0.99    | 0.98      | 0.94            | 0.85                 | 0.69      | 0.5       | 0.35       | 0.41       | 0.67        | 0.91               | 0.98      | 0.99       |         | (94)  |
| ` /         |         |           |                 | 1)m x (84            |           | 0.0       | 0.00       | 0.41       | 0.07        | 0.01               | 0.00      | 0.00       |         | (= -) |
|             | 467.33  | 602.34    | 722.18          | 792.7                | 728.72    | 530.95    | 355.94     | 371.45     | 529.57      | 567.58             | 479.21    | 431.32     |         | (95)  |
| ` ′         |         |           |                 | perature             |           |           |            |            |             |                    |           |            |         | , ,   |
| (96)m=      | 4.3     | 4.9       | 6.5             | 8.9                  | 11.7      | 14.6      | 16.6       | 16.4       | 14.1        | 10.6               | 7.1       | 4.2        |         | (96)  |
|             | ss rate | for mea   | an intern       | al tempe             | erature.  | Lm . W =  | -[(39)m :  | x [(93)m   | <br>– (96)m | 1                  |           |            |         |       |
| _           | 419.18  | 1386.4    | 1267.38         |                      | 825.45    | 551.88    | 359.94     | 378.64     | 594.58      | 895.71             | 1178.83   | 1418.27    |         | (97)  |
| Space h     | heating | require   | ement fo        | r each m             | nonth, k\ | Nh/mont   | th = 0.02  | 24 x [(97  | )m – (95    | )m] x (4           | 1)m       |            |         |       |
| (98)m= 7    | 708.18  | 526.89    | 405.63          | 200.43               | 71.97     | 0         | 0          | 0          | 0           | 244.13             | 503.73    | 734.29     |         |       |
| _           |         |           |                 |                      |           |           |            | Tota       | l per year  | (kWh/year          | ) = Sum(9 | 8)15,912 = | 3395.22 | (98)  |
| Space h     | heating | require   | ement in        | kWh/m²               | /vear     |           |            |            |             |                    |           |            | 55.3    | (99)  |
| •           |         | •         |                 |                      | , y ou.   |           |            |            |             |                    |           |            |         |       |
|             |         |           | uiremen         |                      | Soo Tol   | ala 10h   |            |            |             |                    |           |            |         |       |
| Calcula     | Jan     | Feb       | Mar             | August.<br>Apr       | May       | Jun       | Jul        | Aug        | Sep         | Oct                | Nov       | Dec        |         |       |
| Heat los    |         |           |                 |                      |           | ı         | l          |            |             |                    |           | able 10)   |         |       |
| (100)m=     | 0       | 0         | 0               | 0                    | 0         | 913.82    | 719.39     | 738.32     | 0           | 0                  | 0         | 0          |         | (100) |
| Utilisatio  | on fact | or for lo | ss hm           |                      |           |           |            |            |             |                    |           |            |         |       |
| (101)m=     | 0       | 0         | 0               | 0                    | 0         | 0.91      | 0.95       | 0.93       | 0           | 0                  | 0         | 0          |         | (101) |
| Useful I    | loss, h | nLm (W    | /atts) = (      | 100)m x              | (101)m    |           |            |            |             |                    |           |            |         |       |
| (102)m=     | 0       | 0         | 0               | 0                    | 0         | 834.6     | 682.85     | 684.41     | 0           | 0                  | 0         | 0          |         | (102) |
| Gains (     | solar g | ains cal  | culated         | for appli            | cable we  | eather re | gion, se   | e Table    | 10)         |                    |           |            |         |       |
| (103)m=     | 0       | 0         | 0               | 0                    | 0         | 1321.12   | 1259.94    | 1137.38    | 0           | 0                  | 0         | 0          |         | (103) |
| •           | _       | •         |                 | r month,<br>3 × (98) |           | lwelling, | continuo   | ous ( kW   | h') = 0.0   | 24 x [(10          | 03)m – (  | 102)m ] :  | k (41)m |       |
| (104)m=     | 0       | 0         | 0               | 0                    | 0         | 350.3     | 429.35     | 337.01     | 0           | 0                  | 0         | 0          |         |       |
| (101)       |         |           |                 |                      |           | 000.0     | 0.00       | 007.101    |             | = Sum(             |           | =          | 1116.66 | (104) |
| Cooled fi   | raction |           |                 |                      |           |           |            |            |             | cooled             | ,         |            | 1       | (105) |
| Intermitte  | ency fa | ctor (Ta  | ble 10b         | )                    |           |           |            |            |             |                    | `         | , ,        |         |       |
| (106)m=     | 0       | 0         | 0               | 0                    | 0         | 0.25      | 0.25       | 0.25       | 0           | 0                  | 0         | 0          |         |       |
|             |         |           |                 |                      |           |           |            |            | Total       | = Sum(             | 104)      | =          | 0       | (106) |
| Space co    | ooling  | requiren  | nent for        | month =              | (104)m    | × (105)   | × (106)r   | n          |             |                    |           | ,          |         |       |
| (107)m=     | 0       | 0         | 0               | 0                    | 0         | 87.57     | 107.34     | 84.25      | 0           | 0                  | 0         | 0          |         | _     |
|             |         |           |                 |                      |           |           |            |            | Total       | = Sum(             | 107)      | =          | 279.16  | (107) |
| Space co    | ooling  | requiren  | nent in k       | :Wh/m²/y             | ear/      |           |            |            | (107)       | ) ÷ (4) =          |           |            | 4.55    | (108) |
| 8f Eabrid   | c Enor  | av Effici | ency (ca        | loulated             | only un   | der ener  | cial cond  | litione e  | oo coctic   | on 11)             |           |            |         |       |
| or. I abrid | CEITE   | gy Ellici | ericy (ca       | iiculateu            | Offig un  | uei spec  | Jiai Coriu | illions, s | ee seciic   | )         <u> </u> |           |            |         |       |

|                                                        |                   |                           | Hser                                  | Details:              |                    |                   |                       |           |                       |                  |
|--------------------------------------------------------|-------------------|---------------------------|---------------------------------------|-----------------------|--------------------|-------------------|-----------------------|-----------|-----------------------|------------------|
| Assessor Name:                                         | Chris Hoo         | knell                     | 0001                                  |                       | a Num              | hor               |                       | STDO      | 016363                |                  |
| Software Name:                                         |                   | SAP 2012                  |                                       |                       | a Nulli<br>are Vel |                   |                       |           | on: 1.0.4.16          |                  |
|                                                        |                   |                           | Property                              | / Address             |                    |                   |                       |           |                       |                  |
| Address :                                              |                   |                           |                                       |                       |                    |                   |                       |           |                       |                  |
| 1. Overall dwelling dir                                | nensions:         |                           | _                                     |                       |                    |                   |                       |           |                       |                  |
| Ground floor                                           |                   |                           | Are                                   | <b>ea(m²)</b><br>75.4 | (1a) x             |                   | <b>ight(m)</b><br>2.7 | (2a) =    | Volume(m <sup>3</sup> | <b>)</b><br>(3a) |
|                                                        | (1a)+(1b)+(1a)    | ı (1d) ⊥ (1o) ⊥           | (1p)                                  |                       | ]`                 |                   | 2.1                   | _(2a) -   | 203.50                | (Ja)             |
| Total floor area TFA =                                 | (1a)+(1b)+(1c)-   | r(10)+(1e)+               | (111)                                 | 75.4                  | (4)                | )                 | 1) . (0 - ) .         | (0)       |                       | _                |
| Dwelling volume                                        |                   |                           |                                       |                       | (3a)+(3b           | )+(3c)+(3c        | l)+(3e)+              | (3n) =    | 203.58                | (5)              |
| 2. Ventilation rate:                                   | main              | secon                     | larv                                  | other                 |                    | total             |                       |           | m³ per hou            | r                |
| N                                                      | heating           | heatin                    | <u>g</u> _                            |                       |                    |                   |                       | 40 -      |                       | _                |
| Number of chimneys                                     | 0                 | + 0                       | + [                                   | 0                     | ╛╹                 | 0                 |                       | 40 =      | 0                     | (6a)             |
| Number of open flues                                   | 0                 | + 0                       | +                                     | 0                     | _ = [              | 0                 |                       | 20 =      | 0                     | (6b)             |
| Number of intermittent                                 | fans              |                           |                                       |                       |                    | 3                 | X '                   | 10 =      | 30                    | (7a)             |
| Number of passive ver                                  | nts               |                           |                                       |                       |                    | 0                 | X                     | 10 =      | 0                     | (7b)             |
| Number of flueless gas                                 | fires             |                           |                                       |                       |                    | 0                 | X 4                   | 40 =      | 0                     | (7c)             |
|                                                        |                   |                           |                                       |                       |                    |                   |                       | Air ch    | nanges per ho         | r                |
| Inditantian due to object                              | and flues and     | fono - (60)+(6b           | \+/7a\+/7h\-                          | L(7o) =               |                    |                   |                       |           |                       | _                |
| Infiltration due to chimr  If a pressurisation test ha | •                 |                           |                                       |                       | continue fr        | 30<br>om (9) to i |                       | ÷ (5) =   | 0.15                  | (8)              |
| Number of storeys in                                   |                   |                           | , , , , , , , , , , , , , , , , , , , | , carerinee .         | ooninao n          | 0111 (0) 10 (     | (10)                  |           | 0                     | (9)              |
| Additional infiltration                                |                   | •                         |                                       |                       |                    |                   | [(9)                  | -1]x0.1 = | 0                     | (10)             |
| Structural infiltration:                               | 0.25 for steel of | or timber frame           | or 0.35 f                             | or mason              | ry constr          | ruction           |                       |           | 0                     | (11)             |
| if both types of wall are                              |                   |                           | g to the gre                          | ater wall are         | ea (after          |                   |                       |           |                       |                  |
| deducting areas of ope<br>If suspended woode           |                   |                           | r 0.1 (sea                            | led), else            | enter 0            |                   |                       |           | 0                     | (12)             |
| If no draught lobby,                                   |                   | ,                         | 0.1 (000                              | .04), 0.00            | 011101 0           |                   |                       |           | 0                     | (13)             |
| Percentage of windo                                    |                   |                           | d                                     |                       |                    |                   |                       |           | 0                     | (14)             |
| Window infiltration                                    |                   |                           |                                       | 0.25 - [0.2           | 2 x (14) ÷ 1       | 00] =             |                       |           | 0                     | (15)             |
| Infiltration rate                                      |                   |                           |                                       | (8) + (10)            | + (11) + (1        | 12) + (13) -      | + (15) =              |           | 0                     | (16)             |
| Air permeability valu                                  | e, q50, express   | ed in cubic me            | tres per h                            | our per s             | quare m            | etre of e         | nvelope               | area      | 3                     | (17)             |
| If based on air permea                                 | bility value, the | $n (18) = [(17) \div 20]$ | ]+(8), other                          | wise (18) =           | (16)               |                   |                       |           | 0.3                   | (18)             |
| Air permeability value app                             |                   | tion test has been        | done or a d                           | egree air pe          | rmeability         | is being u        | sed                   |           |                       | _                |
| Number of sides shelte<br>Shelter factor               | ered              |                           |                                       | (20) = 1 -            | [0.075 x (1        | 19)1 =            |                       |           | 1                     | (19)             |
| Infiltration rate incorpor                             | rating shaltar fa | ctor                      |                                       | (21) = (18            |                    | .0/]              |                       |           | 0.92                  | $\frac{1}{2}$    |
| Infiltration rate modified                             | •                 |                           |                                       | (21) (10              | ) X (20)           |                   |                       |           | 0.28                  | (21)             |
| Jan Feb                                                | Mar Apr           | May Ju                    | n Jul                                 | Aug                   | Sep                | Oct               | Nov                   | Dec       | ]                     |                  |
| Monthly average wind                                   |                   |                           | "                                     | I ''ug                | 1 000              | 1 000             | 1 1101                | 1 200     | J                     |                  |
| (22)m= 5.1 5                                           | 4.9 4.4           | 4.3 3.8                   | 3.8                                   | 3.7                   | 4                  | 4.3               | 4.5                   | 4.7       | ]                     |                  |
|                                                        | <del>1</del>      |                           |                                       |                       | I                  | <u> </u>          | I                     | 1         | J                     |                  |
| Wind Factor (22a)m =                                   |                   | , ,                       |                                       |                       | ·                  | 1                 | •                     |           | 1                     |                  |
| (22a)m= 1.27 1.25                                      | 1.23 1.1          | 1.08 0.9                  | 0.95                                  | 0.92                  | 1                  | 1.08              | 1.12                  | 1.18      |                       |                  |

| Adjusted infiltrat                | tion rate | (allowi   | ng for sh    | nelter an    | nd wind s  | speed) =                                         | (21a) x                                          | (22a)m        |                          |              |                |               |       |
|-----------------------------------|-----------|-----------|--------------|--------------|------------|--------------------------------------------------|--------------------------------------------------|---------------|--------------------------|--------------|----------------|---------------|-------|
| 0.35                              | 0.34      | 0.34      | 0.3          | 0.3          | 0.26       | 0.26                                             | 0.25                                             | 0.28          | 0.3                      | 0.31         | 0.32           |               |       |
| Calculate effect                  |           | •         | rate for t   | he appli     | cable ca   | se                                               |                                                  | !             |                          |              |                | Γ             |       |
| If mechanical If exhaust air hea  |           |           | andiv N. (2) | 2h) = (22a   | a) v Emy ( | auation (                                        | VEVV otho                                        | nuina (22h    | \ = (22a)                |              |                | 0             | (23a) |
|                                   |           | 0         |              | , ,          | , ,        | . ,                                              | ,, .                                             | ,             | ) – (23a)                |              |                | 0             | (23b) |
| If balanced with h                |           | -         | -            | _            |            |                                                  |                                                  |               | Ola \                    | 00-1 [       | 4 (00 -)       | 0             | (23c) |
| a) If balanced                    |           |           |              |              | at recove  | <del>-                                    </del> | TR) (248                                         | ŕ             | <u> </u>                 | <del></del>  | <del>```</del> | i ÷ 100]<br>I | (24a) |
| (24a)m= 0                         | 0         | 0         | 0            | 0            |            | 0                                                |                                                  | 0             | 0                        | 0            | 0              |               | (24a) |
| b) If balanced                    |           |           |              |              | 1          | <del></del>                                      | <del>-                                    </del> | <del>``</del> | <del>r `</del>           |              | Ι ,            | 1             | (24b) |
| (24b)m= 0                         | 0         | 0         | 0            | 0            | 0          | 0                                                | 0                                                | 0             | 0                        | 0            | 0              |               | (240) |
| c) If whole ho<br>if (22b)m       |           |           |              | •            | •          |                                                  |                                                  |               | 5 x (23h                 | 1)           |                |               |       |
| (24c)m= 0                         | 0         | 0         | 0            | 0            | 0          | 0                                                | 0 (22.                                           | 0             | 0                        | 0            | 0              | ]             | (24c) |
| d) If natural v                   | entilatio | n or wh   | ole hous     |              | ļ          | ventilatio                                       | on from                                          | <u> </u>      |                          |              |                |               |       |
| if (22b)m                         |           |           |              | •            | •          |                                                  |                                                  |               | 0.5]                     |              |                |               |       |
| (24d)m= 0.56                      | 0.56      | 0.56      | 0.55         | 0.54         | 0.53       | 0.53                                             | 0.53                                             | 0.54          | 0.54                     | 0.55         | 0.55           |               | (24d) |
| Effective air c                   | change r  | ate - er  | nter (24a    | ) or (24b    | b) or (24  | c) or (24                                        | d) in bo                                         | (25)          | -                        |              | -              |               |       |
| (25)m= 0.56                       | 0.56      | 0.56      | 0.55         | 0.54         | 0.53       | 0.53                                             | 0.53                                             | 0.54          | 0.54                     | 0.55         | 0.55           |               | (25)  |
| 3. Heat losses                    | and hea   | at loss r | naramete     | or.          |            |                                                  |                                                  |               |                          |              |                |               |       |
| ELEMENT                           | Gross     | ·         | Openin       |              | Net Ar     | ea                                               | U-val                                            | ue            | AXU                      |              | k-value        | 9             | ΑΧk   |
| LLLIVILIVI                        | area (    | _         | m            |              | A ,r       |                                                  | W/m2                                             |               | (W/I                     | <)           | kJ/m²·         |               | kJ/K  |
| Doors                             |           |           |              |              | 2          | X                                                | 1.3                                              | =             | 2.6                      |              |                |               | (26)  |
| Windows Type                      | 1         |           |              |              | 1.27       | x1                                               | /[1/( 1.3 )+                                     | 0.04] =       | 1.57                     |              |                |               | (27)  |
| Windows Type 2                    | 2         |           |              |              | 2.7        | x1                                               | /[1/( 1.3 )+                                     | 0.04] =       | 3.34                     |              |                |               | (27)  |
| Windows Type                      | 3         |           |              |              | 2.22       | x1                                               | /[1/( 1.3 )+                                     | 0.04] =       | 2.74                     |              |                |               | (27)  |
| Windows Type                      | 4         |           |              |              | 2.78       | x1                                               | /[1/( 1.3 )+                                     | 0.04] =       | 3.44                     |              |                |               | (27)  |
| Windows Type                      | 5         |           |              |              | 7.75       | x1                                               | /[1/( 1.3 )+                                     | 0.04] =       | 9.58                     |              |                |               | (27)  |
| Windows Type                      | 6         |           |              |              | 1.19       | x1                                               | /[1/( 1.3 )+                                     | 0.04] =       | 1.47                     |              |                |               | (27)  |
| Windows Type                      | 7         |           |              |              | 2          |                                                  | /[1/( 1.3 )+                                     | 0.04] =       | 2.47                     |              |                |               | (27)  |
| Rooflights                        |           |           |              |              | 1.05       | <b>=</b>   <sub>x1</sub>                         | /[1/(1.6) +                                      | 0.04] =       | 1.68                     |              |                |               | (27b) |
| Walls Type1                       | 68.45     |           | 21.91        | 1            | 46.54      | _                                                | 0.15                                             |               | 6.98                     | =            |                | $\neg \vdash$ | (29)  |
| Walls Type2                       | 4.03      | <b>=</b>  | 2            | <del>`</del> | 2.03       | =                                                | 0.13                                             | = :           | 0.27                     | =            |                | -             | (29)  |
| Roof                              | 75.4      | _         | 1.05         | _            | 74.35      |                                                  | 0.1                                              | ╡ :           | 7.44                     | =            |                | ╡             | (30)  |
| Total area of ele                 | L         | m²        | 1.00         |              |            | =                                                | 0.1                                              |               | 7.44                     |              |                |               | (31)  |
| Party wall                        |           |           |              |              | 147.8      | =                                                |                                                  |               | ^                        |              |                |               | (31)  |
| -                                 |           |           |              |              | 42.95      | =                                                | 0                                                |               | 0                        |              |                | ╡╞            |       |
| Party floor  * for windows and re | oof winds | WO 1100 = | offootive    | ndow II      | 75.4       |                                                  | o formula d                                      | /[/1/     !   | (0) (0 041 -             | lo airea i-  | naraarari      |               | (32a) |
| ** include the areas              |           |           |              |              |            | ลเซน นรแไป                                       | i ioiiiiuia I                                    | /[( I/U-Vall  | ı <del>c)+</del> ∪.∪4∫ a | s giveii III | μαιαγιαβί      | I U.Z         |       |
| Fabric heat loss                  | s, W/K =  | S (A x    | U)           |              |            |                                                  | (26)(30                                          | ) + (32) =    |                          |              |                | 45.94         | (33)  |
| Heat capacity C                   | Cm = S(A  | Axk)      |              |              |            |                                                  |                                                  | ((28).        | (30) + (32               | 2) + (32a).  | (32e) =        | 13772.4       | (34)  |
|                                   |           |           |              |              |            |                                                  |                                                  |               |                          |              |                |               |       |
| Thermal mass p                    | oaramet   | er (TMF   | o = Cm ÷     | · TFA) ir    | n kJ/m²K   |                                                  |                                                  | Indica        | tive Value:              | Medium       |                | 250           | (35)  |

| can be u    | ısed inste                      | ad of a de  | tailed calci            | ulation.         |                  |             |                   |             |                       |                        |                             |         |         |      |
|-------------|---------------------------------|-------------|-------------------------|------------------|------------------|-------------|-------------------|-------------|-----------------------|------------------------|-----------------------------|---------|---------|------|
|             |                                 |             | x Y) cal                |                  | using Ap         | pendix I    | K                 |             |                       |                        |                             |         | 17.49   | (36) |
|             | Ŭ                               | `           | are not kn              |                  | 0 .              | •           |                   |             |                       |                        |                             |         |         | (\   |
| Total fa    | abric hea                       | at loss     |                         |                  |                  |             |                   |             | (33) +                | (36) =                 |                             |         | 63.43   | (37) |
| Ventila     | ition hea                       | it loss ca  | alculated               | l monthly        | y                |             |                   |             | (38)m                 | = 0.33 × (             | 25)m x (5)                  |         |         |      |
|             | Jan                             | Feb         | Mar                     | Apr              | May              | Jun         | Jul               | Aug         | Sep                   | Oct                    | Nov                         | Dec     |         |      |
| (38)m=      | 37.72                           | 37.56       | 37.4                    | 36.67            | 36.53            | 35.88       | 35.88             | 35.77       | 36.13                 | 36.53                  | 36.81                       | 37.1    |         | (38) |
| Heat tr     | ansfer c                        | oefficier   | nt, W/K                 | -                | _                | -           | -                 |             | (39)m                 | = (37) + (3            | 38)m                        | -       |         |      |
| (39)m=      | 101.16                          | 101         | 100.84                  | 100.1            | 99.96            | 99.32       | 99.32             | 99.2        | 99.57                 | 99.96                  | 100.24                      | 100.53  |         |      |
| Heat lo     | oss para                        | meter (H    | HLP), W/                | m²K              |                  |             | -                 |             |                       | Average =<br>= (39)m ÷ | Sum(39) <sub>1</sub><br>(4) | 12 /12= | 100.1   | (39) |
| (40)m=      | 1.34                            | 1.34        | 1.34                    | 1.33             | 1.33             | 1.32        | 1.32              | 1.32        | 1.32                  | 1.33                   | 1.33                        | 1.33    |         |      |
| Numbe       | er of day                       | s in mor    | nth (Tab                | le 1a)           |                  |             |                   |             | •                     | Average =              | Sum(40) <sub>1</sub>        | 12 /12= | 1.33    | (40) |
|             | Jan                             | Feb         | Mar                     | Apr              | May              | Jun         | Jul               | Aug         | Sep                   | Oct                    | Nov                         | Dec     | ]       |      |
| (41)m=      | 31                              | 28          | 31                      | 30               | 31               | 30          | 31                | 31          | 30                    | 31                     | 30                          | 31      |         | (41) |
|             |                                 |             | •                       |                  |                  | •           |                   |             |                       |                        |                             | •       | •       |      |
| 4. Wa       | iter heat                       | ing ener    | rgy requi               | irement:         |                  |             |                   |             |                       |                        |                             | kWh/y   | ear:    |      |
| Λ · · · · · |                                 |             | A.I                     |                  |                  |             |                   |             |                       |                        |                             |         | 1       | (40) |
| if TF       | ed occu<br>A > 13.9<br>A £ 13.9 | 9, N = 1    |                         | [1 - exp         | (-0.0003         | 349 x (TF   | FA -13.9          | )2)] + 0.(  | 0013 x ( <sup>-</sup> | ΓFA -13.               |                             | .37     |         | (42) |
| Annua       | l averag                        | e hot wa    |                         |                  |                  |             |                   | (25 x N)    |                       |                        |                             | ).48    | ]       | (43) |
|             |                                 | _           | hot water<br>person per |                  |                  | _           | -                 | to achieve  | a water us            | se target o            | f                           |         | 4       |      |
| notmore     | . 1                             |             |                         |                  |                  |             | •                 |             | 0                     | 0.4                    | N1                          |         | 1       |      |
| Hot wate    | Jan<br>er usage ir              | Feb         | Mar<br>day for ea       | Apr<br>ach month | May<br>Vd.m = fa | Jun         | Jul<br>Table 1c x | Aug (43)    | Sep                   | Oct                    | Nov                         | Dec     |         |      |
| (44)m=      | 99.53                           | 95.91       | 92.29                   | 88.67            | 85.05            | 81.43       | 81.43             | 85.05       | 88.67                 | 92.29                  | 95.91                       | 99.53   | 1       |      |
| (44)111-    | 99.55                           | 95.91       | 92.29                   | 00.07            | 05.05            | 01.43       | 01.43             | 05.05       |                       |                        | m(44) <sub>112</sub> =      |         | 1085.79 | (44) |
| Energy o    | content of                      | hot water   | used - cal              | culated mo       | onthly = 4.      | 190 x Vd,r  | m x nm x E        | OTm / 3600  |                       |                        |                             |         | 1000.73 | (    |
| (45)m=      | 147.6                           | 129.09      | 133.21                  | 116.14           | 111.44           | 96.16       | 89.11             | 102.25      | 103.47                | 120.59                 | 131.63                      | 142.94  | ]       |      |
|             |                                 |             |                         |                  |                  | !           |                   |             |                       | Total = Su             | m(45) <sub>112</sub> =      | -       | 1423.64 | (45) |
| If instant  | taneous w                       | ater heatii | ng at point             | of use (no       | hot water        | r storage), | enter 0 in        | boxes (46)  | ) to (61)             |                        |                             |         |         |      |
| (46)m=      | 0                               | 0           | 0                       | 0                | 0                | 0           | 0                 | 0           | 0                     | 0                      | 0                           | 0       |         | (46) |
|             | storage                         |             | \ includin              | na anv e         | olar or M        | WHDS        | etorage           | within sa   | me vec                | പ                      |                             |         | 1       | (47) |
| •           |                                 | , ,         | ind no ta               |                  |                  |             | _                 |             | arric ves             | 301                    |                             | 0       | J       | (47) |
|             | -                               | -           |                         |                  | -                |             |                   | ombi boil   | ers) ente             | er '0' in (            | 47)                         |         |         |      |
|             | storage                         |             |                         | (-               |                  |             |                   |             | , .                   |                        | ,                           |         |         |      |
| a) If m     | anufact                         | urer's de   | eclared l               | oss facto        | or is kno        | wn (kWł     | n/day):           |             |                       |                        |                             | 0       | ]       | (48) |
| Tempe       | erature fa                      | actor fro   | m Table                 | 2b               |                  |             |                   |             |                       |                        |                             | 0       | ]       | (49) |
|             |                                 |             | storage                 | -                |                  |             |                   | (48) x (49) | ) =                   |                        |                             | 0       | ]       | (50) |
|             |                                 |             | eclared o               | -                |                  |             |                   |             |                       |                        |                             |         | -<br>1  | ,    |
|             |                                 | _           | factor free section     |                  | e∠(KWI           | ıı/ııtre/da | iy)               |             |                       |                        |                             | 0       | J       | (51) |
|             | e factor                        | -           |                         | UII 7.U          |                  |             |                   |             |                       |                        |                             | 0       | 1       | (52) |
|             |                                 |             | m Table                 | 2b               |                  |             |                   |             |                       |                        |                             | 0       | 1       | (53) |
|             |                                 |             |                         |                  |                  |             |                   |             |                       |                        |                             |         | •       |      |

| Energy lost from                                                                                                                                                                                                                                             |                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , kWh/ye                                                                                                                        | ear                                                                                               |                                                                                                         |                                                                                                                    | (47) x (51)                                                                                         | ) x (52) x (                                                                                           | 53) =                                                                                  |                                                                                | 0                                                                 |                   | (54)                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|----------------------------------------------|
| Enter (50) or (                                                                                                                                                                                                                                              | , ,                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or ooob                                                                                                                         | month                                                                                             |                                                                                                         |                                                                                                                    | ((E6)m = (                                                                                          | 'EE\ ~ (41\)                                                                                           | ~                                                                                      |                                                                                | 0                                                                 |                   | (55)                                         |
| Water storage                                                                                                                                                                                                                                                |                                                                                                                                                                                         | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |                                                                                                   |                                                                                                         | 1                                                                                                                  | ,                                                                                                   | (55) × (41)r                                                                                           |                                                                                        |                                                                                | _                                                                 | 1                 | (50)                                         |
| (56)m= 0 If cylinder contains                                                                                                                                                                                                                                | 0<br>hetcaibeh                                                                                                                                                                          | 0<br>solar stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                               | 0 = (56)m                                                                                         | 0<br>× [(50) = (                                                                                        | 0<br>H11)1 ÷ (5                                                                                                    | 0<br>0) else (5)                                                                                    | 0 = (56)                                                                                               | 0<br>m where (                                                                         | 0<br>H11) is fro                                                               | 0<br>m Annend                                                     | iv H              | (56)                                         |
|                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                                   | 1                                                                                                       |                                                                                                                    | 1                                                                                                   |                                                                                                        |                                                                                        | •                                                                              |                                                                   |                   | (57)                                         |
| (57)m= 0                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                               | 0                                                                                                 | 0                                                                                                       | 0                                                                                                                  | 0                                                                                                   | 0                                                                                                      | 0                                                                                      | 0                                                                              | 0                                                                 |                   | (57)                                         |
| Primary circuit                                                                                                                                                                                                                                              | `                                                                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |                                                                                                   | <b>50</b> )                                                                                             | (EQ) 00                                                                                                            | · - (44)                                                                                            |                                                                                                        |                                                                                        |                                                                                | 0                                                                 |                   | (58)                                         |
| Primary circuit (modified by                                                                                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 | •                                                                                                 |                                                                                                         | . ,                                                                                                                | ` '                                                                                                 |                                                                                                        | r thermo                                                                               | ctat)                                                                          |                                                                   |                   |                                              |
| (59)m= 0                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                               | 0                                                                                                 | 0                                                                                                       | 0                                                                                                                  | 0                                                                                                   | 0                                                                                                      | 0                                                                                      | 0                                                                              | 0                                                                 |                   | (59)                                         |
| · · ·                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                               |                                                                                                   |                                                                                                         | <u> </u>                                                                                                           |                                                                                                     |                                                                                                        |                                                                                        |                                                                                | _                                                                 |                   | ` ,                                          |
| Combi loss cal                                                                                                                                                                                                                                               | culated f                                                                                                                                                                               | or each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | montn (                                                                                                                         | 01)m = 0                                                                                          | (60) ÷ 36                                                                                               | 05 × (41                                                                                                           | )m<br>0                                                                                             |                                                                                                        | 0                                                                                      | 0                                                                              | 0                                                                 |                   | (61)                                         |
| (* /                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                                   |                                                                                                         | <u> </u>                                                                                                           | <u> </u>                                                                                            | 0                                                                                                      |                                                                                        |                                                                                | (57) 1                                                            | (FO) + (C1)       | ` '                                          |
| Total heat requ                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 | 94.72                                                                                             | 81.74                                                                                                   |                                                                                                                    | <del>`</del>                                                                                        |                                                                                                        |                                                                                        |                                                                                | <del>`</del>                                                      | (59)m + (61)m<br> | (62)                                         |
| ` '                                                                                                                                                                                                                                                          |                                                                                                                                                                                         | 113.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.72                                                                                                                           |                                                                                                   |                                                                                                         | 75.74                                                                                                              | 86.91                                                                                               | 87.95                                                                                                  | 102.5                                                                                  | 111.89                                                                         | 121.5                                                             |                   | (02)                                         |
| Solar DHW input c  (add additional                                                                                                                                                                                                                           |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                                   |                                                                                                         |                                                                                                                    |                                                                                                     |                                                                                                        | contribut                                                                              | on to wate                                                                     | er neating)                                                       |                   |                                              |
| (63)m= 0                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                               | 0                                                                                                 | 0                                                                                                       | ) 0 To                                                                                                             | 0                                                                                                   |                                                                                                        | 0                                                                                      | 0                                                                              | 0                                                                 |                   | (63)                                         |
| Output from wa                                                                                                                                                                                                                                               | ater heat                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                               | -                                                                                                 |                                                                                                         |                                                                                                                    |                                                                                                     |                                                                                                        |                                                                                        |                                                                                |                                                                   |                   | ` ,                                          |
| (64)m= 125.46                                                                                                                                                                                                                                                |                                                                                                                                                                                         | 113.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.72                                                                                                                           | 94.72                                                                                             | 81.74                                                                                                   | 75.74                                                                                                              | 86.91                                                                                               | 87.95                                                                                                  | 102.5                                                                                  | 111.89                                                                         | 121.5                                                             |                   |                                              |
| (6.1)                                                                                                                                                                                                                                                        | 1000                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00                                                                                                                              | · · · · <u>-</u>                                                                                  | J                                                                                                       | 1                                                                                                                  |                                                                                                     | out from wa                                                                                            |                                                                                        |                                                                                |                                                                   | 1210.1            | (64)                                         |
| Heat gains fron                                                                                                                                                                                                                                              | n water h                                                                                                                                                                               | neating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k\/\/h/m/                                                                                                                       | anth 0 24                                                                                         | 5 ′ [0 85                                                                                               | x (45)m                                                                                                            |                                                                                                     |                                                                                                        |                                                                                        |                                                                                |                                                                   |                   | <b>」</b> ` ′                                 |
| Ticat gains iron                                                                                                                                                                                                                                             | ii watei i                                                                                                                                                                              | icatii ig,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 | JIIIII                                                                                            | 0.00                                                                                                    |                                                                                                                    |                                                                                                     |                                                                                                        |                                                                                        |                                                                                |                                                                   |                   |                                              |
| (65)m= 31.37                                                                                                                                                                                                                                                 | 27.43                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                                   |                                                                                                         | <del>- `                                   </del>                                                                  | <u> </u>                                                                                            | _                                                                                                      |                                                                                        |                                                                                | · · ·                                                             | 1                 | (65)                                         |
| (65)m= 31.37 include (57)n                                                                                                                                                                                                                                   | 27.43<br>n in calci                                                                                                                                                                     | 28.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.68                                                                                                                           | 23.68                                                                                             | 20.43                                                                                                   | 18.94                                                                                                              | 21.73                                                                                               | 21.99                                                                                                  | 25.63                                                                                  | 27.97                                                                          | 30.38                                                             |                   | (65)                                         |
| include (57)n                                                                                                                                                                                                                                                | n in calc                                                                                                                                                                               | 28.31<br>ulation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.68<br>of (65)m                                                                                                               | 23.68<br>only if c                                                                                | 20.43                                                                                                   | 18.94                                                                                                              | 21.73                                                                                               | 21.99                                                                                                  | 25.63                                                                                  | 27.97                                                                          | 30.38                                                             |                   | (65)                                         |
| include (57)n 5. Internal ga                                                                                                                                                                                                                                 | n in calcuins (see                                                                                                                                                                      | 28.31<br>ulation of<br>Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.68<br>of (65)m<br>and 5a                                                                                                     | 23.68<br>only if c                                                                                | 20.43                                                                                                   | 18.94                                                                                                              | 21.73                                                                                               | 21.99                                                                                                  | 25.63                                                                                  | 27.97                                                                          | 30.38                                                             |                   | (65)                                         |
| include (57)r 5. Internal ga Metabolic gains                                                                                                                                                                                                                 | m in calcuins (see                                                                                                                                                                      | 28.31<br>ulation of<br>Table 5<br>5), Watt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.68<br>of (65)m<br>and 5a                                                                                                     | 23.68<br>only if c                                                                                | 20.43<br>ylinder is                                                                                     | 18.94<br>s in the o                                                                                                | 21.73<br>dwelling                                                                                   | 21.99<br>or hot w                                                                                      | 25.63<br>ater is fr                                                                    | 27.97<br>om com                                                                | 30.38<br>munity h                                                 |                   | (65)                                         |
| include (57)n  5. Internal ga  Metabolic gains  Jan                                                                                                                                                                                                          | m in calcuins (see                                                                                                                                                                      | 28.31  ulation of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of  | 24.68 of (65)m and 5a ts Apr                                                                                                    | 23.68  only if c                                                                                  | 20.43<br>ylinder is                                                                                     | 18.94<br>s in the o                                                                                                | 21.73                                                                                               | 21.99                                                                                                  | 25.63                                                                                  | 27.97<br>om com                                                                | 30.38                                                             |                   | (65)                                         |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49                                                                                                                                                                                           | m in calcuins (see s (Table Feb 118.49                                                                                                                                                  | 28.31 ulation of Table 5 5), Watt Mar 118.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.68 of (65)m and 5a ts Apr 118.49                                                                                             | 23.68 only if c : : : : ::::::::::::::::::::::::::::                                              | 20.43 ylinder is Jun 118.49                                                                             | 18.94<br>s in the o                                                                                                | 21.73<br>dwelling<br>Aug<br>118.49                                                                  | 21.99<br>or hot w<br>Sep<br>118.49                                                                     | 25.63 ater is fr                                                                       | 27.97<br>om com                                                                | 30.38<br>munity h                                                 |                   |                                              |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains                                                                                                                                                                           | m in calculate                                                                                                                                                                          | 28.31  ulation of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the | 24.68 of (65)m and 5a ats Apr 118.49 opendix                                                                                    | 23.68 only if c : May 118.49 L, equati                                                            | Jun<br>118.49                                                                                           | Jul<br>118.49<br>118.49                                                                                            | 21.73 dwelling Aug 118.49 lso see                                                                   | 21.99 or hot w Sep 118.49 Table 5                                                                      | 25.63<br>ater is fr<br>Oct<br>118.49                                                   | 27.97<br>om com<br>Nov<br>118.49                                               | 30.38<br>munity h                                                 |                   |                                              |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains (67)m= 18.68                                                                                                                                                              | m in calculate s (Table Feb 118.49 (calculate 16.59                                                                                                                                     | 28.31 ulation of Table 5 5), Watt Mar 118.49 ed in Ap 13.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.22                                                                              | 23.68 only if c : May 118.49 L, equati 7.64                                                       | 20.43 ylinder is  Jun 118.49 ion L9 of                                                                  | Jul<br>118.49<br>118.49<br>1 L9a), a                                                                               | 21.73 dwelling Aug 118.49 lso see 9.06                                                              | 21.99 or hot w Sep 118.49 Table 5 12.15                                                                | 25.63 ater is fr  Oct 118.49                                                           | 27.97<br>om com                                                                | 30.38<br>munity h                                                 |                   | (66)                                         |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gain                                                                                                                                            | m in calculate 16.59 ns (calculate 16.59                                                                                                                                                | 28.31  ulation of Table 5  5), Watt  Mar  118.49  ed in Ap  13.49  ulated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.68 of (65)m and 5a ts Apr 118.49 pendix 10.22 Append                                                                         | 23.68 only if c : May 118.49 L, equati 7.64 dix L, equ                                            | Jun 118.49 ion L9 of 6.45 uation L                                                                      | Jul<br>118.49<br>r L9a), a<br>6.97                                                                                 | 21.73 dwelling Aug 118.49 lso see 9.06 3a), also                                                    | 21.99 or hot w Sep 118.49 Table 5 12.15                                                                | 25.63 ater is fr  Oct 118.49                                                           | 27.97<br>om com<br>Nov<br>118.49                                               | 30.38<br>munity h                                                 |                   | (66)                                         |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains (67)m= 18.68  Appliances gain (68)m= 209.56                                                                                                                               | m in calculate 16.59 ns (calculate 211.73                                                                                                                                               | 28.31  ulation of Table 5  5), Watt  Mar  118.49  ed in Ap  13.49  ulated in  206.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.68 of (65)m and 5a as Apr 118.49 opendix 1 10.22 Append 194.59                                                               | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equati 179.86                                | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L                                                          | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1                                                                     | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6                                             | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08                                              | 25.63  ater is fr  Oct  118.49  15.43  ble 5  171.75                                   | 27.97<br>om com<br>Nov<br>118.49                                               | 30.38<br>munity h                                                 |                   | (66)<br>(67)                                 |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains (67)m= 18.68  Appliances gain (68)m= 209.56  Cooking gains                                                                                                                | m in calculate 16.59 ns (calculate 211.73                                                                                                                                               | 28.31  ulation of Table 5  5), Watt Mar  118.49  ed in Ap  13.49  ulated in  206.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.68 of (65)m and 5a as Apr 118.49 opendix 1 10.22 Append 194.59                                                               | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat                          | 20.43 ylinder is  Jun 118.49 ion L9 of 6.45 uation L 166.02 ion L15                                     | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1                                                                     | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6                                             | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08                                              | 25.63  ater is fr  Oct  118.49  15.43  ble 5  171.75                                   | 27.97<br>om com<br>Nov<br>118.49                                               | 30.38<br>munity h                                                 |                   | (66)<br>(67)                                 |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gain  (68)m= 209.56  Cooking gains  (69)m= 34.85                                                                                                | m in calculate (calculate 211.73 (calculate 34.85                                                                                                                                       | 28.31  ulation of Table 5  5), Watt Mar  118.49  ed in Ap  13.49  ulated in  206.25  ted in Ap  34.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.68 of (65)m and 5a as Apr 118.49 opendix 10.22 Append 194.59 opendix 34.85                                                   | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equati 179.86                                | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L                                                          | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a                                                | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se                                  | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tall 160.08 ee Table                                    | 25.63  ater is fr  Oct  118.49  15.43  ble 5  171.75  5                                | 27.97<br>om com<br>Nov<br>118.49<br>18.01                                      | 30.38<br>munity h                                                 |                   | (66)<br>(67)<br>(68)                         |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and fan                                                                                  | m in calculate (calculate 211.73 (calculate 34.85                                                                                                                                       | 28.31  ulation of Table 5  5), Watt Mar  118.49  ed in Ap  13.49  ulated in  206.25  ted in Ap  34.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.22 Append 194.59 opendix 34.85 ia)                                              | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85                    | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L<br>166.02<br>ion L15<br>34.85                            | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a<br>34.85                                       | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85                            | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85                               | 25.63  ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85                              | 27.97<br>om com<br>Nov<br>118.49<br>18.01<br>186.47                            | 30.38<br>munity h<br>Dec<br>118.49<br>19.2<br>200.31              |                   | (66)<br>(67)<br>(68)                         |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gain  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and fan  (70)m= 0                                                                       | m in calculate 16.59 (calculate 211.73 (calculate 34.85 as gains (                                                                                                                      | 28.31  ulation of Table 5  5), Watt Mar  118.49  ed in Ap  13.49  ulated in  206.25  ed in Ap  34.85  (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.68 of (65)m and 5a as Apr 118.49 opendix 10.22 Append 194.59 opendix 34.85 a) 0                                              | 23.68 only if c  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85                       | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L<br>166.02<br>ion L15<br>34.85                            | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a                                                | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se                                  | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tall 160.08 ee Table                                    | 25.63  ater is fr  Oct  118.49  15.43  ble 5  171.75  5                                | 27.97<br>om com<br>Nov<br>118.49<br>18.01                                      | 30.38<br>munity h                                                 |                   | (66)<br>(67)<br>(68)<br>(69)                 |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gain  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and fan  (70)m= 0  Losses e.g. eva                                                      | m in calculate (calculate 211.73 (calculate 34.85 as gains (apporation)                                                                                                                 | 28.31  ulation of Table 5  5), Watt Mar  118.49  ed in Ap  13.49  ulated in 206.25  ded in Ap  34.85  (Table 5  0  n (negat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.22 Appendix 194.59 opendix 34.85 opendix 0 ive valu                             | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab        | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L<br>166.02<br>ion L15<br>34.85                            | Jul<br>18.94<br>s in the o<br>Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a<br>34.85         | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85                            | 21.99 or hot w  Sep 118.49 Table 5 12.15 see Tal 160.08 ee Table 34.85                                 | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85                               | 27.97  om com  Nov  118.49  18.01  186.47  34.85                               | 30.38 munity h  Dec 118.49  19.2  200.31                          |                   | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gai  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and fan  (70)m= 0  Losses e.g. eva  (71)m= -94.79                                        | m in calculate Feb (calculate 16.59) (calculate 34.85) as gains ( apporatior -94.79)                                                                                                    | 28.31  ulation of Table 5  5), Watt  Mar  118.49  ed in Ap  13.49  ulated in  206.25  ced in Ap  34.85  (Table 5  0  n (negat  -94.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.68 of (65)m and 5a as Apr 118.49 opendix 10.22 Append 194.59 opendix 34.85 a) 0                                              | 23.68 only if c  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85                       | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L<br>166.02<br>ion L15<br>34.85                            | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a<br>34.85                                       | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85                            | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85                               | 25.63  ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85                              | 27.97<br>om com<br>Nov<br>118.49<br>18.01<br>186.47                            | 30.38<br>munity h<br>Dec<br>118.49<br>19.2<br>200.31              |                   | (66)<br>(67)<br>(68)<br>(69)                 |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gain  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and fan  (70)m= 0  Losses e.g. eva  (71)m= -94.79  Water heating                        | m in calculate 16.59 (calculate 34.85 as gains ( apporation -94.79 ) gains (Table 1.00 )                                                                                                | 28.31  ulation of Table 5  5), Watt Mar  118.49  ed in Ap  13.49  ulated in 206.25  ced in Ap  34.85  (Table 5  0  n (negat -94.79  able 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.22 Appendix 34.59 opendix 34.85 ia) 0 iive valu -94.79                          | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab        | 20.43 ylinder is  Jun 118.49 ion L9 of 6.45 uation L 166.02 ion L15 34.85  0 le 5) -94.79               | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a<br>34.85                                       | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85                            | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tall 160.08 ee Table 34.85  0                           | 25.63 ater is fr  Oct 118.49  15.43 ole 5 171.75 5 34.85                               | 27.97 om com  Nov 118.49 18.01 186.47 34.85                                    | 30.38 munity h  Dec 118.49  19.2  200.31  34.85                   |                   | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gain  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and fan  (70)m= 0  Losses e.g. eva  (71)m= -94.79  Water heating (72)m= 42.16           | m in calculate Feb 118.49 (calculate 16.59 ns (calculate 34.85 ns gains (                                                                                                               | 28.31  ulation of Table 5  5), Watt Mar  118.49  ed in Ap  13.49  ulated in  206.25  ded in Ap  34.85  (Table 5  0  n (negat  -94.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.22 Appendix 194.59 opendix 34.85 opendix 0 ive valu                             | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab        | 20.43  ylinder is  Jun  118.49  ion L9 of  6.45  uation L  166.02  ion L15  34.85  0  le 5)  -94.79     | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a<br>34.85                                       | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85  0                         | 21.99 or hot w  Sep 118.49 Table 5 12.15 see Tal 160.08 ee Table 34.85  0  -94.79                      | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85  0  -94.79                    | 27.97  om com  Nov  118.49  18.01  186.47  34.85  0  -94.79                    | 30.38 munity h  Dec 118.49  19.2  200.31  34.85  0  -94.79        |                   | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include (57)n  5. Internal ga  Metabolic gains Jan  (66)m= 118.49  Lighting gains (67)m= 18.68  Appliances gain (68)m= 209.56  Cooking gains (69)m= 34.85  Pumps and fan (70)m= 0  Losses e.g. evo (71)m= -94.79  Water heating (72)m= 42.16  Total internal | m in calculate Feb (calculate 16.59) ms (calculate 34.85) ms gains (                                                                                                                    | 28.31  ulation of Table 5  5), Watt Mar  118.49  ed in Ap  13.49  ulated in 206.25  ted in Ap  34.85  (Table 5  0  n (negat -94.79  able 5)  38.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.22 Appendix 34.85 opendix 34.85 opendix 34.85 a) opendix 34.85 a) opendix 34.85 | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab -94.79 | 20.43 ylinder is  Jun 118.49 ion L9 or 6.45 uation L 166.02 tion L15 34.85  0 lle 5) -94.79  28.38 (66) | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a<br>34.85<br>0<br>-94.79<br>25.45<br>om + (67)m | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85  0  -94.79  29.21 1+ (68)m | 21.99 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85  0  -94.79  30.54 + (69)m + ( | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75  5 34.85  0  -94.79  34.44  70)m + (7 | 27.97  om com  Nov  118.49  18.01  186.47  34.85  0  -94.79  38.85  1)m + (72) | 30.38 munity h  Dec 118.49  19.2  200.31  34.85  0  -94.79  40.83 |                   | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| include (57)n  5. Internal ga  Metabolic gains  Jan  (66)m= 118.49  Lighting gains  (67)m= 18.68  Appliances gain  (68)m= 209.56  Cooking gains  (69)m= 34.85  Pumps and fan  (70)m= 0  Losses e.g. eva  (71)m= -94.79  Water heating (72)m= 42.16           | m in calculate   S (Table   Feb   118.49   (calculate   16.59   ns (calculate   211.73   (calculate   34.85   ns gains (   0   aporatior   -94.79   gains (Ta   40.82   gains =   327.7 | 28.31  ulation of Table 5  5), Watt Mar  118.49  ed in Ap  13.49  ulated in 206.25  ced in Ap  34.85  (Table 5  0  n (negat -94.79  able 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.68 of (65)m and 5a ats Apr 118.49 opendix 10.22 Appendix 34.59 opendix 34.85 ia) 0 iive valu -94.79                          | 23.68 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab        | 20.43  ylinder is  Jun  118.49  ion L9 of  6.45  uation L  166.02  ion L15  34.85  0  le 5)  -94.79     | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a<br>34.85                                       | 21.73 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85  0                         | 21.99 or hot w  Sep 118.49 Table 5 12.15 see Tal 160.08 ee Table 34.85  0  -94.79                      | 25.63 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85  0  -94.79                    | 27.97  om com  Nov  118.49  18.01  186.47  34.85  0  -94.79                    | 30.38 munity h  Dec 118.49  19.2  200.31  34.85  0  -94.79        |                   | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |

Stroma FSAP 2012 Version: 1.0.4.16 (SAP 9.92) - http://www.stroma.com

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|---------------------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x            | 0.77                      | X | 7.75       | x | 11.28            | x | 0.55           | x | 0.7            | =   | 23.33        | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 11.28            | x | 0.55           | x | 0.7            | =   | 3.58         | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 22.97            | x | 0.55           | x | 0.7            | =   | 47.49        | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 22.97            | x | 0.55           | x | 0.7            | =   | 7.29         | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 41.38            | x | 0.55           | x | 0.7            | =   | 85.56        | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 41.38            | x | 0.55           | x | 0.7            | =   | 13.14        | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 67.96            | x | 0.55           | x | 0.7            | ] = | 140.51       | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 67.96            | x | 0.55           | x | 0.7            | =   | 21.58        | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 91.35            | x | 0.55           | x | 0.7            | =   | 188.88       | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 91.35            | x | 0.55           | x | 0.7            | =   | 29           | (75) |
| Northeast 0.9x            | 0.77                      | X | 7.75       | x | 97.38            | X | 0.55           | X | 0.7            | =   | 201.37       | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 97.38            | x | 0.55           | x | 0.7            | =   | 30.92        | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 91.1             | x | 0.55           | x | 0.7            | =   | 188.37       | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 91.1             | x | 0.55           | x | 0.7            | =   | 28.92        | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 72.63            | x | 0.55           | x | 0.7            | =   | 150.17       | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 72.63            | x | 0.55           | x | 0.7            | =   | 23.06        | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 50.42            | x | 0.55           | x | 0.7            | =   | 104.26       | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 50.42            | x | 0.55           | x | 0.7            | =   | 16.01        | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 28.07            | x | 0.55           | x | 0.7            | =   | 58.04        | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 28.07            | x | 0.55           | x | 0.7            | =   | 8.91         | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 14.2             | x | 0.55           | x | 0.7            | =   | 29.36        | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 14.2             | x | 0.55           | X | 0.7            | =   | 4.51         | (75) |
| Northeast 0.9x            | 0.77                      | x | 7.75       | x | 9.21             | x | 0.55           | x | 0.7            | =   | 19.05        | (75) |
| Northeast 0.9x            | 0.77                      | x | 1.19       | x | 9.21             | x | 0.55           | x | 0.7            | ] = | 2.93         | (75) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 36.79            | x | 0.55           | X | 0.7            | =   | 39.27        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 62.67            | x | 0.55           | x | 0.7            | =   | 66.89        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 85.75            | x | 0.55           | x | 0.7            | ] = | 91.52        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 106.25           | x | 0.55           | x | 0.7            | =   | 113.39       | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 119.01           | x | 0.55           | x | 0.7            | ] = | 127.01       | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 118.15           | x | 0.55           | x | 0.7            | =   | 126.09       | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 113.91           | x | 0.55           | X | 0.7            | =   | 121.57       | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 104.39           | x | 0.55           | x | 0.7            | =   | 111.41       | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 92.85            | x | 0.55           | x | 0.7            | =   | 99.09        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 69.27            | x | 0.55           | x | 0.7            | =   | 73.92        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2          | x | 44.07            | x | 0.55           | x | 0.7            | =   | 47.03        | (77) |
| Southeast 0.9x            | 0.77                      | X | 2          | x | 31.49            | x | 0.55           | x | 0.7            | ] = | 33.6         | (77) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 1.27       | x | 36.79            | Ī | 0.55           | x | 0.7            | ] = | 12.47        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 2.7        | x | 36.79            | ] | 0.55           | х | 0.7            | ] = | 26.51        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 2.22       | x | 36.79            | ] | 0.55           | x | 0.7            | ] = | 21.79        | (79) |
|                           |                           |   |            | - |                  | - |                | • |                | -   |              | _    |

| Southwest <sub>0.9x</sub> | ^ == | 1 .,     | 0.70 | 1        |        | 0.55 | l ., | 0.7 | 1 _            | 07.00 | 7(70)        |
|---------------------------|------|----------|------|----------|--------|------|------|-----|----------------|-------|--------------|
| <u>L</u>                  | 0.77 | X        | 2.78 | X        | 36.79  | 0.55 | X    | 0.7 | ] =<br>1       | 27.29 | (79)         |
| Southwesters              | 0.77 | X        | 1.27 | X        | 62.67  | 0.55 | X    | 0.7 | ] =<br>1       | 21.24 | (79)         |
| Southwesters              | 0.77 | ] X      | 2.7  | X        | 62.67  | 0.55 | X    | 0.7 | ] =<br>1       | 45.15 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | X        | 62.67  | 0.55 | X    | 0.7 | ] <b>=</b>     | 37.12 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X        | 62.67  | 0.55 | X    | 0.7 | ] <del>-</del> | 46.49 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | X        | 85.75  | 0.55 | X    | 0.7 | =              | 29.06 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.7  | X        | 85.75  | 0.55 | X    | 0.7 | ] =            | 61.77 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | x        | 85.75  | 0.55 | X    | 0.7 | ] <b>=</b>     | 50.79 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X        | 85.75  | 0.55 | X    | 0.7 | =              | 63.6  | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | X        | 106.25 | 0.55 | X    | 0.7 | =              | 36    | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.7  | x        | 106.25 | 0.55 | X    | 0.7 | =              | 76.54 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | X        | 106.25 | 0.55 | X    | 0.7 | =              | 62.93 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X        | 106.25 | 0.55 | X    | 0.7 | =              | 78.81 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | X        | 119.01 | 0.55 | X    | 0.7 | =              | 40.33 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.7  | X        | 119.01 | 0.55 | x    | 0.7 | =              | 85.73 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.22 | x        | 119.01 | 0.55 | x    | 0.7 | =              | 70.49 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.78 | x        | 119.01 | 0.55 | x    | 0.7 | <b>=</b>       | 88.27 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | x        | 118.15 | 0.55 | x    | 0.7 | ] =            | 40.03 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.7  | x        | 118.15 | 0.55 | x    | 0.7 | ] =            | 85.11 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.22 | x        | 118.15 | 0.55 | x    | 0.7 | =              | 69.98 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | x        | 118.15 | 0.55 | x    | 0.7 | =              | 87.63 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 1.27 | x        | 113.91 | 0.55 | x    | 0.7 | ] =            | 38.6  | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.7  | x        | 113.91 | 0.55 | x    | 0.7 | Ī =            | 82.06 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.22 | x        | 113.91 | 0.55 | x    | 0.7 | Ī =            | 67.47 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.78 | x        | 113.91 | 0.55 | x    | 0.7 | j =            | 84.49 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 1.27 | x        | 104.39 | 0.55 | x    | 0.7 | j =            | 35.37 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.7  | x        | 104.39 | 0.55 | x    | 0.7 | j =            | 75.2  | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | х        | 2.22 | x        | 104.39 | 0.55 | x    | 0.7 | j =            | 61.83 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.78 | x        | 104.39 | 0.55 | x    | 0.7 | j =            | 77.43 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 1.27 | x        | 92.85  | 0.55 | x    | 0.7 | j =            | 31.46 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | х        | 2.7  | x        | 92.85  | 0.55 | x    | 0.7 | ] =            | 66.89 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.22 | x        | 92.85  | 0.55 | x    | 0.7 | j =            | 55    | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.78 | ×        | 92.85  | 0.55 | x    | 0.7 | j =            | 68.87 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 1.27 | x        | 69.27  | 0.55 | x    | 0.7 | j =            | 23.47 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.7  | x        | 69.27  | 0.55 | x    | 0.7 | i =            | 49.9  | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | x        | 69.27  | 0.55 | x    | 0.7 | i =            | 41.03 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | x        | 69.27  | 0.55 | x    | 0.7 | j =            | 51.38 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | x        | 44.07  | 0.55 | x    | 0.7 | j =            | 14.93 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | )<br>  x | 2.7  | X        | 44.07  | 0.55 | x    | 0.7 | ]<br>  =       | 31.75 | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | ×        | 44.07  | 0.55 | x    | 0.7 | ]<br>] =       | 26.1  | (79)         |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | ]<br>  x | 44.07  | 0.55 | x    | 0.7 | ]<br>] =       | 32.69 | (79)         |
| L                         | **** | 1        |      | ı        |        |      |      |     | 1              |       | <b>」</b> ` ′ |

| _                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                                           |       |                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------|------------------------------------------------------|
| Southwest <sub>0.9x</sub>                                                                                                                                                                                                          | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                          | 1.49                                                                                              | ]                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                               | 0.7                                              | =                                         | 10.67 | (79)                                                 |
| Southwest <sub>0.9x</sub>                                                                                                                                                                                                          | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                          | 1.49                                                                                              | ]                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                               | 0.7                                              | =                                         | 22.68 | (79)                                                 |
| Southwest <sub>0.9x</sub>                                                                                                                                                                                                          | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                          | 1.49                                                                                              |                                                                  | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                               | 0.7                                              | =                                         | 18.65 | (79)                                                 |
| Southwest <sub>0.9x</sub>                                                                                                                                                                                                          | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                          | 1.49                                                                                              | ]                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                               | 0.7                                              | =                                         | 23.36 | (79)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | 26                                                                                                | X                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                               | 0.8                                              | =                                         | 10.81 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | 54                                                                                                | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | =                                         | 22.45 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | 96                                                                                                | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | =                                         | 39.92 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | 150                                                                                               | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | =                                         | 62.37 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                          | 192                                                                                               | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | =                                         | 79.83 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :                                                                                                          | 200                                                                                               | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                               | 0.8                                              | =                                         | 83.16 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | 189                                                                                               | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | =                                         | 78.59 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                          | 157                                                                                               | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | =                                         | 65.28 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | 115                                                                                               | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | <del>=</del>                              | 47.82 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | 66                                                                                                | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | =                                         | 27.44 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | 33                                                                                                | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | =                                         | 13.72 | (82)                                                 |
| Rooflights 0.9x                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )5                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | 21                                                                                                | x                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                               | 0.8                                              | <del>=</del>                              | 8.73  | (82)                                                 |
| _                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                                           |       |                                                      |
| Solar gains in                                                                                                                                                                                                                     | watts, cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for eac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h month                                                                                                                      | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                                   | (83)m                                                            | n = Sum(74)m .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (82)m                                           |                                                  |                                           |       |                                                      |
| (83)m= 165.05                                                                                                                                                                                                                      | 294.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 592.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 709.55                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.3                                                                                                       | 690.06                                                                                            | 599                                                              | .75 489.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 334.0                                           | 9 200.09                                         | 139.67                                    | ]     | (83)                                                 |
| Total gains – i                                                                                                                                                                                                                    | nternal ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (84)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (73)m                                                                                                                        | + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83)m                                                                                                       | , watts                                                                                           |                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                  |                                           | _     |                                                      |
| (84)m= 493.99                                                                                                                                                                                                                      | 621.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 751.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 889.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 987.42                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 983.7                                                                                                      | 937.8                                                                                             | 851                                                              | .16 750.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 614.2                                           | 6 501.97                                         | 458.56                                    |       | (84)                                                 |
|                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                                           |       |                                                      |
| 7. Mean inter                                                                                                                                                                                                                      | nal tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | erature (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | seaso                                                                                                                        | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                            |                                                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                  |                                           |       |                                                      |
| 7. Mean inter Temperature                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area 1                                                                                                     | from Tat                                                                                          | ole 9                                                            | , Th1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                                  |                                           | 21    | (85)                                                 |
|                                                                                                                                                                                                                                    | during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eating p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eriods ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n the liv                                                                                                                    | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |                                                                                                   | ole 9                                                            | , Th1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                                  |                                           | 21    | (85)                                                 |
| Temperature                                                                                                                                                                                                                        | during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eating p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eriods ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n the liv                                                                                                                    | ring<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |                                                                                                   |                                                                  | , Th1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oc                                              | t Nov                                            | Dec                                       | 21    | (85)                                                 |
| Temperature Utilisation fac                                                                                                                                                                                                        | during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eating points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eriods ir<br>iving are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n the liv<br>ea, h1,n                                                                                                        | ring<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ее Та                                                                                                      | ble 9a)                                                                                           |                                                                  | ug Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oc:                                             | +                                                | Dec<br>1                                  | 21    | (85)                                                 |
| Temperature Utilisation fac  Jan  (86)m= 1                                                                                                                                                                                         | during he<br>stor for ga<br>Feb<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eating points for line Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eriods ir<br>iving are<br>Apr<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n the livea, h1,n<br>May                                                                                                     | ring<br>m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ee Ta<br>Jun<br><sup>0.61</sup>                                                                            | ble 9a)<br>Jul<br>0.46                                                                            | A<br>0.5                                                         | ug Sep<br>52 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                               | +                                                |                                           | 21    |                                                      |
| Temperature Utilisation fac                                                                                                                                                                                                        | during he<br>stor for ga<br>Feb<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eating points for line Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eriods ir<br>iving are<br>Apr<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n the livea, h1,n<br>May                                                                                                     | n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Ta<br>Jun<br><sup>0.61</sup>                                                                            | ble 9a)<br>Jul<br>0.46                                                                            | A<br>0.5                                                         | ug Sep<br>52 0.78<br>able 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                               | 0.99                                             |                                           | 21    |                                                      |
| Temperature  Utilisation factors  Jan  (86)m= 1  Mean interna (87)m= 19.56                                                                                                                                                         | tor for ga Feb 0.99 I tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eating points for line Mar 0.97 eature in l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eriods ir<br>iving are<br>Apr<br>0.92<br>iving are<br>20.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n the livea, h1,n<br>May<br>0.79<br>ea T1 (1                                                                                 | follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ee Ta<br>Jun<br>0.61<br>ow ste                                                                             | Jul<br>0.46<br>ps 3 to 7<br>20.99                                                                 | 0.5<br>7 in T<br>20.                                             | ug Sep<br>52 0.78<br>Table 9c)<br>98 20.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.96                                            | 0.99                                             | 1                                         | 21    | (86)                                                 |
| Temperature  Utilisation factors  Jan  (86)m= 1  Mean interna (87)m= 19.56  Temperature                                                                                                                                            | during he tor for ga Feb 0.99 I tempera 19.78 during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eating points for line Mar 0.97 ature in la 20.12 eating points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eriods ir<br>iving are<br>Apr<br>0.92<br>iving are<br>20.52<br>eriods ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n the livea, h1,n<br>May<br>0.79<br>ea T1 (1<br>20.82                                                                        | follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ee Ta<br>Jun<br>0.61<br>ow ste<br>20.96<br>velling                                                         | Jul<br>0.46<br>ps 3 to 7<br>20.99<br>from Ta                                                      | A 0.57 in T 20.                                                  | ug Sep<br>52 0.78<br>Table 9c)<br>98 20.88<br>9, Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.96<br>20.46                                   | 0.99                                             | 19.52                                     | 21    | (86)                                                 |
| Temperature  Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81                                                                                                                                | during he tor for garent feb 0.99 temperare 19.78 during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eating points for line Mar 0.97 eature in la 20.12 eating points 19.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Apr 0.92 iving are 20.52 eriods ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n the livea, h1,n May 0.79 ea T1 (1 20.82 n rest or                                                                          | follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ee Ta Jun 0.61 ow ste 20.96 velling                                                                        | Jul<br>0.46<br>ps 3 to 7<br>20.99<br>from Ta                                                      | A 0.57 in T 20.                                                  | ug Sep<br>52 0.78<br>Table 9c)<br>98 20.88<br>9, Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.96                                            | 0.99                                             | 1                                         | 21    | (86)                                                 |
| Temperature  Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact                                                                                                              | during heter for gate to for for gate to for gate to for gate to for gate to for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to f | eating points for II  Mar  0.97  ature in II  20.12  eating points for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for recognitions for rec | eriods in iving are 0.92 iving are 20.52 eriods in 19.82 est of decrease in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the c | n the livea, h1,r<br>May<br>0.79<br>ea T1 (1<br>20.82<br>n rest of<br>19.82<br>welling,                                      | m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Ta<br>Jun<br>0.61<br>ow ste<br>20.96<br>velling<br>9.83<br>,m (se                                       | Jul 0.46 ps 3 to 7 20.99 from Ta 19.83                                                            | A 0.57 in T 20.00 able 9 19.00 9a)                               | ug Sep 52 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96<br>20.46<br>19.82                          | 0.99                                             | 19.52                                     | 21    | (86)<br>(87)<br>(88)                                 |
| Temperature  Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact  (89)m= 1                                                                                                    | tor for ga Feb 0.99 I tempera 19.78 during he 19.81 ctor for ga 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eating points for II  Mar  0.97  ature in II  20.12  eating points for r  0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eriods in iving are 0.92 iving are 20.52 eriods in 19.82 est of do 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n the livea, h1,r<br>May<br>0.79<br>ea T1 (1<br>20.82<br>n rest or<br>19.82<br>welling,<br>0.73                              | follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ee Ta Jun 0.61  ww ste 20.96  velling 19.83  m (see 0.51                                                   | Jul<br>0.46<br>ps 3 to 7<br>20.99<br>from Ta<br>19.83<br>ee Table<br>0.34                         | A 0.57 in T 20. able 9 19. 9a) 0.                                | ug Sep 52 0.78  Table 9c) 98 20.88 9, Th2 (°C) 83 19.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96<br>20.46<br>19.82                          | 0.99                                             | 19.52                                     | 21    | (86)                                                 |
| Temperature  Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact  (89)m= 1  Mean interna                                                                                      | during he tor for ga Feb 0.99 I tempera 19.78 during he 19.81 etor for ga 0.99 I tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating points for 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eriods in iving are 0.92 iving are 20.52 eriods in 19.82 est of dro.89 the rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n the livea, h1,r<br>May<br>0.79<br>ea T1 (f<br>20.82<br>n rest of<br>19.82<br>welling,<br>0.73                              | folloging folloging folloging folloging folloging folloging for folloging following following following following following for following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following followin | ee Ta Jun 0.61  ow ste 20.96  velling 19.83  m (se 0.51                                                    | Jul 0.46 ps 3 to 7 20.99 from Ta 19.83 ee Table 0.34 ollow ste                                    | A 0.8 7 in T 20. 20. 19. 19. 9a) 0. eps 3                        | ug Sep 62 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82  4 0.69  to 7 in Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.96 20.46 19.82 0.94 le 9c)                    | 0.99<br>0.99<br>19.92<br>19.82<br>0.99           | 1<br>19.52<br>19.81                       | 21    | (86)<br>(87)<br>(88)<br>(89)                         |
| Temperature  Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact  (89)m= 1                                                                                                    | tor for ga Feb 0.99 I tempera 19.78 during he 19.81 ctor for ga 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eating points for II  Mar  0.97  ature in II  20.12  eating points for r  0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eriods in iving are 0.92 iving are 20.52 eriods in 19.82 est of do 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n the livea, h1,r<br>May<br>0.79<br>ea T1 (1<br>20.82<br>n rest or<br>19.82<br>welling,<br>0.73                              | folloging folloging folloging folloging folloging folloging for folloging following following following following following for following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following followin | ee Ta Jun 0.61  ww ste 20.96  velling 19.83  m (see 0.51                                                   | Jul<br>0.46<br>ps 3 to 7<br>20.99<br>from Ta<br>19.83<br>ee Table<br>0.34                         | A 0.57 in T 20. able 9 19. 9a) 0.                                | ug Sep 52 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82  4 0.69  to 7 in Table 82 19.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96  20.46  19.82  0.94  e 9c)  19.4           | 0.99<br>19.92<br>19.82<br>0.99                   | 1<br>19.52<br>19.81<br>1                  |       | (86)<br>(87)<br>(88)<br>(89)                         |
| Temperature  Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact  (89)m= 1  Mean interna                                                                                      | during he tor for ga Feb 0.99 I tempera 19.78 during he 19.81 etor for ga 0.99 I tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating points for 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eriods in iving are 0.92 iving are 20.52 eriods in 19.82 est of dro.89 the rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n the livea, h1,r<br>May<br>0.79<br>ea T1 (f<br>20.82<br>n rest of<br>19.82<br>welling,<br>0.73                              | folloging folloging folloging folloging folloging folloging for folloging following following following following following for following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following following followin | ee Ta Jun 0.61  ow ste 20.96  velling 19.83  m (se 0.51                                                    | Jul 0.46 ps 3 to 7 20.99 from Ta 19.83 ee Table 0.34 ollow ste                                    | A 0.8 7 in T 20. 20. 19. 19. 9a) 0. eps 3                        | ug Sep 52 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82  4 0.69  to 7 in Table 82 19.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96  20.46  19.82  0.94  e 9c)  19.4           | 0.99<br>0.99<br>19.92<br>19.82<br>0.99           | 1<br>19.52<br>19.81<br>1                  | 21    | (86)<br>(87)<br>(88)<br>(89)                         |
| Temperature  Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact  (89)m= 1  Mean interna                                                                                      | during heter for gate to for for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to f | eating points for II  Mar  0.97  ature in II  20.12  eating points for r  0.97  ature in t  19.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eriods in iving are 0.92 iving are 20.52 eriods in 19.82 est of do 0.89 the rest 19.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n the livea, h1,r<br>May<br>0.79<br>ea T1 (1<br>20.82<br>n rest of<br>19.82<br>welling,<br>0.73<br>of dwel<br>19.71          | follo<br>follo<br>follo<br>f dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee Ta Jun 0.61  ww ste 20.96  velling 19.83  m (se 0.51  T2 (fo 19.81                                      | Jul<br>0.46<br>ps 3 to 7<br>20.99<br>from Ta<br>19.83<br>ee Table<br>0.34<br>ollow ste<br>19.83   | A 0.5 7 in T 20. 4 ble 9 9a) 0. eps 3                            | ug Sep 52 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82  4 0.69  to 7 in Table 82 19.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96  20.46  19.82  0.94  e 9c)  19.4  fLA = Li | 0.99<br>19.92<br>19.82<br>0.99                   | 1<br>19.52<br>19.81<br>1                  |       | (86)<br>(87)<br>(88)<br>(89)                         |
| Temperature Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact  (89)m= 1  Mean interna  (90)m= 18.51                                                                         | during heter for gate to for for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to f | eating points for II  Mar  0.97  ature in II  20.12  eating points for r  0.97  ature in t  19.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eriods in iving are 0.92 iving are 20.52 eriods in 19.82 est of do 0.89 the rest 19.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n the livea, h1,r<br>May<br>0.79<br>ea T1 (1<br>20.82<br>n rest of<br>19.82<br>welling,<br>0.73<br>of dwel<br>19.71          | follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ee Ta Jun 0.61  ww ste 20.96  velling 19.83  m (se 0.51  T2 (fo 19.81                                      | Jul<br>0.46<br>ps 3 to 7<br>20.99<br>from Ta<br>19.83<br>ee Table<br>0.34<br>ollow ste<br>19.83   | A 0.5 7 in T 20. 4 ble 9 9a) 0. eps 3                            | ug Sep 52 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82  4 0.69  to 7 in Table 82 19.76  — fLA) × T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.96  20.46  19.82  0.94  e 9c)  19.4  fLA = Li | 0.99  19.92  19.82  0.99  18.88  ving area ÷ (-  | 1<br>19.52<br>19.81<br>1                  |       | (86)<br>(87)<br>(88)<br>(89)                         |
| Temperature Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact  (89)m= 1  Mean interna  (90)m= 18.51  Mean interna                                                           | during heter for gate to for for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to for gate to f | eating points for II  Mar  0.97  ature in II  20.12  eating points for r  0.97  ature in t  19.07  ature (for 19.44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eriods in iving are Apr 0.92 iving are 20.52 eriods in 19.82 est of do 0.89 the rest 19.46 r the whole 19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n the livea, h1,r May 0.79 ea T1 (1 20.82 n rest or 19.82 welling, 0.73 of dwel 19.71 ole dwe 20.11                          | ing (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee Ta  Jun  0.61  ww ste  0.96  velling  9.83  m (se  0.51  T2 (fo  19.81  g) = fl  20.22                  | Jul 0.46 ps 3 to 7 20.99 from Ta 19.83 ee Table 0.34 ollow ste 19.83  A × T1 20.24                | A A 0.8 17 in 1 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.          | ug Sep 52 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82  4 0.69  to 7 in Table 82 19.76  — fLA) × T2 24 20.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.96  20.46  19.82  0.94  e 9c)  19.4  fLA = Li | 0.99  19.92  19.82  0.99  18.88  ving area ÷ (4) | 1<br>19.52<br>19.81<br>1<br>18.47<br>4) = |       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| Temperature  Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact  (89)m= 1  Mean interna  (90)m= 18.51  Mean interna  (92)m= 18.88  Apply adjustn  (93)m= 18.88               | during heter for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for garen for | eating points for II  Mar  0.97  ature in II  20.12  eating points for r  0.97  ature in t  19.07  ature (for 19.44  in e mean  19.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriods in iving are Apr 0.92 iving are 20.52 eriods in 19.82 est of do 0.89 the rest 19.46 r the whole 19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n the livea, h1,r May 0.79 ea T1 (1 20.82 n rest or 19.82 welling, 0.73 of dwel 19.71 ole dwe 20.11                          | follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  z  follo  follo  z  follo  follo  z  follo  z  follo  follo  z  follo  follo  z  follo  follo  z  follo  follo  follo  z  follo  follo  z  follo  follo  follo  z  follo  follo  follo  z  follo  follo  follo  z  follo  follo  follo  follo  z  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo | ee Ta  Jun  0.61  ww ste  0.96  velling  9.83  m (se  0.51  T2 (fo  19.81  g) = fl  20.22                  | Jul 0.46 ps 3 to 7 20.99 from Ta 19.83 ee Table 0.34 ollow ste 19.83  A × T1 20.24                | A A 0.8 17 in 1 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.          | ug Sep 52 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82  4 0.69  to 7 in Table 82 19.76  — fLA) × T2 24 20.16  where approximation in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 0.96  20.46  19.82  0.94  e 9c)  19.4  fLA = Li | 0.99  19.92  19.82  0.99  18.88  ving area ÷ (   | 1<br>19.52<br>19.81<br>1<br>18.47<br>4) = |       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| Temperature Utilisation fact  Jan  (86)m= 1  Mean interna  (87)m= 19.56  Temperature  (88)m= 19.81  Utilisation fact  (89)m= 1  Mean interna  (90)m= 18.51  Mean interna  (92)m= 18.88  Apply adjustn  (93)m= 18.88  8. Space hear | during he ctor for garent for for garent for garent for garent for garent for garent for garent for for garent for for garent for for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent for garent fo | eating points for II  Mar  0.97  ature in II  20.12  eating points for r  0.97  ature in t  19.07  ature (for r)  19.44  irement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eriods in iving are 0.92 iving are 20.52 eriods in 19.82 est of dro.89 the rest 19.46 r the whole 19.84 internal 19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the livea, h1,r May 0.79 ea T1 (f 20.82 n rest of 19.82 welling, 0.73 of dwel 19.71 ole dwe 20.11 tempe 20.11                | follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  fo | ee Ta  Jun  0.61  ow ste  20.96  velling  9.83  m (se  0.51  T2 (fo  9.81)  g) = fl  20.22  ure fro  20.22 | Jul 0.46 ps 3 to 7 20.99 from Ta 19.83 ee Table 0.34 collow ste 19.83  A × T1 20.24 m Table 20.24 | A 0.5 7 in 1 20. able 9 9a) 0. eps 3 19. + (1 20. able 9 4e, 20. | ug Sep 62 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82  4 0.69  to 7 in Table 82 19.76  — fLA) × T2 24 20.16  where approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximat | 0.96  20.46  19.82  0.94  19.78  19.78          | 0.99  19.92  19.82  0.99  18.88  ving area ÷ (   | 1<br>19.52<br>19.81<br>1<br>18.47<br>4) = | 0.35  | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| Temperature  Utilisation fact  Jan  (86)m= 1  Mean interna (87)m= 19.56  Temperature (88)m= 19.81  Utilisation fact (89)m= 1  Mean interna (90)m= 18.51  Mean interna (92)m= 18.88  Apply adjustn (93)m= 18.88                     | during heretor for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of for garen set of garen set of for garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of garen set of ga | eating points for II  Mar  0.97  ature in II  20.12  eating points for r  0.97  ature in t  19.07  ature (for r)  19.44  irement  ernal ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eriods in iving are Apr 0.92 iving are 20.52 eriods in 19.82 est of di 0.89 the rest 19.46 r the who 19.84 internal 19.84 internal 19.84 inperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n the livea, h1,r May 0.79 ea T1 (1 20.82 n rest or 19.82 welling, 0.73 of dwel 19.71 ole dwere 20.11 tempe 20.11 re obtains | follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  fo | ee Ta  Jun  0.61  ow ste  20.96  velling  9.83  m (se  0.51  T2 (fo  9.81)  g) = fl  20.22  ure fro  20.22 | Jul 0.46 ps 3 to 7 20.99 from Ta 19.83 ee Table 0.34 collow ste 19.83  A × T1 20.24 m Table 20.24 | A 0.5 7 in 1 20. able 9 9a) 0. eps 3 19. + (1 20. able 9 4e, 20. | ug Sep 62 0.78  Table 9c) 98 20.88  9, Th2 (°C) 83 19.82  4 0.69  to 7 in Table 82 19.76  — fLA) × T2 24 20.16  where approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximately approximat | 0.96  20.46  19.82  0.94  19.78  19.78          | 0.99  19.92  19.82  0.99  18.88  ving area ÷ (   | 1<br>19.52<br>19.81<br>1<br>18.47<br>4) = | 0.35  | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Mar

Jan

Feb

| Utilisa | ation fac  | tor for g  | ains, hm   | :         |                    |           |           |            |            |           |                   |            |         |        |
|---------|------------|------------|------------|-----------|--------------------|-----------|-----------|------------|------------|-----------|-------------------|------------|---------|--------|
| (94)m=  | 0.99       | 0.99       | 0.96       | 0.89      | 0.75               | 0.55      | 0.38      | 0.44       | 0.72       | 0.94      | 0.99              | 1          |         | (94)   |
| Usefu   | ıl gains,  | hmGm       | , W = (94  | 1)m x (84 | 4)m                | •         | •         | •          |            |           |                   | •          | l       |        |
| (95)m=  | 491.46     | 613.24     | 723.11     | 793.03    | 737.06             | 538.42    | 358.4     | 374.94     | 540.07     | 576.62    | 496.37            | 456.85     |         | (95)   |
| Month   | nly aver   | age exte   | rnal tem   | perature  | from Ta            | able 8    | •         | •          |            |           |                   |            |         |        |
| (96)m=  | 4.3        | 4.9        | 6.5        | 8.9       | 11.7               | 14.6      | 16.6      | 16.4       | 14.1       | 10.6      | 7.1               | 4.2        |         | (96)   |
| Heat    | loss rate  | e for mea  | an intern  | al tempe  | erature,           | Lm , W =  | =[(39)m : | x [(93)m   | – (96)m    | ]         |                   |            |         |        |
| (97)m=  | 1475.26    | 1435.02    | 1305.08    | 1094.67   | 840.22             | 557.95    | 361.42    | 380.55     | 603.26     | 917.45    | 1217.86           | 1472.17    |         | (97)   |
| Space   | e heatin   | g require  | ement fo   | r each n  | nonth, k\          | Wh/mon    | th = 0.02 | 24 x [(97  | )m – (95   | )m] x (4  | 1)m               |            |         |        |
| (98)m=  | 731.94     | 552.24     | 432.99     | 217.18    | 76.75              | 0         | 0         | 0          | 0          | 253.58    | 519.47            | 755.4      |         |        |
| ·       |            |            |            |           |                    |           | -         | Tota       | l per year | (kWh/year | ) = Sum(9         | 8)15,912 = | 3539.55 | (98)   |
| Space   | e heatin   | g require  | ement in   | kWh/m²    | <sup>2</sup> /year |           |           |            |            |           |                   |            | 46.94   | (99)   |
| •       |            | oling rec  |            |           | ,                  |           |           |            |            |           |                   |            |         |        |
|         |            | r June, c  |            |           | See Tal            | hle 10h   |           |            |            |           |                   |            |         |        |
| Calcu   | Jan        | Feb        | Mar        | Apr       | May                | Jun       | Jul       | Aug        | Sep        | Oct       | Nov               | Dec        |         |        |
| Heat    |            | l          | <u> </u>   | •         |                    |           | l         |            |            |           |                   | able 10)   |         |        |
| (100)m= |            | 0          | 0          | 0         | 0                  | 933.59    | 734.95    | 753.91     | 0          | 0         | 0                 | 0          |         | (100)  |
| Utilisa | ation fac  | tor for lo | ss hm      |           |                    | ļ         | <u> </u>  | ļ          |            |           |                   | ļ          |         |        |
| (101)m= | 0          | 0          | 0          | 0         | 0                  | 0.91      | 0.95      | 0.93       | 0          | 0         | 0                 | 0          |         | (101)  |
| Usefu   | ıl loss, h | ımLm (V    | vatts) = ( | 100)m x   | (101)m             |           |           |            |            |           |                   |            |         |        |
| (102)m= | 0          | 0          | 0          | 0         | 0                  | 849.45    | 698.58    | 700.63     | 0          | 0         | 0                 | 0          |         | (102)  |
| Gains   | (solar     | gains ca   | lculated   | for appli | cable we           | eather re | egion, se | e Table    | 10)        |           |                   |            | l       |        |
| (103)m= |            | 0          | 0          | 0         | 0                  |           | 1169.14   |            | 0          | 0         | 0                 | 0          |         | (103)  |
| Space   | e coolin   | g require  | ement fo   | r month,  | whole c            | dwelling, | continu   | ous ( kW   | h = 0.0    | 24 x [(10 | 03)m – (          | 102)m ] :  | x (41)m |        |
| set (1  | 04)m to    | zero if (  | (104)m <   | 3 × (98   | )m                 |           | •         |            |            |           |                   |            | ı       |        |
| (104)m= | 0          | 0          | 0          | 0         | 0                  | 269.54    | 350.1     | 275.97     | 0          | 0         | 0                 | 0          |         | _      |
|         |            |            |            |           |                    |           |           |            |            | = Sum(    | ,                 | =          | 895.62  | (104)  |
|         | d fraction |            | -61- 406   | `         |                    |           |           |            | f C =      | cooled    | area ÷ (4         | 4) =       | 1       | (105)  |
|         |            | actor (Ta  |            |           | 0                  | 0.05      | 0.25      | 0.25       | 0          | 0         | 0                 |            |         |        |
| (106)m= | 0          | 0          | 0          | 0         | 0                  | 0.25      | 0.25      | 0.25       | 0<br>T-4-  | 0         | 0                 | 0          |         | 7(400) |
| Snace   | cooling    | requirer   | ment for   | month =   | (104)m             | × (105)   | x (106)r  | m          | rota       | l = Sum(  | 1 <del>U4</del> ) | =          | 0       | (106)  |
| (107)m= |            | 0          | 0          | 0         | 0                  | 67.39     | 87.53     | 68.99      | 0          | 0         | 0                 | 0          |         |        |
| (101)   | _          |            |            | ŭ         |                    | 07.00     | 07.00     | 00.00      |            | = Sum(    |                   | <br>=      | 223.91  | (107)  |
| Cnass   | ممانمم     |            |            | \         |                    |           |           |            |            | ,         | 19087 )           | _          |         | = '    |
| •       |            | requirer   |            |           |                    |           |           |            | ` ′        | ) ÷ (4) = |                   |            | 2.97    | (108)  |
|         |            | rgy Effici |            | alculated | only un            | der spec  | cial cond | litions, s |            | ĺ         |                   |            |         |        |
| Fabrio  | c Energ    | y Efficier | псу        |           |                    |           |           |            | (99)       | + (108) = | =                 |            | 49.91   | (109)  |

eight associates

# SAP Worksheets Energy Statement 34A-36 Kilburn High Road

**SAP Worksheets** 

TER Worksheets

|                               |                                                               |              | User D     | otaile:          |            |               |             |           |                        |      |
|-------------------------------|---------------------------------------------------------------|--------------|------------|------------------|------------|---------------|-------------|-----------|------------------------|------|
| A N                           | Obrida I I a also all                                         |              |            |                  | - NI       |               |             | OTDO      | 040000                 |      |
| Assessor Name: Software Name: | Chris Hocknell Stroma FSAP 201                                | 2            |            | Stroma<br>Softwa | _          |               |             |           | 016363<br>on: 1.0.4.16 |      |
| Contware rume.                | 31131114 T 3711 Z 311                                         |              |            | Address:         |            |               |             | 7 01010   |                        |      |
| Address :                     |                                                               |              |            |                  | ·          |               |             |           |                        |      |
| 1. Overall dwelling dime      | ensions:                                                      |              |            |                  |            |               |             |           |                        |      |
| Ground floor                  |                                                               |              |            | a(m²)            | (1a) v     |               | ight(m)     | (2a) =    | Volume(m³              | (3a) |
|                               | -> (4  -> (4 -> (4 -  > (4 -  > ) )                           | \            |            |                  | (1a) x     |               | 2.7         | (2a) -    | 135.46                 | (3a) |
| Total floor area TFA = (1     | a)+(1b)+(1c)+(1d)+(1e                                         | )+(1n)       | ) 5        | 0.17             | (4)        | ) . (0 ) . (0 | 10 - (0 ) - | (0.)      |                        | _    |
| Dwelling volume               |                                                               |              |            |                  | (3a)+(3b)  | )+(3c)+(3c    | d)+(3e)+    | .(3n) =   | 135.46                 | (5)  |
| 2. Ventilation rate:          | main se                                                       | condary      | 1          | other            |            | total         |             |           | m³ per hou             | r    |
| Number of objection           | heating h                                                     | eating       | ′<br>1 + [ |                  | 1 = F      |               |             | 40 =      | -                      | _    |
| Number of chimneys            |                                                               | 0            | !          | 0                | <u> </u>   | 0             |             |           | 0                      | (6a) |
| Number of open flues          | 0 +                                                           | 0            | +          | 0                | 」          | 0             |             | 20 =      | 0                      | (6b) |
| Number of intermittent fa     |                                                               |              |            |                  | L          | 2             |             | 10 =      | 20                     | (7a) |
| Number of passive vents       | 3                                                             |              |            |                  |            | 0             | X '         | 10 =      | 0                      | (7b) |
| Number of flueless gas fi     | ires                                                          |              |            |                  |            | 0             | X 4         | 40 =      | 0                      | (7c) |
|                               |                                                               |              |            |                  |            |               |             | Air ch    | anges per ho           | our  |
| Infiltration due to chimne    | vs_flues and fans = (6a                                       | a)+(6b)+(7a  | a)+(7b)+(  | 7c) =            | Г          | 20            |             | ÷ (5) =   | 0.15                   | (8)  |
|                               | peen carried out or is intende                                |              |            |                  | ontinue fr |               |             | (0)       | 0.13                   |      |
| Number of storeys in the      | he dwelling (ns)                                              |              |            |                  |            |               |             |           | 0                      | (9)  |
| Additional infiltration       |                                                               |              |            |                  |            |               | [(9)        | -1]x0.1 = | 0                      | (10) |
|                               | .25 for steel or timber f                                     |              |            |                  | •          | uction        |             |           | 0                      | (11) |
| deducting areas of openi      | resent, use the value corresp<br>ngs); if equal user 0.35     | oonaing to t | ine great  | er waii are      | а (апег    |               |             |           |                        |      |
| If suspended wooden           | floor, enter 0.2 (unseale                                     | ed) or 0.1   | l (seale   | ed), else        | enter 0    |               |             |           | 0                      | (12) |
| If no draught lobby, en       | ter 0.05, else enter 0                                        |              |            |                  |            |               |             |           | 0                      | (13) |
| •                             | s and doors draught str                                       | ripped       |            |                  |            |               |             |           | 0                      | (14) |
| Window infiltration           |                                                               |              |            | 0.25 - [0.2      |            |               |             |           | 0                      | (15) |
| Infiltration rate             |                                                               |              |            | (8) + (10)       | . , , ,    | , , ,         | . ,         |           | 0                      | (16) |
| •                             | q50, expressed in cub                                         |              | •          | -                | •          | etre of e     | envelope    | area      | 5                      | (17) |
| If based on air permeabil     | iity value, then (10) = [(17) es if a pressurisation test has |              |            |                  |            | ic boing u    | cod         |           | 0.4                    | (18) |
| Number of sides sheltere      |                                                               | been done    | or a deg   | gree an per      | пеаышу     | is being u    | seu         |           | 1                      | (19) |
| Shelter factor                |                                                               |              |            | (20) = 1 -       | 0.075 x (1 | 9)] =         |             |           | 0.92                   | (20) |
| Infiltration rate incorporate | ting shelter factor                                           |              |            | (21) = (18)      | x (20) =   |               |             |           | 0.37                   | (21) |
| Infiltration rate modified f  | or monthly wind speed                                         |              |            |                  |            |               |             | '         |                        |      |
| Jan Feb                       | Mar Apr May                                                   | Jun          | Jul        | Aug              | Sep        | Oct           | Nov         | Dec       |                        |      |
| Monthly average wind sp       | eed from Table 7                                              |              |            |                  |            |               |             |           |                        |      |
| (22)m= 5.1 5                  | 4.9 4.4 4.3                                                   | 3.8          | 3.8        | 3.7              | 4          | 4.3           | 4.5         | 4.7       |                        |      |
| Wind Factor (22a)m = (2       | 2)m ÷ 4                                                       |              |            |                  |            |               |             |           |                        |      |
|                               | 2)m ÷ 4<br>1.23   1.1   1.08                                  | 0.95         | 0.95       | 0.92             | 1          | 1.08          | 1.12        | 1.18      |                        |      |
| (                             | 1.00                                                          |              |            | L 3.02           | •          |               | L <u>-</u>  |           | I                      |      |

| Adjusted infilt                                                                                                 | ration rate                                                                                  | (allowi                                 | ng for sh                         | nelter an              | d wind s                | peed) =                                           | (21a) x                                           | (22a)m         |                                                  |              |                   |               |                                         |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|------------------------|-------------------------|---------------------------------------------------|---------------------------------------------------|----------------|--------------------------------------------------|--------------|-------------------|---------------|-----------------------------------------|
| 0.47                                                                                                            | 0.46                                                                                         | 0.45                                    | 0.4                               | 0.4                    | 0.35                    | 0.35                                              | 0.34                                              | 0.37           | 0.4                                              | 0.41         | 0.43              |               |                                         |
| Calculate effe                                                                                                  |                                                                                              | _                                       | rate for t                        | he appli               | cable ca                | se                                                | •                                                 | !              |                                                  |              | •                 |               |                                         |
| If mechanic                                                                                                     |                                                                                              |                                         | on allow NL (O                    | Ol- ) (OO -            | -                       |                                                   | N/5/\\ -4/                                        |                | ·                                                |              |                   | 0             | (23a                                    |
| If exhaust air h                                                                                                |                                                                                              |                                         |                                   |                        |                         |                                                   |                                                   |                | o) = (23a)                                       |              |                   | 0             | (23b                                    |
| If balanced wit                                                                                                 |                                                                                              | -                                       | •                                 | _                      |                         |                                                   |                                                   |                |                                                  |              |                   | 0             | (230                                    |
| a) If balance                                                                                                   |                                                                                              |                                         |                                   |                        | ·                       | <del>- ` `                                 </del> | <del>, , , , , , , , , , , , , , , , , , , </del> | ŕ              | <del>,                                    </del> | <u> </u>     | <del>' ' '</del>  | ) ÷ 100]<br>1 | (04-                                    |
| (24a)m= 0                                                                                                       | 0                                                                                            | 0                                       | 0                                 | 0                      | 0                       | 0                                                 | 0                                                 | 0              | 0                                                | 0            | 0                 | ]             | ( <b>24</b> a                           |
| b) If balance                                                                                                   |                                                                                              |                                         |                                   |                        |                         | <del></del>                                       | <del>,                                    </del>  | <del>í `</del> | <del>r Ó Tì</del>                                |              | 1 .               | 1             | (0.41)                                  |
| (24b)m= 0                                                                                                       | 0                                                                                            | 0                                       | 0                                 | 0                      | 0                       | 0                                                 | 0                                                 | 0              | 0                                                | 0            | 0                 |               | (24)                                    |
| c) If whole I<br>if (22b)                                                                                       | house extra<br>m < 0.5 × (                                                                   |                                         |                                   | •                      | •                       |                                                   |                                                   |                | .5 × (23b                                        | )            |                   |               |                                         |
| (24c)m= 0                                                                                                       | 0                                                                                            | 0                                       | 0                                 | 0                      | 0                       | 0                                                 | 0                                                 | 0              | 0                                                | 0            | 0                 |               | (240                                    |
| d) If natural<br>if (22b)                                                                                       | l ventilatior<br>m = 1, ther                                                                 |                                         |                                   | •                      | •                       |                                                   |                                                   |                | 0.5]                                             |              |                   |               |                                         |
| (24d)m= 0.61                                                                                                    | 0.61                                                                                         | 0.6                                     | 0.58                              | 0.58                   | 0.56                    | 0.56                                              | 0.56                                              | 0.57           | 0.58                                             | 0.59         | 0.59              | ]             | (24d                                    |
| Effective air                                                                                                   | r change ra                                                                                  | ate - er                                | iter (24a                         | ) or (24b              | o) or (24               | c) or (24                                         | ld) in box                                        | x (25)         | -                                                |              |                   | •             |                                         |
| (25)m= 0.61                                                                                                     | 0.61                                                                                         | 0.6                                     | 0.58                              | 0.58                   | 0.56                    | 0.56                                              | 0.56                                              | 0.57           | 0.58                                             | 0.59         | 0.59              | ]             | (25)                                    |
| 3. Heat losse                                                                                                   | es and hea                                                                                   | ıt loss p                               | paramete                          | er:                    |                         |                                                   |                                                   |                |                                                  |              | •                 | •             |                                         |
| ELEMENT                                                                                                         | Gross<br>area (r                                                                             |                                         | Openin<br>m                       |                        | Net Ar<br>A ,r          |                                                   | U-val<br>W/m2                                     |                | A X U<br>(W/k                                    | <b>(</b> )   | k-value<br>kJ/m²· |               | A X k<br>kJ/K                           |
| Doors                                                                                                           |                                                                                              |                                         |                                   |                        | 2                       | X                                                 | 1                                                 | =              | 2                                                |              |                   |               | (26)                                    |
| Windows Typ                                                                                                     | e 1                                                                                          |                                         |                                   |                        | 3.97                    | x1                                                | /[1/( 1.4 )+                                      | 0.04] =        | 5.26                                             |              |                   |               | (27)                                    |
| Windows Typ                                                                                                     | e 2                                                                                          |                                         |                                   |                        | 1.92                    | x1                                                | /[1/( 1.4 )+                                      | 0.04] =        | 2.55                                             |              |                   |               | (27)                                    |
| Windows Typ                                                                                                     | e 3                                                                                          |                                         |                                   |                        | 1.73                    | x1                                                | /[1/( 1.4 )+                                      | 0.04] =        | 2.29                                             |              |                   |               | (27)                                    |
| Rooflights Typ                                                                                                  | pe 1                                                                                         |                                         |                                   |                        | 0.43649                 | 94 x1                                             | /[1/(1.7) +                                       | 0.04] =        | 0.742048                                         | 9            |                   |               | (27b                                    |
| Rooflights Typ                                                                                                  | pe 2                                                                                         |                                         |                                   |                        | 0.74412                 |                                                   | /[1/(1.7) +                                       | 0.04] =        | 1.265017                                         | <del>_</del> |                   |               | (27)                                    |
| Walls Type1                                                                                                     | 35.48                                                                                        |                                         | 9.35                              |                        | 26.13                   | _                                                 | 0.18                                              |                | 4.7                                              | =            |                   |               | (29)                                    |
| Walls Type2                                                                                                     | 30.48                                                                                        | =                                       | 2                                 |                        | 28.48                   | _                                                 | 0.18                                              |                | 5.13                                             | <b>=</b>     |                   | 7             | (29)                                    |
| Roof                                                                                                            | 50.17                                                                                        | =                                       | 1.18                              |                        | 48.99                   | =                                                 | 0.13                                              | = =            | 6.37                                             | 북 ¦          |                   |               | (30)                                    |
| Total area of                                                                                                   |                                                                                              | <br>m²                                  | 1.10                              |                        | 116.1                   | _                                                 | 0.10                                              |                | 0.01                                             |              |                   |               | (31)                                    |
| Party wall                                                                                                      | Cicinonio, i                                                                                 |                                         |                                   |                        |                         | =                                                 |                                                   | <u> </u>       | •                                                | <b>–</b>     |                   |               |                                         |
| Party floor                                                                                                     |                                                                                              |                                         |                                   |                        | 26.97                   | _                                                 | 0                                                 | =              | 0                                                |              |                   | <b>-</b>    - | (32)                                    |
| i aliv iiuuli                                                                                                   |                                                                                              | ve uco o                                | ffective wi                       | ndow II                | 50.17                   |                                                   | a formula 1                                       | /[/1/     val  | (A) LO 041 ~                                     | e aivon in   | naraaran          |               | (328                                    |
| •                                                                                                               | d roof window                                                                                | vs, use e                               | nective wi                        |                        |                         | aleu using                                        | g IOITIIUIA T                                     | η( 170-vait    | 1 <del>0</del> )+0.04j a                         | s giveri iri | paragrapi         | 13.2          |                                         |
| * for windows and ** include the are                                                                            |                                                                                              | ides of in                              | ternal wal                        | ls and par             | titions                 |                                                   |                                                   |                |                                                  |              |                   |               |                                         |
| * for windows and ** include the are                                                                            | eas on both si                                                                               |                                         |                                   | ls and par             | titions                 |                                                   | (26)(30)                                          | ) + (32) =     |                                                  |              |                   | 32.47         | 7 <b>(33</b> )                          |
| * for windows and<br>** include the are<br>Fabric heat lo                                                       | eas on both si<br>oss, W/K =                                                                 | S (A x                                  |                                   | ls and par             | titions                 |                                                   | (26)(30)                                          |                | (30) + (32                                       | ) + (32a).   | (32e) =           | 1336          | ======================================= |
| * for windows and                                                                                               | eas on both si<br>ess, W/K =<br>v Cm = S(A                                                   | S (A x                                  | U)                                | ·                      |                         |                                                   | (26)(30)                                          | ((28).         | (30) + (32<br>ative Value:                       |              | (32e) =           |               | 3 (34)                                  |
| * for windows and<br>** include the are<br>Fabric heat lo<br>Heat capacity<br>Thermal mass<br>For design assess | eas on both si<br>SS, W/K =<br>CM = S(A<br>S paramete<br>Sesments wher                       | S (A x<br>x k )<br>er (TMF<br>re the de | U) P = Cm ÷ tails of the          | - TFA) ir              | n kJ/m²K                |                                                   |                                                   | ((28).         | itive Value:                                     | Medium       |                   | 1336          | 3 (34)                                  |
| * for windows and<br>** include the are<br>Fabric heat lo<br>Heat capacity                                      | eas on both si<br>ess, W/K =<br>r Cm = S(A<br>s paramete<br>essments wher<br>ead of a detail | S (A x x k ) er (TMF re the de          | U) P = Cm ÷ tails of the ulation. | - TFA) ir<br>construct | า kJ/m²K<br>ion are not | t known pr                                        |                                                   | ((28).         | itive Value:                                     | Medium       |                   | 1336          | 3 (34)                                  |

| Total fabric heat loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |             |              | (22) ±                | (26) -          |                             | ı            | 42.04   | 7(07) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|--------------|-----------------------|-----------------|-----------------------------|--------------|---------|-------|
| Ventilation heat loss calculated monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             |              | ` '                   | (36) =          | 25)m x (5)                  |              | 43.61   | (37)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , lup         | Jul         | Δυα          | ` '                   |                 |                             | 1            |         |       |
| Jan   Feb   Mar   Apr   May   (38)m=   27.27   27.08   26.89   26.01   25.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _             | 25.08       | Aug<br>24.94 | Sep<br>25.37          | Oct 25.85       | Nov<br>26.18                | Dec<br>26.53 |         | (38)  |
| Heat transfer coefficient, W/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 20.00       | 1 -0.00     |              |                       | = (37) + (37)   |                             |              |         | ,     |
| (39)m= 70.88 70.68 70.5 69.62 69.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68.69         | 68.69       | 68.55        | 68.98                 | 69.45           | 69.79                       | 70.13        |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u> </u>    | <u>!</u>     |                       | L<br>Average =  | Sum(39) <sub>1.</sub>       | 12 /12=      | 69.62   | (39)  |
| Heat loss parameter (HLP), W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |              | (40)m                 | = (39)m ÷       | (4)                         | ,            |         |       |
| (40)m= 1.41 1.41 1.39 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.37          | 1.37        | 1.37         | 1.37                  | 1.38            | 1.39                        | 1.4          |         | _     |
| Number of days in month (Table 1a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |             |              | ,                     | Average =       | Sum(40) <sub>1.</sub>       | 12 /12=      | 1.39    | (40)  |
| Jan Feb Mar Apr May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / Jun         | Jul         | Aug          | Sep                   | Oct             | Nov                         | Dec          |         |       |
| (41)m= 31 28 31 30 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30            | 31          | 31           | 30                    | 31              | 30                          | 31           |         | (41)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •             |             |              |                       |                 |                             |              |         |       |
| 4. Water heating energy requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |             |              |                       |                 |                             | kWh/ye       | ear:    |       |
| Assumed assumes at N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |             |              |                       |                 |                             | -            |         |       |
| Assumed occupancy, N<br>if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )349 x (TF    | FA -13.9    | )2)1 + 0.0   | 0013 x ( <sup>-</sup> | ΓFA -13.        |                             | .7           |         | (42)  |
| if TFA £ 13.9, N = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (             |             | , ,,         | •                     |                 | - /                         |              |         |       |
| Annual average hot water usage in litres per o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •             | _           | ` ,          |                       | o targat a      |                             | .46          |         | (43)  |
| Reduce the annual average hot water usage by 5% if the not more that 125 litres per person per day (all water use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •             | -           | to acriieve  | a water us            | se largel o     | I                           |              |         |       |
| Jan Feb Mar Apr May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / Jun         | Jul         | Aug          | Sep                   | Oct             | Nov                         | Dec          |         |       |
| Hot water usage in litres per day for each month Vd,m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |             |              | Seb                   | Oct             | INOV                        | Dec          |         |       |
| (44)m= 81.9 78.93 75.95 72.97 69.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67.01         | 67.01       | 69.99        | 72.97                 | 75.95           | 78.93                       | 81.9         |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u> </u>    |              | -                     | L<br>Γotal = Su | l<br>m(44) <sub>112</sub> = |              | 893.51  | (44)  |
| Energy content of hot water used - calculated monthly =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.190 x Vd,r  | m x nm x E  | OTm / 3600   | kWh/mon               | nth (see Ta     | ables 1b, 1                 | c, 1d)       |         | _     |
| (45)m= 121.46 106.23 109.62 95.57 91.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.13         | 73.33       | 84.14        | 85.15                 | 99.23           | 108.32                      | 117.63       |         |       |
| What a large and a large and a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a large at a la |               |             | h (40        |                       | Total = Su      | m(45) <sub>112</sub> =      |              | 1171.53 | (45)  |
| If instantaneous water heating at point of use (no hot wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |              |                       |                 | 1                           |              |         |       |
| (46)m= 18.22 15.93 16.44 14.34 13.76 Water storage loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.87         | 11          | 12.62        | 12.77                 | 14.89           | 16.25                       | 17.64        |         | (46)  |
| Storage volume (litres) including any solar or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WWHRS         | storage     | within sa    | ame ves               | sel             |                             | 0            |         | (47)  |
| If community heating and no tank in dwelling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | _           |              |                       |                 |                             | <u> </u>     |         | ( )   |
| Otherwise if no stored hot water (this includes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | ` '          | ers) ente             | er '0' in (     | 47)                         |              |         |       |
| Water storage loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |             |              |                       |                 |                             |              |         |       |
| a) If manufacturer's declared loss factor is kn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | own (kWh      | n/day):     |              |                       |                 |                             | 0            |         | (48)  |
| Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |              |                       |                 |                             | 0            |         | (49)  |
| Energy lost from water storage, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             | (48) x (49)  | ) =                   |                 |                             | 0            |         | (50)  |
| <ul> <li>b) If manufacturer's declared cylinder loss factor</li> <li>Hot water storage loss factor from Table 2 (kW)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |              |                       |                 |                             | •            |         | (51)  |
| If community heating see section 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vii/iiti e/ue | ay <i>)</i> |              |                       |                 |                             | 0            |         | (51)  |
| Volume factor from Table 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |             |              |                       |                 |                             | 0            |         | (52)  |
| Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |              |                       |                 |                             | 0            |         | (53)  |
| Energy lost from water storage, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             | (47) x (51)  | ) x (52) x (          | 53) =           |                             | 0            |         | (54)  |
| Enter (50) or (54) in (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |              |                       |                 |                             | 0            |         | (55)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |              |                       |                 |                             |              |         |       |

| Water                                                                                                             | storage                                                                                                    | loss cal                                                                                                           | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                        | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                              | ((56)m = (                                                                         | 55) × (41)                                                                        | m                                               |                                                                               |                                                     |                |                                              |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|----------------|----------------------------------------------|
| (56)m=                                                                                                            | 0                                                                                                          | 0                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                            | 0                                                                                  | 0                                                                                 | 0                                               | 0                                                                             | 0                                                   |                | (56)                                         |
| If cylind                                                                                                         | er contains                                                                                                | s dedicate                                                                                                         | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)ı                                                                                     | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                  | H11)] ÷ (5                                                                   | 0), else (5                                                                        | 7)m = (56)                                                                        | m where (                                       | H11) is fro                                                                   | m Append                                            | ı<br>ix H      |                                              |
| (57)m=                                                                                                            | 0                                                                                                          | 0                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                            | 0                                                                                  | 0                                                                                 | 0                                               | 0                                                                             | 0                                                   |                | (57)                                         |
| Prima                                                                                                             | ry circuit                                                                                                 | loss (an                                                                                                           | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | om Table                                                                                        | e 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                                                                              |                                                                                    |                                                                                   |                                                 |                                                                               | 0                                                   |                | (58)                                         |
| Prima                                                                                                             | ry circuit                                                                                                 | loss cal                                                                                                           | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                        | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                     | (58) ÷ 36                                                                    | 65 × (41)                                                                          | m                                                                                 |                                                 |                                                                               |                                                     | •              |                                              |
| (mo                                                                                                               | dified by                                                                                                  | factor fr                                                                                                          | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                      | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                    | ter heatii                                                                   | ng and a                                                                           | cylinde                                                                           | r thermo                                        | stat)                                                                         |                                                     |                |                                              |
| (59)m=                                                                                                            | 0                                                                                                          | 0                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                            | 0                                                                                  | 0                                                                                 | 0                                               | 0                                                                             | 0                                                   |                | (59)                                         |
| Comb                                                                                                              | i loss ca                                                                                                  | culated                                                                                                            | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                         | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                    | 65 × (41)                                                                    | )m                                                                                 |                                                                                   |                                                 |                                                                               |                                                     |                |                                              |
| (61)m=                                                                                                            | 41.74                                                                                                      | 36.33                                                                                                              | 38.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.99                                                                                           | 35.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.05                                                                        | 34.15                                                                        | 35.67                                                                              | 35.99                                                                             | 38.7                                            | 38.92                                                                         | 41.74                                               |                | (61)                                         |
| Total I                                                                                                           | neat requ                                                                                                  | uired for                                                                                                          | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                       | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for eacl                                                                     | h month                                                                      | (62)m =                                                                            | 0.85 × (                                                                          | (45)m +                                         | (46)m +                                                                       | (57)m +                                             | (59)m + (61)m  |                                              |
| (62)m=                                                                                                            | 163.2                                                                                                      | 142.56                                                                                                             | 148.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 131.56                                                                                          | 127.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112.18                                                                       | 107.48                                                                       | 119.81                                                                             | 121.13                                                                            | 137.94                                          | 147.24                                                                        | 159.37                                              |                | (62)                                         |
| Solar D                                                                                                           | HW input of                                                                                                | calculated                                                                                                         | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                                      | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                    | ve quantity                                                                  | /) (enter '0                                                                       | ' if no sola                                                                      | r contribut                                     | ion to wate                                                                   | er heating)                                         | '              |                                              |
| (add a                                                                                                            | dditiona                                                                                                   | l lines if                                                                                                         | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or V                                                                                        | WWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                      | , see Ap                                                                     | pendix (                                                                           | 3)                                                                                |                                                 |                                                                               |                                                     |                |                                              |
| (63)m=                                                                                                            | 0                                                                                                          | 0                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                            | 0                                                                                  | 0                                                                                 | 0                                               | 0                                                                             | 0                                                   |                | (63)                                         |
| Outpu                                                                                                             | t from w                                                                                                   | ater hea                                                                                                           | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                            | -                                                                            | -                                                                                  | -                                                                                 |                                                 | -                                                                             | -                                                   | •              |                                              |
| (64)m=                                                                                                            | 163.2                                                                                                      | 142.56                                                                                                             | 148.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 131.56                                                                                          | 127.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112.18                                                                       | 107.48                                                                       | 119.81                                                                             | 121.13                                                                            | 137.94                                          | 147.24                                                                        | 159.37                                              |                |                                              |
|                                                                                                                   |                                                                                                            |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                              | Outp                                                                               | out from wa                                                                       | ater heate                                      | r (annual)₁                                                                   | 12                                                  | 1618.16        | (64)                                         |
| Heat o                                                                                                            | ains froi                                                                                                  | m water                                                                                                            | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m                                                                                           | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                    | × (45)m                                                                      | + (61)m                                                                            | n] + 0.8 x                                                                        | ((46)m                                          | + (57)m                                                                       | + (59)m                                             | ]              | _                                            |
| (65)m=                                                                                                            | 50.82                                                                                                      | 44.4                                                                                                               | 46.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.77                                                                                           | 39.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.57                                                                        | 32.92                                                                        | 36.89                                                                              | 37.31                                                                             | 42.67                                           | 45.75                                                                         | 10.55                                               | l <sup>-</sup> | (65)                                         |
|                                                                                                                   |                                                                                                            |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0                                                                          | 32.32                                                                        | 30.09                                                                              | 37.31                                                                             | 42.07                                           | 45.75                                                                         | 49.55                                               |                | (03)                                         |
| incli                                                                                                             | ude (57)                                                                                                   | m in cald                                                                                                          | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ                                                                                               | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                     | <u> </u>                                                                     | <u> </u>                                                                           | <u> </u>                                                                          |                                                 | <u> </u>                                                                      | ļ                                                   | eating         | (00)                                         |
|                                                                                                                   | . ,                                                                                                        |                                                                                                                    | culation (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m                                                                                        | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                     | <u> </u>                                                                     | <u> </u>                                                                           | <u> </u>                                                                          |                                                 | <u> </u>                                                                      | munity h                                            | eating         | (00)                                         |
| 5. In                                                                                                             | ternal ga                                                                                                  | ains (see                                                                                                          | culation of the Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                     | <u> </u>                                                                     | <u> </u>                                                                           | <u> </u>                                                                          |                                                 | <u> </u>                                                                      | ļ                                                   | eating         | (03)                                         |
| 5. In                                                                                                             | ternal ga                                                                                                  | ains (see<br>s (Table                                                                                              | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                              | only if o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                    | s in the o                                                                   | dwelling                                                                           | or hot w                                                                          | ater is fr                                      | rom com                                                                       | munity h                                            | eating         | (03)                                         |
| 5. In                                                                                                             | ternal ga<br>olic gain<br>Jan                                                                              | ains (see<br>s (Table<br>Feb                                                                                       | culation of Table 5 (5), Wat Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of (65)m and 5a ts Apr                                                                          | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder is                                                                   | s in the o                                                                   | dwelling                                                                           | or hot w                                                                          | ater is fr                                      | om com                                                                        | munity h                                            | eating         | (66)                                         |
| 5. In Metab                                                                                                       | olic gain<br>Jan<br>84.76                                                                                  | s (Table<br>Feb<br>84.76                                                                                           | e Table 5<br>5), Wat<br>Mar<br>84.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76                                                      | only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only i | Jun<br>84.76                                                                 | Jul<br>84.76                                                                 | Aug<br>84.76                                                                       | or hot w                                                                          | ater is fr                                      | rom com                                                                       | munity h                                            | eating         |                                              |
| 5. In Metab (66)m= Lightir                                                                                        | olic gain Jan 84.76                                                                                        | s (Table<br>Feb<br>84.76<br>(calcular                                                                              | Example 5 to 2 to 2 to 2 to 2 to 2 to 2 to 2 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m and 5a ts Apr 84.76 ppendix                                                            | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | Jun<br>84.76                                                                 | Jul<br>84.76<br>r L9a), a                                                    | Aug<br>84.76                                                                       | Sep<br>84.76                                                                      | Oct                                             | Nov<br>84.76                                                                  | Dec 84.76                                           | eating         | (66)                                         |
| 5. In Metab  (66)m= Lightir (67)m=                                                                                | olic gain Jan 84.76 ng gains                                                                               | s (Table<br>Feb<br>84.76<br>(calcula                                                                               | Table 5  5), Wat  Mar  84.76  ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m 6 and 5a tts Apr 84.76 ppendix 7.21                                                    | only if constraints only if constraints only if constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the c | Jun<br>84.76<br>ion L9 o                                                     | Jul<br>84.76<br>r L9a), a                                                    | Aug<br>84.76<br>Iso see                                                            | Sep<br>84.76<br>Table 5                                                           | Oct 84.76                                       | om com                                                                        | munity h                                            | eating         |                                              |
| 5. In Metab  (66)m= Lightir (67)m= Applia                                                                         | olic gain Jan 84.76 ng gains 13.18 nces ga                                                                 | s (Table<br>Feb<br>84.76<br>(calcula<br>11.71                                                                      | Example 5 ted in Apple  of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 Append                                              | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 o<br>4.55<br>uation L                                 | Jul<br>84.76<br>r L9a), a<br>4.92                                            | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also                                       | Sep 84.76 Table 5 8.58 see Ta                                                     | Oct 84.76                                       | Nov<br>84.76                                                                  | Dec 84.76                                           | eating         | (66)<br>(67)                                 |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m=                                                                  | olic gain Jan 84.76 ng gains 13.18 nces ga                                                                 | s (Table<br>Feb<br>84.76<br>(calcula<br>11.71<br>ins (calc                                                         | Example 5 to the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 Appendix 137.13                                     | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L                                | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48                      | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95                             | Sep 84.76 Table 5 8.58 see Ta 112.81                                              | Oct 84.76  10.89 ble 5 121.03                   | Nov<br>84.76                                                                  | Dec 84.76                                           | eating         | (66)                                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookii                                                           | olic gain Jan 84.76 ng gains 13.18 nces gains 147.68                                                       | s (Table Feb 84.76 (calculations (calculations (calculations (calculations)) 149.21 (calculations)                 | Example 5 (a) Table 5 (b) Wat Mar 84.76 (b) ted in Apr 145.35 (b) ted in Apr 145.35 (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m 6 and 5a tts Apr 84.76 ppendix 7.21 Append 137.13 ppendix                              | only if constructions only if constructions only if constructions on the construction of the construction on the construction of the construction on the construction of the construction of the construction on the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction  | Jun 84.76 ion L9 of 4.55 uation L 116.99                                     | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a           | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95                             | Sep 84.76 Table 5 8.58 See Ta 112.81 ee Table                                     | Oct 84.76  10.89 ble 5 121.03                   | Nov<br>84.76<br>12.71                                                         | Dec 84.76                                           | eating         | (66)<br>(67)                                 |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookii (69)m=                                                    | olic gain Jan 84.76 ng gains 13.18 nces gains 147.68 ng gains                                              | s (Table<br>Feb<br>84.76<br>(calcula<br>11.71<br>ins (calcula<br>149.21<br>(calcula<br>31.48                       | Evaluation of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the  | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 n Append 137.13 ppendix 31.48                       | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L                                | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48                      | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95                             | Sep 84.76 Table 5 8.58 see Ta 112.81                                              | Oct 84.76  10.89 ble 5 121.03                   | Nov<br>84.76                                                                  | Dec 84.76                                           | eating         | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m= Pump                                               | olic gain Jan 84.76 ng gains 13.18 nces ga 147.68 ng gains 31.48 s and far                                 | s (Table Feb 84.76 (calcula 11.71 ins (calc 149.21 (calcula 31.48 ns gains                                         | Table 5 2 5), Wat Mar 84.76 ted in Ap 9.52 ulated in 145.35 ted in A 31.48 (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 Appendix 137.13 ppendix 31.48 5a)                   | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L<br>116.99<br>tion L15<br>31.48 | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)          | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>), also se<br>31.48      | Sep 84.76 Table 5 8.58 see Ta 112.81 ee Table 31.48                               | Oct 84.76  10.89 ble 5 121.03 5 31.48           | Nov<br>84.76<br>12.71<br>131.41                                               | Dec 84.76 13.55 141.16 31.48                        | eating         | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookii (69)m= Pump (70)m=                                        | olic gain Jan 84.76 ng gains 13.18 nces gains 147.68 ng gains 31.48 s and far                              | s (Table Feb 84.76 (calcula 11.71 ins (calc 149.21 (calcula 31.48 ns gains                                         | Evilation of the Evilonment of the Evilonment of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of the Evilone State of th | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 Appendix 137.13 ppendix 31.48 5a) 3                 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L<br>116.99<br>tion L15<br>31.48 | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a           | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95                             | Sep 84.76 Table 5 8.58 See Ta 112.81 ee Table                                     | Oct 84.76  10.89 ble 5 121.03                   | Nov<br>84.76<br>12.71                                                         | Dec 84.76                                           | eating         | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookii (69)m= Pump (70)m= Losse                                  | olic gain Jan 84.76 ng gains 13.18 nces ga 147.68 ng gains 31.48 s and far 3 s e.g. ev                     | s (Table Feb 84.76 (calcular 11.71 ins (calcular 149.21 (calcular 31.48 ns gains 3                                 | ted in Apulated in | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 n Append 137.13 ppendix 31.48 5a) 3 tive value      | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L<br>116.99<br>tion L15<br>31.48 | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>), also se<br>31.48      | Sep 84.76 Table 5 8.58 See Ta 112.81 ee Table 31.48                               | Oct 84.76  10.89 ble 5 121.03 5 31.48           | Nov<br>84.76<br>12.71<br>131.41<br>31.48                                      | Dec 84.76 13.55 141.16 31.48                        | eating         | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m= Pump (70)m= Losse (71)m=                           | olic gain Jan 84.76 ng gains 13.18 nces ga 147.68 ng gains 31.48 s and far 3 s e.g. ev                     | s (Table Feb 84.76 (calcula 11.71 ins (calcula 149.21 (calcula 31.48 ns gains 3 aporatio -67.8                     | ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in Ap 145.35 ted in | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 Appendix 137.13 ppendix 31.48 5a) 3                 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L<br>116.99<br>tion L15<br>31.48 | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)          | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>), also se<br>31.48      | Sep 84.76 Table 5 8.58 see Ta 112.81 ee Table 31.48                               | Oct 84.76  10.89 ble 5 121.03 5 31.48           | Nov<br>84.76<br>12.71<br>131.41                                               | Dec 84.76 13.55 141.16 31.48                        | eating         | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m= Pump (70)m= Losse (71)m= Water                     | olic gain Jan 84.76 ng gains 13.18 nces gains 147.68 ng gains 31.48 s and far 3 s e.g. ev -67.8 heating    | s (Table Feb 84.76 (calcula 11.71 ins (calcula 31.48 ns gains 3 aporatio -67.8 gains (T                            | ted in Ap 9.52 ulated in Ap 31.48 (Table 5 3 an (negarable 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 Appendix 31.48 5a) 3 tive valu -67.8                | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>84.76<br>ion L9 of<br>4.55<br>uation L<br>116.99<br>tion L15<br>31.48 | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>), also se<br>31.48      | Sep<br>84.76<br>Table 5<br>8.58<br>See Ta<br>112.81<br>ee Table<br>31.48          | Oct 84.76  10.89 ble 5 121.03 5 31.48           | Nov<br>84.76<br>12.71<br>131.41<br>31.48                                      | Dec 84.76 13.55 141.16 31.48 3                      | eating         | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookii (69)m= Pump (70)m= Losse (71)m= Water (72)m=              | olic gain Jan 84.76 ng gains 13.18 nces ga 147.68 ng gains 31.48 s and far 3 s e.g. ev -67.8 heating 68.31 | s (Table Feb 84.76 (calcular 11.71 ins (calcular 149.21 (calcular 31.48 ns gains 3 aporation -67.8 gains (T        | culation of the ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in Apr | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 n Append 137.13 ppendix 31.48 5a) 3 tive value      | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 84.76 ion L9 of 4.55 uation L 116.99 tion L15 31.48  3 ble 5) -67.8      | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>), also se<br>31.48      | Sep 84.76 Table 5 8.58 See Ta 112.81 ee Table 31.48  3  -67.8                     | Oct 84.76  10.89 ble 5 121.03 5 31.48  3 -67.8  | Nov<br>84.76<br>12.71<br>131.41<br>31.48<br>3                                 | Dec 84.76 13.55 141.16 31.48 3 66.59                | eating         | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookin (69)m= Pump (70)m= Losse (71)m= Water (72)m= Total        | olic gain Jan 84.76 ng gains 13.18 nces ga 147.68 ng gains 31.48 s and far 3 s e.g. ev -67.8 heating 68.31 | s (Table Feb 84.76 (calcula 11.71 ins (calc 149.21 (calcula 31.48 ns gains 3 aporatio -67.8 gains (T 66.08         | culation of Table 5 2 5), Wat Mar 84.76 ted in Ap 9.52 ulated in 145.35 tted in A 31.48 (Table 5 3 on (negation of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context of the context | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 Appendix 137.13 ppendix 31.48 5a) 3 tive valu -67.8 | only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions only if constructions  | Jun 84.76 ion L9 of 4.55 uation L 116.99 tion L15 31.48  3 ole 5) -67.8      | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>), also se<br>31.48<br>3 | Sep 84.76 Table 5 8.58 See Ta 112.81 See Table 31.48  3  -67.8  51.82 + (69)m + ( | Oct 84.76  10.89 ble 5 121.03 5 31.48  3  -67.8 | Nov<br>84.76<br>12.71<br>131.41<br>31.48<br>3<br>-67.8<br>63.54<br>1)m + (72) | munity h  Dec 84.76  13.55  141.16  31.48  3  -67.8 | eating         | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookii (69)m= Pump (70)m= Losse (71)m= Water (72)m= Total (73)m= | olic gain Jan 84.76 ng gains 13.18 nces ga 147.68 ng gains 31.48 s and far 3 s e.g. ev -67.8 heating 68.31 | s (Table Feb 84.76 (calcular 11.71 ins (calcular 149.21 (calcular 31.48 ins gains 3 aporation 66.08 gains = 278.42 | culation of the ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in April 145.35 ted in Apr | of (65)m 5 and 5a ts Apr 84.76 ppendix 7.21 Appendix 31.48 5a) 3 tive valu -67.8                | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 84.76 ion L9 of 4.55 uation L 116.99 tion L15 31.48  3 ble 5) -67.8      | Jul<br>84.76<br>r L9a), a<br>4.92<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.39<br>3a), also<br>108.95<br>), also se<br>31.48      | Sep 84.76 Table 5 8.58 See Ta 112.81 ee Table 31.48  3  -67.8                     | Oct 84.76  10.89 ble 5 121.03 5 31.48  3 -67.8  | Nov<br>84.76<br>12.71<br>131.41<br>31.48<br>3                                 | Dec 84.76 13.55 141.16 31.48 3 66.59                | eating         | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:    | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|-----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x  | 0.77                      | X | 3.97       | x | 11.28            | x | 0.63           | x | 0.7            | =   | 13.69        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 11.28            | x | 0.63           | x | 0.7            | =   | 6.62         | (75) |
| Northeast 0.9x  | 0.77                      | X | 3.97       | x | 22.97            | x | 0.63           | x | 0.7            | =   | 27.87        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 22.97            | x | 0.63           | x | 0.7            | =   | 13.48        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 41.38            | x | 0.63           | x | 0.7            | =   | 50.2         | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 41.38            | x | 0.63           | x | 0.7            | =   | 24.28        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 67.96            | x | 0.63           | x | 0.7            | ] = | 82.45        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 67.96            | x | 0.63           | x | 0.7            | =   | 39.87        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 91.35            | x | 0.63           | x | 0.7            | =   | 110.83       | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 91.35            | x | 0.63           | x | 0.7            | =   | 53.6         | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 97.38            | x | 0.63           | x | 0.7            | =   | 118.15       | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 97.38            | x | 0.63           | x | 0.7            | =   | 57.14        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 91.1             | x | 0.63           | X | 0.7            | =   | 110.53       | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 91.1             | x | 0.63           | x | 0.7            | =   | 53.46        | (75) |
| Northeast 0.9x  | 0.77                      | X | 3.97       | x | 72.63            | x | 0.63           | X | 0.7            | =   | 88.12        | (75) |
| Northeast 0.9x  | 0.77                      | X | 1.92       | x | 72.63            | X | 0.63           | X | 0.7            | =   | 42.62        | (75) |
| Northeast 0.9x  | 0.77                      | X | 3.97       | x | 50.42            | x | 0.63           | X | 0.7            | =   | 61.17        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 50.42            | x | 0.63           | x | 0.7            | =   | 29.59        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 28.07            | x | 0.63           | x | 0.7            | =   | 34.05        | (75) |
| Northeast 0.9x  | 0.77                      | X | 1.92       | x | 28.07            | x | 0.63           | X | 0.7            | =   | 16.47        | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 14.2             | x | 0.63           | x | 0.7            | =   | 17.22        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 14.2             | x | 0.63           | x | 0.7            | =   | 8.33         | (75) |
| Northeast 0.9x  | 0.77                      | x | 3.97       | x | 9.21             | x | 0.63           | x | 0.7            | =   | 11.18        | (75) |
| Northeast 0.9x  | 0.77                      | x | 1.92       | x | 9.21             | x | 0.63           | x | 0.7            | =   | 5.41         | (75) |
| Northwest 0.9x  | 0.77                      | X | 1.73       | x | 11.28            | X | 0.63           | X | 0.7            | =   | 11.93        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 22.97            | x | 0.63           | X | 0.7            | =   | 24.29        | (81) |
| Northwest 0.9x  | 0.77                      | X | 1.73       | x | 41.38            | X | 0.63           | X | 0.7            | =   | 43.75        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 67.96            | X | 0.63           | X | 0.7            | =   | 71.86        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 91.35            | x | 0.63           | X | 0.7            | =   | 96.59        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 97.38            | x | 0.63           | x | 0.7            | =   | 102.98       | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 91.1             | X | 0.63           | X | 0.7            | =   | 96.33        | (81) |
| Northwest 0.9x  | 0.77                      | X | 1.73       | x | 72.63            | x | 0.63           | x | 0.7            | =   | 76.8         | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 50.42            | x | 0.63           | x | 0.7            | =   | 53.32        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 28.07            | x | 0.63           | x | 0.7            | =   | 29.68        | (81) |
| Northwest 0.9x  | 0.77                      | x | 1.73       | x | 14.2             | x | 0.63           | x | 0.7            | =   | 15.01        | (81) |
| Northwest 0.9x  | 0.77                      | X | 1.73       | x | 9.21             | x | 0.63           | x | 0.7            | ] = | 9.74         | (81) |
| Rooflights 0.9x | 1                         | X | 0.44       | x | 26               | x | 0.63           | x | 0.7            | ] = | 4.5          | (82) |
| Rooflights 0.9x | 1                         | X | 0.74       | x | 26               | × | 0.63           | x | 0.7            | ] = | 7.68         | (82) |
| Rooflights 0.9x | 1                         | X | 0.44       | x | 54               | × | 0.63           | x | 0.7            | ] = | 9.36         | (82) |
|                 |                           |   |            | - |                  | • |                | • |                | -   |              | _    |

| Rooflights <sub>0.9x</sub> | 1             | ×         | 0.74      | 4       | X             | 54             | 1 x        | 0.63           | ×      | 0.7            |       | 15.95    | (82) |
|----------------------------|---------------|-----------|-----------|---------|---------------|----------------|------------|----------------|--------|----------------|-------|----------|------|
| Rooflights 0.9x            | <u>·</u><br>1 | = x       | 0.44      | ==      | X             | 96             | ] x        | 0.63           | ×      | 0.7            | ╡ .   | 16.63    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | = x       | 0.74      |         | X             | 96             | ]          | 0.63           | d ×    | 0.7            | ╡ .   | 28.35    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | = x       | 0.44      |         | X             | 150            | ] x        | 0.63           | ۰<br>× | 0.7            | ╡ .   | 25.99    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | i x       | 0.74      |         | X             | 150            | ] ^<br>] x | 0.63           | d ×    | 0.7            | ╡ .   | 44.3     | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | = x       | 0.44      |         | X             | 192            | ]          | 0.63           | X      | 0.7            | ╡ .   | 33.26    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | i x       | 0.74      |         | X             | 192            | ]          | 0.63           | d ^    | 0.7            | ╡ .   | 56.71    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 | = x       | 0.44      |         | X             | 200            | ] x        | 0.63           | d ×    | 0.7            | ╡ .   | 34.65    | (82) |
| Rooflights 0.9x            | <u>·</u><br>1 |           | 0.74      |         | X             | 200            | ] x        | 0.63           | ×      | 0.7            | ╡ .   | 59.07    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 |           | 0.44      |         | X             | 189            | ] x        | 0.63           | ۰<br>× | 0.7            | ╡ .   | 32.74    | (82) |
| Rooflights 0.9x            | <u>·</u><br>1 | = x       | 0.74      |         | X             | 189            | ] x        | 0.63           | ×      | 0.7            | ╡ -   | 55.82    | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 |           | 0.44      |         | X             | 157            | ] x        | 0.63           | ×      | 0.7            | ╡ -   | 27.2     | (82) |
| Rooflights 0.9x            | <u>'</u><br>1 |           | 0.74      | ==      | X             | 157            | ] x        | 0.63           | ۰<br>× | 0.7            | ╡ .   | 46.37    | (82) |
| Rooflights 0.9x            | <u>·</u><br>1 |           | 0.44      |         | X             | 115            | ] x        | 0.63           | = x    | 0.7            | ╡ -   | 19.92    | (82) |
| Rooflights <sub>0.9x</sub> | <u>·</u>      | ×         | 0.74      |         | X             | 115            | ] x        | 0.63           | ×      | 0.7            | ╡ .   | 33.96    | (82) |
| Rooflights 0.9x            | <u>·</u><br>1 | =  x      | 0.4       |         | X             | 66             | ]<br>]     | 0.63           | ا ×    | 0.7            | ╡ -   | 11.43    | (82) |
| Rooflights <sub>0.9x</sub> | 1             | x         | 0.74      |         | X             | 66             | ]<br>]     | 0.63           | = x    | 0.7            | = =   | 19.49    | (82) |
| Rooflights <sub>0.9x</sub> | 1             | ×         | 0.4       |         | X             | 33             | )<br>  X   | 0.63           | ×      | 0.7            | = =   | 5.72     | (82) |
| Rooflights <sub>0.9x</sub> | 1             | x         | 0.74      | 4       | X             | 33             | X          | 0.63           | ×      | 0.7            | = =   | 9.75     | (82) |
| Rooflights 0.9x            | 1             | ×         | 0.4       | 4       | X             | 21             | X          | 0.63           | ×      | 0.7            | =     | 3.64     | (82) |
| Rooflights 0.9x            | 1             | ×         | 0.74      | 4       | X             | 21             | X          | 0.63           | ×      | 0.7            | =     | 6.2      | (82) |
| L                          |               |           |           |         |               |                | J          |                | _      |                |       |          |      |
| Solar gains in             | watts, calc   | ulated    | for each  | n montl | h             |                | (83)m      | n = Sum(74)m . | (82)m  |                |       |          |      |
| (83)m= 44.42               | 90.93 1       | 63.22     | 264.47    | 350.99  | 3             | 71.99 348.88   | 28         | 1.1 197.96     | 111.1  | 3 56.03        | 36.17 |          | (83) |
| Total gains – ir           | nternal and   | d solar   | (84)m =   | (73)m   | + (           | 33)m , watts   |            |                |        |                |       | •        |      |
| (84)m= 325.02              | 369.35        | 31.51     | 516.86    | 587.52  | 5             | 92.98 559.95   | 497        | .45 422.59     | 351.8  | 315.11         | 308.9 |          | (84) |
| 7. Mean inter              | nal temper    | rature (  | heating   | seaso   | n)            |                |            |                |        |                |       |          |      |
| Temperature                | during hea    | ating pe  | eriods in | the liv | ing           | area from Tal  | ole 9      | , Th1 (°C)     |        |                |       | 21       | (85) |
| Utilisation fac            | tor for gair  | ns for li | ving are  | a, h1,r | n (s          | ee Table 9a)   |            |                |        |                |       |          |      |
| Jan                        | Feb           | Mar       | Apr       | May     |               | Jun Jul        | Α          | ug Sep         | Oct    | Nov            | Dec   |          |      |
| (86)m= 1                   | 0.99          | 0.99      | 0.95      | 0.85    |               | 0.68 0.52      | 0.         | 6 0.86         | 0.98   | 0.99           | 1     |          | (86) |
| Mean internal              | temperati     | ure in li | iving are | ea T1 ( | follo         | w steps 3 to 7 | 7 in T     | able 9c)       |        |                |       |          |      |
| (87)m= 19.46               | 19.62         | 19.93     | 20.37     | 20.74   | 2             | 0.93 20.98     | 20.        | 97 20.8        | 20.32  | 19.82          | 19.44 |          | (87) |
| Temperature                | during hea    | ating pe  | eriods in | rest o  | f dw          | elling from Ta | able 9     | 9, Th2 (°C)    |        | -              | -     |          |      |
| (88)m= 19.75               |               | 19.76     | 19.77     | 19.78   | $\overline{}$ | 9.79 19.79     | 19.        | <del></del>    | 19.78  | 19.77          | 19.76 |          | (88) |
| Utilisation fac            | tor for gair  | ns for re | est of dv | vellina | h2            | m (see Table   | 9a)        | •              |        | •              |       | •        |      |
| (89)m= 1                   |               | 0.98      | 0.93      | 0.79    | $\overline{}$ | 0.57 0.39      | 0.4        | 16 0.78        | 0.96   | 0.99           | 1     |          | (89) |
| Mean internal              | temnerati     | ure in t  | he rest ( | of dwel | lina          | T2 (fallow etc | ns 3       | to 7 in Tahl   | e 9c)  |                |       | ı        |      |
| (90)m= 17.73               |               | 18.42     | 19.05     | 19.53   | Ť             | 9.74 19.78     | 19.        |                | 18.99  | 18.27          | 17.71 |          | (90) |
| . , [                      | -             |           |           |         |               |                | L          |                |        | ving area ÷ (4 |       | 0.47     | (91) |
|                            |               | "         | . 41      |         | منالم         | ~\ <b>_</b> fl | . /1       | fl A \ v TO    |        |                |       | <u> </u> |      |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18                               | .55 18.75                  | 19.13      | 19.67      | 20.1               | 20.31          | 20.35      | 20.34      | 20.18            | 19.62                  | 19                            | 18.53      |          | (92)         |
|-----------------------------------------|----------------------------|------------|------------|--------------------|----------------|------------|------------|------------------|------------------------|-------------------------------|------------|----------|--------------|
| Apply adj                               | ustment to                 | the mean   | interna    | temper             | ature fro      | m Table    | 4e, whe    | ere appro        | priate                 | ļ                             |            |          |              |
| (93)m= 18                               | .55 18.75                  | 19.13      | 19.67      | 20.1               | 20.31          | 20.35      | 20.34      | 20.18            | 19.62                  | 19                            | 18.53      |          | (93)         |
| 8. Space                                | heating req                | uirement   |            |                    |                |            |            |                  |                        |                               |            |          |              |
| Set Ti to                               | the mean in                | ternal ter | nperatu    | e obtain           | ed at ste      | ep 11 of   | Table 9l   | b, so tha        | t Ti,m=(               | 76)m an                       | d re-calc  | ulate    |              |
| the utilisa                             | tion factor f              | or gains   | using Ta   | ble 9a             |                |            |            |                  |                        |                               |            |          |              |
| J                                       | an Feb                     | Mar        | Apr        | May                | Jun            | Jul        | Aug        | Sep              | Oct                    | Nov                           | Dec        |          |              |
| Utilisation                             | n factor for o             | ains, hm   | :          |                    |                |            |            |                  |                        |                               |            |          |              |
| (94)m= 0.                               | 99 0.99                    | 0.98       | 0.93       | 0.81               | 0.62           | 0.45       | 0.53       | 0.81             | 0.96                   | 0.99                          | 1          |          | (94)         |
|                                         | ins, hmGm                  | , W = (94  | 1)m x (8   | 4)m                |                |            |            |                  |                        |                               |            |          |              |
| (95)m= 323                              | 3.29 365.81                | 421.4      | 479.8      | 475.86             | 367.64         | 252.85     | 261.36     | 342.46           | 338.65                 | 312.15                        | 307.58     |          | (95)         |
| Monthly a                               | average ext                | ernal tem  | perature   | from Ta            | able 8         |            |            |                  |                        |                               |            |          |              |
| (96)m= 4                                | .3 4.9                     | 6.5        | 8.9        | 11.7               | 14.6           | 16.6       | 16.4       | 14.1             | 10.6                   | 7.1                           | 4.2        |          | (96)         |
| Heat loss                               | rate for me                | an intern  | al tempe   | erature,           | Lm , W =       | =[(39)m    | x [(93)m   | – (96)m          | ]                      |                               |            |          |              |
| (97)m= 101                              | 0.18 978.97                | 890.7      | 749.97     | 583.32             | 391.9          | 257.55     | 270.16     | 419.19           | 626.49                 | 830.74                        | 1004.92    |          | (97)         |
| Space he                                | ating requir               | ement fo   | r each n   | nonth, k\          | Wh/mont        | h = 0.02   | 24 x [(97  | )m – (95         | )m] x (4               | 1)m                           |            |          |              |
| (98)m= 51°                              | 1.05 412.05                | 349.16     | 194.52     | 79.95              | 0              | 0          | 0          | 0                | 214.16                 | 373.39                        | 518.83     |          |              |
|                                         |                            |            |            |                    |                |            | Tota       | l per year       | (kWh/year              | ) = Sum(9                     | 8)15,912 = | 2653.09  | (98)         |
| Space he                                | ating requir               | ement in   | kWh/m²     | <sup>2</sup> /year |                |            |            |                  |                        |                               | İ          | 52.88    | (99)         |
| •                                       | / requireme                |            |            |                    | vetome i       | noludina   | mioro (    | יווט/            |                        |                               |            |          |              |
| •                                       |                            | nis – mu   | ividuai II | ealing s           | ysterns i      | ricidaling | IIIICIO-C  | ) IF)            |                        |                               |            |          |              |
| Space he                                | of space he                | at from s  | econdar    | v/supple           | mentary        | system     |            |                  |                        |                               | ı          | 0        | (201)        |
|                                         | of space he                |            |            |                    | ····o····ca··y | -          | (202) = 1  | - (201) <b>=</b> |                        |                               | l<br>I     | 1        | (202)        |
|                                         | •                          |            | -          |                    |                |            |            | 02) × [1 –       | (202)] =               |                               | ļ          |          | ╡`           |
|                                         | of total heat              | •          | •          |                    |                |            | (204) - (2 | 02) ^ [1 - 1     | (203)] -               |                               | ļ          | 1        | (204)        |
| Efficiency                              | of main sp                 | ace heat   | ing syste  | em 1               |                |            |            |                  |                        |                               |            | 93.4     | (206)        |
| Efficiency                              | of seconda                 | ary/supple | ementar    | y heating          | g system       | າ, %       |            |                  |                        |                               |            | 0        | (208)        |
| J                                       | an Feb                     | Mar        | Apr        | May                | Jun            | Jul        | Aug        | Sep              | Oct                    | Nov                           | Dec        | kWh/ye   | ar           |
| Space he                                | ating requir               | ement (c   | alculate   | d above            | )              |            |            | •                |                        | •                             |            |          |              |
| 51 <sup>-</sup>                         | 1.05 412.05                | 349.16     | 194.52     | 79.95              | 0              | 0          | 0          | 0                | 214.16                 | 373.39                        | 518.83     |          |              |
| (211)m = {                              | [(98)m x (20               | 04)] } x 1 | 00 ÷ (20   | )6)                |                |            |            |                  |                        |                               |            |          | (211)        |
|                                         | 7.16 441.16                | 373.83     | 208.26     | 85.6               | 0              | 0          | 0          | 0                | 229.29                 | 399.77                        | 555.49     |          |              |
|                                         | <b>!</b>                   |            |            |                    | l              |            | ITota      | l (kWh/yea       | ar) =Sum(2             | L                             | <u></u>    | 2840.57  | (211)        |
| Snace he                                | eating fuel (s             | econdar    | ν) k\//h/  | month              |                |            |            |                  |                        |                               | ı          |          | <b>」</b> ` ' |
| •                                       | (201)] } x                 |            | • , .      | month              |                |            |            |                  |                        |                               |            |          |              |
| • • • • • • • • • • • • • • • • • • • • | 0 0                        | 0          | 0          | 0                  | 0              | 0          | 0          | 0                | 0                      | 0                             | 0          |          |              |
| ` ′                                     |                            | l          |            |                    | ļ              |            | ITota      | l<br>I (kWh/yea  | ar) =Sum(2             | L<br>215), <sub>540, 45</sub> | =          | 0        | (215)        |
| Water hea                               | tina                       |            |            |                    |                |            |            |                  | ,                      | 715,1012                      | · I        | <u> </u> |              |
|                                         | m water hea                | ater (calc | ulated a   | hove)              |                |            |            |                  |                        |                               |            |          |              |
| -                                       | 3.2 142.56                 | 148.32     | 131.56     | 127.37             | 112.18         | 107.48     | 119.81     | 121.13           | 137.94                 | 147.24                        | 159.37     |          |              |
|                                         | of water he                |            |            |                    | I .            | _          | <u> </u>   | L                |                        | I                             |            | 80.3     | (216)        |
|                                         | .73 87.57                  | 87.13      | 86.03      | 83.92              | 80.3           | 80.3       | 80.3       | 80.3             | 86.15                  | 87.29                         | 87.8       | 00.0     | (217)        |
|                                         |                            |            |            | 03.82              | 00.3           | 00.3       | 00.3       | 00.3             | 00.10                  | 01.28                         | 01.0       |          | (411)        |
|                                         | ater heating<br>(64)m x 10 |            |            |                    |                |            |            |                  |                        |                               |            |          |              |
| (219)m = 186                            |                            | 170.23     | 152.91     | 151.78             | 139.7          | 133.84     | 149.2      | 150.85           | 160.1                  | 168.67                        | 181.5      |          |              |
|                                         |                            |            | <u> </u>   | <u> </u>           | l              | <u> </u>   | l          | I = Sum(2        | 19a) <sub>1 12</sub> = | <u> </u>                      |            | 1907.63  | (219)        |
|                                         |                            |            |            |                    |                |            |            | *                | 14                     |                               |            |          | (            |

| Annual totals                                                                                                     |                                                                                  | kWh/year                              | kWh/year                                                                     |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|
| Space heating fuel used, main system 1                                                                            |                                                                                  | ,                                     | 2840.57                                                                      |
| Water heating fuel used                                                                                           |                                                                                  |                                       | 1907.63                                                                      |
| Electricity for pumps, fans and electric keep-hot                                                                 |                                                                                  |                                       |                                                                              |
| central heating pump:                                                                                             |                                                                                  | 30                                    | (230c)                                                                       |
| boiler with a fan-assisted flue                                                                                   |                                                                                  | 45                                    | (230e)                                                                       |
| Total electricity for the above, kWh/year                                                                         | sum of (230a                                                                     | a)(230g) =                            | 75 (231)                                                                     |
| Electricity for lighting                                                                                          |                                                                                  |                                       | 232.82 (232)                                                                 |
| 12a. CO2 emissions – Individual heating systems                                                                   | s including micro-CHP                                                            |                                       |                                                                              |
|                                                                                                                   |                                                                                  |                                       |                                                                              |
|                                                                                                                   | <b>Energy</b><br>kWh/year                                                        | Emission factor<br>kg CO2/kWh         | <b>Emissions</b><br>kg CO2/year                                              |
| Space heating (main system 1)                                                                                     | <b>0</b> ,                                                                       |                                       |                                                                              |
| Space heating (main system 1) Space heating (secondary)                                                           | kWh/year                                                                         | kg CO2/kWh                            | kg CO2/year                                                                  |
|                                                                                                                   | kWh/year                                                                         | kg CO2/kWh                            | kg CO2/year<br>613.56 (261)                                                  |
| Space heating (secondary)                                                                                         | kWh/year<br>(211) x<br>(215) x                                                   | kg CO2/kWh  0.216 =  0.519 =          | kg CO2/year  613.56 (261)  0 (263)                                           |
| Space heating (secondary) Water heating                                                                           | kWh/year<br>(211) x<br>(215) x<br>(219) x                                        | kg CO2/kWh  0.216 =  0.519 =          | kg CO2/year  613.56 (261)  0 (263)  412.05 (264)                             |
| Space heating (secondary) Water heating Space and water heating                                                   | kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) =                 | kg CO2/kWh  0.216 =  0.519 =  0.216 = | kg CO2/year  613.56 (261)  0 (263)  412.05 (264)  1025.61 (265)              |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot | kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x | kg CO2/kWh  0.216 =  0.519 =  0.519 = | kg CO2/year  613.56 (261)  0 (263)  412.05 (264)  1025.61 (265)  38.93 (267) |

TER =

23.63

(273)

|                                              |                                                            | User D         | etails:      |             |            |          |                     |              |              |
|----------------------------------------------|------------------------------------------------------------|----------------|--------------|-------------|------------|----------|---------------------|--------------|--------------|
| Assessor Name:                               | Chris Hocknell                                             |                | Strom        | a Num       | ber:       |          | STRO                | 016363       |              |
| Software Name:                               | Stroma FSAP 2012                                           |                | Softwa       | _           |            |          |                     | n: 1.0.4.16  |              |
|                                              |                                                            | Property /     | Address      | Apartm      | ent 2      |          |                     |              |              |
| Address :                                    |                                                            |                |              |             |            |          |                     |              |              |
| 1. Overall dwelling dime                     | ensions:                                                   |                |              |             |            |          |                     |              |              |
| Ground floor                                 |                                                            |                | a(m²)        | (4-)        |            | ight(m)  | ] <sub>(0=)</sub> = | Volume(m³)   | _            |
|                                              | a) ( (4 h) ( (4 a) ( (4 d) ( (4 a) (                       |                |              | (1a) x      |            | 2.7      | (2a) =              | 159.98       | (3a)         |
|                                              | a)+(1b)+(1c)+(1d)+(1e)+(                                   | 5              | 9.25         | (4)         | )+(3°)+(3° | d)+(3e)+ | (3n) =              |              | ٦            |
| Dwelling volume                              |                                                            |                |              | (3a)+(3b    | )+(30)+(30 | л)т(зе)т | .(311) =            | 159.98       | (5)          |
| 2. Ventilation rate:                         | main seconda                                               | erv            | other        |             | total      |          |                     | m³ per hou   | r            |
|                                              | heating heating                                            | <u> </u>       | Other        | , –         | lotai      |          |                     | in per nou   | _            |
| Number of chimneys                           | 0 + 0                                                      |                | 0            | 」 <u> </u>  | 0          |          | 40 =                | 0            | (6a)         |
| Number of open flues                         | 0 + 0                                                      | +              | 0            | ] = [       | 0          | x :      | 20 =                | 0            | (6b)         |
| Number of intermittent fa                    | ins                                                        |                |              |             | 2          | X        | 10 =                | 20           | (7a)         |
| Number of passive vents                      | •                                                          |                |              | Γ           | 0          | X ·      | 10 =                | 0            | (7b)         |
| Number of flueless gas fi                    | ires                                                       |                |              | Ī           | 0          |          | 40 =                | 0            | (7c)         |
|                                              |                                                            |                |              | _           |            |          | <b>A:</b> l-        |              | _            |
|                                              |                                                            |                |              |             |            |          | Air ch              | anges per ho | ur<br>—      |
|                                              | ys, flues and fans = $(6a)+(6b)+$                          |                |              |             | 20         |          | ÷ (5) =             | 0.13         | (8)          |
| Number of storeys in the                     | peen carried out or is intended, proce<br>he dwelling (ns) | :ea 10 (17), C | otrierwise ( | onunue ii   | om (9) to  | (10)     |                     | 0            | (9)          |
| Additional infiltration                      | (1.5)                                                      |                |              |             |            | [(9)     | -1]x0.1 =           | 0            | (10)         |
| Structural infiltration: 0                   | .25 for steel or timber frame of                           | or 0.35 for    | masoni       | y constr    | uction     |          |                     | 0            | (11)         |
|                                              | resent, use the value corresponding                        | to the greate  | er wall are  | a (after    |            |          | •                   |              | _            |
| deducting areas of openia                    | floor, enter 0.2 (unsealed) or                             | 0.1 (seale     | ed), else    | enter 0     |            |          |                     | 0            | (12)         |
| If no draught lobby, en                      | ,                                                          | (              | ,,           |             |            |          |                     | 0            | (13)         |
| •                                            | s and doors draught stripped                               |                |              |             |            |          |                     | 0            | (14)         |
| Window infiltration                          |                                                            |                | 0.25 - [0.2  | x (14) ÷ 1  | 00] =      |          |                     | 0            | (15)         |
| Infiltration rate                            |                                                            |                | (8) + (10)   | + (11) + (1 | 12) + (13) | + (15) = |                     | 0            | (16)         |
| Air permeability value,                      | q50, expressed in cubic meta                               | es per ho      | our per s    | quare m     | etre of e  | envelope | area                | 5            | (17)         |
| ·                                            | lity value, then $(18) = [(17) \div 20]$                   |                |              |             |            |          |                     | 0.38         | (18)         |
|                                              | es if a pressurisation test has been d                     | one or a deg   | gree air pe  | rmeability  | is being u | sed      | ı                   |              | ٦            |
| Number of sides sheltere<br>Shelter factor   | ea                                                         |                | (20) = 1 -   | 0.075 x (1  | 19)] =     |          |                     | 3<br>0.78    | (19)<br>(20) |
| Infiltration rate incorporate                | ting shelter factor                                        |                | (21) = (18   | `           | - //       |          |                     | 0.78         | (21)         |
| Infiltration rate modified f                 | •                                                          |                | (= -) (      | , (==)      |            |          |                     | 0.29         | (21)         |
| Jan Feb                                      | Mar Apr May Jun                                            | Jul            | Aug          | Sep         | Oct        | Nov      | Dec                 |              |              |
| Monthly average wind sp                      | peed from Table 7                                          | ,              |              | · · · · ·   | •          | •        |                     | •            |              |
| (22)m= 5.1 5                                 | 4.9 4.4 4.3 3.8                                            | 3.8            | 3.7          | 4           | 4.3        | 4.5      | 4.7                 |              |              |
| Wind Factor (20-) (2                         | 2)m · 4                                                    | •              |              |             |            | -        |                     | •            |              |
| Wind Factor $(22a)m = (2(22a)m = 1.27)$ 1.25 | 2)m ÷ 4<br>1.23                                            | 0.95           | 0.92         | 1           | 1.08       | 1.12     | 1.18                |              |              |
| (22α)111 1.23                                | 1.20 1.1 1.00 0.95                                         | 0.90           | J.32         | '           | 1.00       | 1.12     | 1.10                |              |              |

| 0.37                                                             | 0.36                              | 0.36                   | 0.32         | 0.31      | 0.28           | 0.28                                             | 0.27                                               | 0.29                      | 0.31                                             | 0.33       | 0.34              | ]          |               |
|------------------------------------------------------------------|-----------------------------------|------------------------|--------------|-----------|----------------|--------------------------------------------------|----------------------------------------------------|---------------------------|--------------------------------------------------|------------|-------------------|------------|---------------|
| alculate effe                                                    |                                   | -                      | rate for t   | he appli  | cable ca       | se                                               | !                                                  | !                         |                                                  |            | 1                 | J          |               |
| If mechanica                                                     |                                   |                        |              |           |                |                                                  |                                                    |                           |                                                  |            |                   | 0          | (2            |
| If exhaust air h                                                 |                                   |                        |              |           |                |                                                  |                                                    |                           | o) = (23a)                                       |            |                   | 0          | (;            |
| If balanced with                                                 |                                   |                        |              |           |                |                                                  |                                                    |                           |                                                  |            |                   | 0          | (             |
| a) If balance                                                    |                                   |                        | i            | i         | i              | <del>,                                    </del> | <del>-                                    </del>   | ŕ                         | <del>,                                    </del> |            | <del>' ' '</del>  | ) ÷ 100]   | ,             |
| -a)m= 0                                                          | 0                                 | 0                      | 0            | 0         | 0              | 0                                                | 0                                                  | 0                         | 0                                                | 0          | 0                 | ]          | (:            |
| b) If balance                                                    |                                   |                        |              | ı         |                | <del> </del>                                     | <del>- ^ `                                  </del> | <del>í `</del>            | <del>r í i</del>                                 |            | 1                 | 1          |               |
| b)m= 0                                                           | 0                                 | 0                      | 0            | 0         | 0              | 0                                                | 0                                                  | 0                         | 0                                                | 0          | 0                 | ]          | (             |
| c) If whole h<br>if (22b)n                                       |                                   |                        |              | -         | •              |                                                  |                                                    |                           | .5 × (23b                                        | )          | _                 | _          |               |
| c)m= 0                                                           | 0                                 | 0                      | 0            | 0         | 0              | 0                                                | 0                                                  | 0                         | 0                                                | 0          | 0                 |            | (             |
| d) If natural<br>if (22b)n                                       | ventilation                       |                        |              |           | •              |                                                  |                                                    |                           | 0.5]                                             |            |                   | _          |               |
| d)m= 0.57                                                        | 0.57                              | 0.56                   | 0.55         | 0.55      | 0.54           | 0.54                                             | 0.54                                               | 0.54                      | 0.55                                             | 0.55       | 0.56              | ]          | (             |
| Effective air                                                    | change                            | rate - er              | nter (24a    | ) or (24l | o) or (24      | c) or (24                                        | d) in bo                                           | x (25)                    |                                                  |            |                   | _          |               |
| )m= 0.57                                                         | 0.57                              | 0.56                   | 0.55         | 0.55      | 0.54           | 0.54                                             | 0.54                                               | 0.54                      | 0.55                                             | 0.55       | 0.56              | ]          | (             |
| Heat losse                                                       | s and he                          | at loss (              | paramet      | er:       |                |                                                  |                                                    |                           |                                                  |            |                   |            |               |
| EMENT                                                            | Gros<br>area                      |                        | Openin<br>m  |           | Net Ar<br>A ,r |                                                  | U-val<br>W/m2                                      |                           | A X U<br>(W/h                                    | ۲)         | k-value<br>kJ/m²· |            | A X k<br>kJ/K |
| ors                                                              |                                   |                        |              |           | 2              | X                                                | 1                                                  | =                         | 2                                                |            |                   |            | (             |
| ndows Type                                                       | <del>:</del> 1                    |                        |              |           | 4.89           | x1                                               | /[1/( 1.4 )+                                       | 0.04] =                   | 6.48                                             |            |                   |            | (             |
| ndows Type                                                       | 2                                 |                        |              |           | 2.49           | <sub>X</sub> 1                                   | /[1/( 1.4 )+                                       | 0.04] =                   | 3.3                                              |            |                   |            | (             |
| ndows Type                                                       | 3                                 |                        |              |           | 1.9            | x1                                               | /[1/( 1.4 )+                                       | 0.04] =                   | 2.52                                             |            |                   |            | (             |
| ndows Type                                                       | <del>:</del> 4                    |                        |              |           | 2.58           | <u></u>                                          | /[1/( 1.4 )+                                       | 0.04] =                   | 3.42                                             |            |                   |            | (             |
| oflights                                                         |                                   |                        |              |           | 0.95236        | 603 x1                                           | /[1/(1.7) +                                        | 0.04] =                   | 1.619012                                         | <u>=</u>   |                   |            | (             |
| alls Type1                                                       | 38.9                              | 5                      | 11.8         | 6         | 27.09          | ) x                                              | 0.18                                               | =                         | 4.88                                             | _ [        |                   |            |               |
| alls Type2                                                       | 45.4                              | 7                      | 2            | =         | 43.47          | 7 X                                              | 0.18                                               | = =                       | 7.82                                             | <b>=</b>   |                   | <b>5</b>   | (             |
| of                                                               | 59.2                              |                        | 0.95         |           | 58.3           | =                                                | 0.13                                               |                           | 7.58                                             | <b>-</b>   |                   | <b>i</b> i | (             |
| tal area of e                                                    |                                   |                        | 0.00         |           | 143.6          | =                                                | 00                                                 |                           |                                                  |            |                   |            | )`<br>(       |
| rty wall                                                         | ,                                 |                        |              |           | 25.95          | =                                                | 0                                                  |                           | 0                                                | <b>—</b> [ |                   |            | (:            |
| rty floor                                                        |                                   |                        |              |           |                | =                                                |                                                    |                           |                                                  | L          |                   | ╡ 누        | (             |
| -                                                                | roof winds                        | אינ וופם ב             | effective wi | ndow H-v  | 59.25          |                                                  | ı formula 1                                        | /[(1/    <sub>-</sub> vəl | ue)+∩ ∩41 a                                      | s aiven in | n naranrani       |            | (             |
| r windowe and                                                    |                                   |                        |              |           |                | aica asing                                       | , ioiiiiaia i                                      | n van                     | 10)+0.0+j a                                      | 3 given in | i paragrapi       | 10.2       |               |
|                                                                  | s, W/K =                          | = S (A x               | U)           |           |                |                                                  | (26)(30                                            | ) + (32) =                |                                                  |            |                   | 39.52      | 2 (           |
| nclude the area                                                  |                                   | Δvk)                   |              |           |                |                                                  |                                                    | ((28).                    | (30) + (32                                       | !) + (32a) | (32e) =           | 16820.     | 08            |
| r windows and<br>nclude the area<br>bric heat los<br>at capacity |                                   | $\Delta \lambda K$     |              |           |                |                                                  |                                                    | to die a                  | stive Value                                      | Madium     |                   |            | ===           |
| nclude the area<br>bric heat los<br>at capacity                  | Cm = S(                           | ,                      | ⊃ = Cm ÷     | + TFA) ir | า kJ/m²K       |                                                  |                                                    | indica                    | ative Value:                                     | wedium     |                   | 250        | [(            |
| nclude the area<br>bric heat los                                 | Cm = S(A<br>paramet<br>Sments whe | ter (TMF<br>ere the de | tails of the | ,         |                |                                                  | recisely the                                       |                           |                                                  |            | able 1f           | 250        | (1            |

| Total fabric heat lo                                          | 220              |              |             |                   |             |                  | (33) +       | (36) =                 |                           | İ       | 50.82   | (37) |
|---------------------------------------------------------------|------------------|--------------|-------------|-------------------|-------------|------------------|--------------|------------------------|---------------------------|---------|---------|------|
| Ventilation heat lo                                           |                  | d monthly    | V           |                   |             |                  | ` ′          | •                      | 25)m x (5)                |         | 30.62   | (07) |
|                                                               | eb Mar           | Apr          | May         | Jun               | Jul         | Aug              | Sep          | Oct                    | Nov                       | Dec     |         |      |
| <del></del>                                                   | 9.88 29.74       | 29.09        | 28.97       | 28.41             | 28.41       | 28.3             | 28.63        | 28.97                  | 29.22                     | 29.47   |         | (38) |
| Heat transfer coef                                            | ficient, W/K     |              | I           |                   |             |                  | (39)m        | = (37) + (37)          | 38)m                      |         | l       |      |
| (39)m= 80.84 8                                                | 0.7 80.57        | 79.92        | 79.8        | 79.23             | 79.23       | 79.13            | 79.45        | 79.8                   | 80.04                     | 80.3    |         |      |
| Heat loss parame                                              | ter (HLP), W     | /m²K         | •           | •                 | •           | •                |              | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub> (4) | 12 /12= | 79.92   | (39) |
| (40)m= 1.36 1                                                 | .36 1.36         | 1.35         | 1.35        | 1.34              | 1.34        | 1.34             | 1.34         | 1.35                   | 1.35                      | 1.36    |         |      |
| Number of days in                                             | n month (Tab     | le 1a)       | •           | •                 | •           | •                | ,            | Average =              | Sum(40) <sub>1.</sub>     | 12 /12= | 1.35    | (40) |
|                                                               | eb Mar           | Apr          | May         | Jun               | Jul         | Aug              | Sep          | Oct                    | Nov                       | Dec     |         |      |
| (41)m= 31                                                     | 28 31            | 30           | 31          | 30                | 31          | 31               | 30           | 31                     | 30                        | 31      |         | (41) |
| <u> </u>                                                      |                  |              | ı           |                   |             |                  |              |                        |                           |         | l       |      |
| 4. Water heating                                              | energy requ      | irement:     |             |                   |             |                  |              |                        |                           | kWh/ye  | ear:    |      |
|                                                               |                  |              |             |                   |             |                  |              |                        |                           |         | ı       |      |
| Assumed occupar if TFA > 13.9, N                              |                  | ( [1 - exp   | (-0 0003    | 349 x <i>(</i> TF | FA -13 9    | )2)] + 0 (       | 0013 x (     | ΓFA -13                |                           | 96      |         | (42) |
| if TFA £ 13.9, N                                              |                  | ( ) OAP      | ( 0.000     | )                 | 71 10.0     | <i>,</i> _,] · o | ) N 0 10 N ( |                        | •                         |         |         |      |
| Annual average h                                              |                  |              |             |                   |             |                  |              |                        |                           | .76     |         | (43) |
| Reduce the annual avenue not more that 125 litres             | -                |              |             | _                 | _           | to acnieve       | a water us   | se target o            | I                         |         |         |      |
| Jan F                                                         | eb Mar           | Apr          | May         | Jun               | Jul         | Aug              | Sep          | Oct                    | Nov                       | Dec     |         |      |
| Hot water usage in litre                                      |                  |              |             |                   |             |                  | ОСР          | 001                    | 1407                      | DCC     |         |      |
| (44)m= 88.83 8                                                | 5.6 82.37        | 79.14        | 75.91       | 72.68             | 72.68       | 75.91            | 79.14        | 82.37                  | 85.6                      | 88.83   |         |      |
|                                                               | I                | l            | <u>I</u>    | <u> </u>          | <u> </u>    | <u> </u>         |              | rotal = Su             | m(44) <sub>112</sub> =    | l       | 969.1   | (44) |
| Energy content of hot                                         | water used - ca  | lculated mo  | onthly = 4. | 190 x Vd,r        | n x nm x E  | OTm / 3600       | kWh/mor      | nth (see Ta            | ables 1b, 1               | c, 1d)  |         |      |
| (45)m= 131.74 11                                              | 5.22 118.9       | 103.66       | 99.46       | 85.83             | 79.53       | 91.26            | 92.35        | 107.63                 | 117.49                    | 127.58  |         |      |
| If instantaneous water                                        | heating at noin  | t of use (no | n hot water | r etoraga)        | enter () in | hoves (16        |              | Total = Su             | m(45) <sub>112</sub> =    |         | 1270.64 | (45) |
|                                                               |                  |              |             |                   | 1           | · · ·            | , ,          |                        | 4= 00                     |         |         | (40) |
| (46)m= 19.76 17 Water storage los                             | 7.28 17.83<br>S: | 15.55        | 14.92       | 12.87             | 11.93       | 13.69            | 13.85        | 16.14                  | 17.62                     | 19.14   |         | (46) |
| Storage volume (I                                             |                  | ng any so    | olar or W   | WHRS              | storage     | within sa        | ame ves      | sel                    |                           | 0       |         | (47) |
| If community heat                                             | ing and no ta    | ank in dw    | elling, e   | nter 110          | ) litres in | (47)             |              |                        |                           |         | l       |      |
| Otherwise if no sto                                           | ored hot wat     | er (this ir  | ncludes i   | nstantar          | neous co    | ombi boil        | ers) ente    | er '0' in (            | 47)                       |         |         |      |
| Water storage los                                             |                  |              |             |                   |             |                  |              |                        |                           |         | •       |      |
| a) If manufacture                                             |                  |              | or is kno   | wn (kWl           | n/day):     |                  |              |                        |                           | 0       |         | (48) |
| Temperature factor                                            |                  |              |             |                   |             |                  |              |                        |                           | 0       |         | (49) |
| Energy lost from v                                            | _                | -            |             | or is not         |             | (48) x (49)      | ) =          |                        |                           | 0       |         | (50) |
| <ul><li>b) If manufacture</li><li>Hot water storage</li></ul> |                  | -            |             |                   |             |                  |              |                        |                           | 0       |         | (51) |
| If community heat                                             |                  |              | _ (         |                   | -,,         |                  |              |                        |                           | 0       |         | (0.) |
| Volume factor from                                            | n Table 2a       |              |             |                   |             |                  |              |                        |                           | 0       |         | (52) |
| Temperature factor                                            | or from Table    | 2b           |             |                   |             |                  |              |                        |                           | 0       |         | (53) |
| Energy lost from v                                            | •                | e, kWh/ye    | ear         |                   |             | (47) x (51)      | ) x (52) x ( | 53) =                  |                           | 0       |         | (54) |
| Enter (50) or (54)                                            | in (55)          |              |             |                   |             |                  |              |                        |                           | 0       |         | (55) |
|                                                               |                  |              |             |                   |             |                  |              |                        |                           |         |         |      |

| Water                                                                                               | storage                                                                                                               | loss cal                                                                                                         | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                        | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                     |                                                                             | ((56)m = (                                                                        | 55) × (41)                                                              | m                                             |                                            |                                                    |               |                                              |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------------|---------------|----------------------------------------------|
| (56)m=                                                                                              | 0                                                                                                                     | 0                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                   | 0                                                                           | 0                                                                                 | 0                                                                       | 0                                             | 0                                          | 0                                                  |               | (56)                                         |
| If cylind                                                                                           | er contains                                                                                                           | s dedicate                                                                                                       | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)ı                                                                                     | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                                         | H11)] ÷ (5                                                                  | 0), else (5                                                                       | 7)m = (56)                                                              | m where (                                     | H11) is fro                                | m Append                                           | ı<br>ix H     |                                              |
| (57)m=                                                                                              | 0                                                                                                                     | 0                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                   | 0                                                                           | 0                                                                                 | 0                                                                       | 0                                             | 0                                          | 0                                                  |               | (57)                                         |
| Prima                                                                                               | ry circuit                                                                                                            | loss (an                                                                                                         | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | om Table                                                                                        | e 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |                                                                             |                                                                                   |                                                                         |                                               |                                            | 0                                                  |               | (58)                                         |
| Prima                                                                                               | ry circuit                                                                                                            | loss cal                                                                                                         | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                        | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                                            | (58) ÷ 36                                                                   | 65 × (41)                                                                         | m                                                                       |                                               |                                            |                                                    | •             |                                              |
| (mo                                                                                                 | dified by                                                                                                             | factor fr                                                                                                        | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                      | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                                           | ter heatii                                                                  | ng and a                                                                          | cylinde                                                                 | r thermo                                      | stat)                                      |                                                    |               |                                              |
| (59)m=                                                                                              | 0                                                                                                                     | 0                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                   | 0                                                                           | 0                                                                                 | 0                                                                       | 0                                             | 0                                          | 0                                                  |               | (59)                                         |
| Comb                                                                                                | i loss ca                                                                                                             | lculated                                                                                                         | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                         | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                                           | 65 × (41)                                                                   | )m                                                                                |                                                                         |                                               |                                            |                                                    |               |                                              |
| (61)m=                                                                                              | 45.27                                                                                                                 | 39.4                                                                                                             | 41.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.03                                                                                           | 38.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.84                                                                                               | 37.04                                                                       | 38.68                                                                             | 39.03                                                                   | 41.98                                         | 42.22                                      | 45.27                                              |               | (61)                                         |
| Total I                                                                                             | heat requ                                                                                                             | uired for                                                                                                        | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                       | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I for eac                                                                                           | h month                                                                     | (62)m =                                                                           | 0.85 × (                                                                | (45)m +                                       | (46)m +                                    | (57)m +                                            | (59)m + (61)m |                                              |
| (62)m=                                                                                              | 177.01                                                                                                                | 154.62                                                                                                           | 160.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 142.69                                                                                          | 138.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.67                                                                                              | 116.57                                                                      | 129.95                                                                            | 131.38                                                                  | 149.61                                        | 159.7                                      | 172.85                                             |               | (62)                                         |
| Solar D                                                                                             | HW input of                                                                                                           | calculated                                                                                                       | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                                      | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                                           | ve quantity                                                                 | /) (enter '0                                                                      | if no sola                                                              | r contribut                                   | ion to wate                                | er heating)                                        | •             |                                              |
| (add a                                                                                              | additiona                                                                                                             | l lines if                                                                                                       | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or V                                                                                        | WWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                                             | , see Ap                                                                    | pendix (                                                                          | €)                                                                      |                                               |                                            |                                                    |               |                                              |
| (63)m=                                                                                              | 0                                                                                                                     | 0                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                   | 0                                                                           | 0                                                                                 | 0                                                                       | 0                                             | 0                                          | 0                                                  |               | (63)                                         |
| Outpu                                                                                               | t from wa                                                                                                             | ater hea                                                                                                         | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                             |                                                                                   |                                                                         |                                               |                                            |                                                    |               |                                              |
| (64)m=                                                                                              | 177.01                                                                                                                | 154.62                                                                                                           | 160.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 142.69                                                                                          | 138.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.67                                                                                              | 116.57                                                                      | 129.95                                                                            | 131.38                                                                  | 149.61                                        | 159.7                                      | 172.85                                             |               |                                              |
|                                                                                                     |                                                                                                                       |                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                             | Outp                                                                              | out from wa                                                             | ater heate                                    | r (annual) <sub>1</sub>                    | 12                                                 | 1755.06       | (64)                                         |
| Heat (                                                                                              | gains froi                                                                                                            | m water                                                                                                          | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m                                                                                           | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                                           | × (45)m                                                                     | + (61)m                                                                           | n] + 0.8 x                                                              | ((46)m                                        | + (57)m                                    | + (59)m                                            | ]             |                                              |
| (65)m=                                                                                              | 55.12                                                                                                                 | 48.16                                                                                                            | 50.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.22                                                                                           | 42.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.5                                                                                                | 35.7                                                                        | 40.00                                                                             | 40.40                                                                   | 40.00                                         | 40.00                                      | 50.74                                              |               | (65)                                         |
|                                                                                                     | 1                                                                                                                     |                                                                                                                  | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TT.22                                                                                           | 72.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.5                                                                                                | 35.7                                                                        | 40.02                                                                             | 40.46                                                                   | 46.28                                         | 49.62                                      | 53.74                                              |               | (03)                                         |
| incl                                                                                                | ude (57)ı                                                                                                             | ļ.                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                        | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                            | <u> </u>                                                                    | ļ                                                                                 |                                                                         |                                               | <u> </u>                                   | ļ                                                  | eating        | (00)                                         |
|                                                                                                     | ude (57)ı<br>ternal ga                                                                                                | m in cald                                                                                                        | culation (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m                                                                                        | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                            | <u> </u>                                                                    | ļ                                                                                 |                                                                         |                                               | <u> </u>                                   | ļ                                                  | eating        | (03)                                         |
| 5. In                                                                                               | ternal ga                                                                                                             | m in cald<br>ains (see                                                                                           | culation of the Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                            | <u> </u>                                                                    | ļ                                                                                 |                                                                         |                                               | <u> </u>                                   | ļ                                                  | eating        | (03)                                         |
| 5. In                                                                                               | . , ,                                                                                                                 | m in cald<br>ains (see                                                                                           | culation of the Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                            | <u> </u>                                                                    | ļ                                                                                 |                                                                         |                                               | <u> </u>                                   | ļ                                                  | eating        | (03)                                         |
| 5. In                                                                                               | ternal ga                                                                                                             | m in calc<br>ains (see<br>s (Table                                                                               | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                                           | s in the o                                                                  | dwelling                                                                          | or hot w                                                                | ater is fr                                    | om com                                     | munity h                                           | eating        | (66)                                         |
| 5. In Metab                                                                                         | ternal ga<br>polic gain<br>Jan                                                                                        | m in cald<br>ains (see<br>s (Table<br>Feb<br>98.02                                                               | e Table 5<br>e 5), Wat<br>Mar<br>98.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of (65)m<br>5 and 5a<br>ts<br>Apr<br>98.02                                                      | only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only i | Jun<br>98.02                                                                                        | Jul<br>98.02                                                                | Aug<br>98.02                                                                      | or hot w<br>Sep<br>98.02                                                | ater is fr                                    | om com                                     | munity h                                           | eating        |                                              |
| 5. In Metab                                                                                         | ternal ga<br>oolic gain<br>Jan<br>98.02<br>ng gains                                                                   | m in cald<br>ains (see<br>s (Table<br>Feb<br>98.02                                                               | e Table 5<br>e 5), Wat<br>Mar<br>98.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of (65)m<br>5 and 5a<br>ts<br>Apr<br>98.02                                                      | only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only if constant only i | Jun<br>98.02                                                                                        | Jul<br>98.02                                                                | Aug<br>98.02                                                                      | or hot w<br>Sep<br>98.02                                                | ater is fr                                    | om com                                     | munity h                                           | eating        |                                              |
| 5. In Metab (66)m= Lightir (67)m=                                                                   | ternal ga<br>oolic gain<br>Jan<br>98.02<br>ng gains                                                                   | m in calc<br>ains (see<br>s (Table<br>Feb<br>98.02<br>(calcula                                                   | ETable 5 E 5), Wat Mar 98.02 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of (65)m and 5a ts Apr 98.02 ppendix 8.34                                                       | only if constraints only if constraints only if constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the c | Jun<br>98.02<br>ion L9 o                                                                            | Jul<br>98.02<br>r L9a), a                                                   | Aug<br>98.02<br>Iso see                                                           | Sep<br>98.02<br>Table 5<br>9.92                                         | Oct 98.02                                     | Nov<br>98.02                               | Dec 98.02                                          | eating        | (66)                                         |
| 5. In Metab (66)m= Lightir (67)m=                                                                   | dernal gain<br>Jan<br>98.02<br>ng gains<br>15.26                                                                      | m in calc<br>ains (see<br>s (Table<br>Feb<br>98.02<br>(calcula                                                   | ETable 5 E 5), Wate Mar 98.02 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m and 5a ts Apr 98.02 ppendix 8.34                                                       | only if constraints only if constraints only if constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the c | Jun<br>98.02<br>ion L9 o                                                                            | Jul<br>98.02<br>r L9a), a                                                   | Aug<br>98.02<br>Iso see                                                           | Sep<br>98.02<br>Table 5<br>9.92                                         | Oct 98.02                                     | Nov<br>98.02                               | Dec 98.02                                          | eating        | (66)                                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m=                                                    | oolic gain Jan 98.02 ng gains 15.26 nnces ga                                                                          | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calc                                                  | Example 5 to 2 to 2 to 2 to 2 to 2 to 2 to 2 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m 5 and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83                                     | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L                                                        | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1                               | Aug<br>98.02<br>lso see<br>7.39<br>3a), also                                      | Sep 98.02 Table 5 9.92 see Ta 130.66                                    | Oct 98.02  12.6 ble 5                         | Nov 98.02                                  | Dec 98.02                                          | eating        | (66)<br>(67)                                 |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m=                                                    | Jan 98.02 ng gains 15.26 nnces gains 171.05                                                                           | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calc                                                  | Example 5 to 2 to 2 to 2 to 2 to 2 to 2 to 2 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m 5 and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83                                     | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L                                                        | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1                               | Aug<br>98.02<br>lso see<br>7.39<br>3a), also                                      | Sep 98.02 Table 5 9.92 see Ta 130.66                                    | Oct 98.02  12.6 ble 5                         | Nov 98.02                                  | Dec 98.02                                          | eating        | (66)<br>(67)                                 |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cooki (69)m=                                       | Jan 98.02 ng gains 15.26 nnces gains 171.05                                                                           | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calc 172.83 (calcula 32.8                             | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8                          | May 98.02 L, equat 6.24 dix L, eq 146.81 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L<br>135.51<br>tion L15                                  | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a          | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                            | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta<br>130.66                     | Oct 98.02  12.6 ble 5 140.19                  | Nov<br>98.02<br>14.71                      | Dec 98.02                                          | eating        | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cooki (69)m=                                       | oolic gain Jan 98.02 ng gains 15.26 nnces gains 171.05 ng gains 32.8 s and far                                        | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calc 172.83 (calcula 32.8                             | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8                          | May 98.02 L, equat 6.24 dix L, eq 146.81 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L<br>135.51<br>tion L15                                  | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a          | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                            | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta<br>130.66                     | Oct 98.02  12.6 ble 5 140.19                  | Nov<br>98.02<br>14.71                      | Dec 98.02                                          | eating        | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cooki (69)m= Pump (70)m=                           | oolic gain Jan 98.02 ng gains 15.26 nnces gain 171.05 ng gains 32.8 s and far                                         | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calc 172.83 (calcula 32.8 ns gains 3                  | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m 5 and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 3                  | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8                          | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)         | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta<br>130.66<br>ee Table<br>32.8 | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov<br>98.02<br>14.71<br>152.21            | Dec 98.02 15.68 163.5                              | eating        | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cooki (69)m= Pump (70)m=                           | oolic gain Jan 98.02 ng gains 15.26 nnces ga 171.05 ng gains 32.8 s and far 3 s e.g. ev                               | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calc 172.83 (calcula 32.8 ns gains 3                  | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m 5 and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 3                  | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8                          | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)         | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta<br>130.66<br>ee Table<br>32.8 | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov<br>98.02<br>14.71<br>152.21            | Dec 98.02 15.68 163.5                              | eating        | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cooki (69)m= Pump (70)m= Losse (71)m=              | oolic gain Jan 98.02 ng gains 15.26 nnces ga 171.05 ng gains 32.8 s and far 3 s e.g. ev                               | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calc 172.83 (calcula 32.8 ns gains 3 raporatio -78.41 | ted in Ap 11.02 ulated in 168.35 ted in A 32.8 (Table §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 n Append 158.83 ppendix 32.8 5a) 3 tive value       | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8                          | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | Sep 98.02 Table 5 9.92 see Ta 130.66 ee Table 32.8                      | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov 98.02 14.71 152.21 32.8                | Dec 98.02 15.68 163.5                              | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cooki (69)m= Pump (70)m= Losse (71)m=              | olic gain Jan 98.02 ng gains 15.26 nnces ga 171.05 ng gains 32.8 s and far s e.g. ev -78.41 heating                   | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calc 172.83 (calcula 32.8 ns gains 3 raporatio -78.41 | ted in Ap 11.02 ulated in 168.35 ted in A 32.8 (Table §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 n Append 158.83 ppendix 32.8 5a) 3 tive value       | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8                          | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | Sep 98.02 Table 5 9.92 see Ta 130.66 ee Table 32.8                      | Oct 98.02  12.6 ble 5 140.19 5 32.8           | Nov 98.02 14.71 152.21 32.8                | Dec 98.02 15.68 163.5                              | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cooki (69)m= Pump (70)m= Losse (71)m= Water (72)m= | olic gain Jan 98.02 ng gains 15.26 nnces ga 171.05 ng gains 32.8 s and far s e.g. ev -78.41 heating                   | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calcula 32.8 as gains 3 raporatio -78.41 gains (T     | ted in Ap 11.02 ulated in 168.35 tted in A 32.8 (Table § 3 on (nega) -78.41 Table 5) 67.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m 5 and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 3 tive valu -78.41 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8<br>3<br>ble 5)<br>-78.41 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8<br>3 | Sep 98.02 Table 5 9.92 See Ta 130.66 See Table 32.8  3  -78.41          | Oct 98.02  12.6 ble 5 140.19 5 32.8  3 -78.41 | Nov 98.02 14.71 152.21 32.8 3 -78.41 68.91 | munity h  Dec 98.02  15.68  163.5  32.8  3  -78.41 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cooki (69)m= Pump (70)m= Losse (71)m= Water (72)m= | oolic gain Jan 98.02 ng gains 15.26 nnces ga 171.05 ng gains 32.8 s and far 3 s e.g. ev -78.41 heating 74.09 internal | m in calc ains (see s (Table Feb 98.02 (calcula 13.55 ins (calcula 32.8 as gains 3 raporatio -78.41 gains (T     | ted in Ap 11.02 ulated in 168.35 tted in A 32.8 (Table § 3 on (nega) -78.41 Table 5) 67.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m 5 and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 3 tive valu -78.41 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 o<br>5.26<br>uation L<br>135.51<br>tion L15<br>32.8<br>3<br>ble 5)<br>-78.41 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8<br>3 | Sep 98.02 Table 5 9.92 See Ta 130.66 See Table 32.8  3  -78.41          | Oct 98.02  12.6 ble 5 140.19 5 32.8  3 -78.41 | Nov 98.02 14.71 152.21 32.8 3 -78.41 68.91 | munity h  Dec 98.02  15.68  163.5  32.8  3  -78.41 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Fac<br>Table 6d | tor | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|-------------------------------------|-----|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                 | x   | 2.49       | x | 11.28            | x | 0.63           | x | 0.7            | =        | 8.59         | (75) |
| Northeast 0.9x 0.77                 | X   | 2.49       | x | 22.97            | x | 0.63           | x | 0.7            | =        | 17.48        | (75) |
| Northeast 0.9x 0.77                 | X   | 2.49       | x | 41.38            | x | 0.63           | x | 0.7            | =        | 31.49        | (75) |
| Northeast 0.9x 0.77                 | x   | 2.49       | x | 67.96            | x | 0.63           | x | 0.7            | ] =      | 51.71        | (75) |
| Northeast 0.9x 0.77                 | X   | 2.49       | x | 91.35            | x | 0.63           | x | 0.7            | =        | 69.51        | (75) |
| Northeast 0.9x 0.77                 | X   | 2.49       | x | 97.38            | x | 0.63           | x | 0.7            | =        | 74.11        | (75) |
| Northeast 0.9x 0.77                 | X   | 2.49       | x | 91.1             | х | 0.63           | x | 0.7            | =        | 69.33        | (75) |
| Northeast 0.9x 0.77                 | X   | 2.49       | x | 72.63            | x | 0.63           | X | 0.7            | =        | 55.27        | (75) |
| Northeast <sub>0.9x</sub> 0.77      | x   | 2.49       | x | 50.42            | x | 0.63           | X | 0.7            | =        | 38.37        | (75) |
| Northeast 0.9x 0.77                 | x   | 2.49       | x | 28.07            | x | 0.63           | x | 0.7            | <b>=</b> | 21.36        | (75) |
| Northeast <sub>0.9x</sub> 0.77      | X   | 2.49       | x | 14.2             | x | 0.63           | x | 0.7            | =        | 10.8         | (75) |
| Northeast <sub>0.9x</sub> 0.77      | X   | 2.49       | x | 9.21             | x | 0.63           | x | 0.7            | =        | 7.01         | (75) |
| Northwest 0.9x 0.77                 | x   | 4.89       | x | 11.28            | x | 0.63           | X | 0.7            | ] =      | 16.86        | (81) |
| Northwest 0.9x 0.77                 | X   | 1.9        | x | 11.28            | x | 0.63           | x | 0.7            | =        | 6.55         | (81) |
| Northwest 0.9x 0.77                 | x   | 2.58       | x | 11.28            | x | 0.63           | x | 0.7            | =        | 8.9          | (81) |
| Northwest 0.9x 0.77                 | X   | 4.89       | x | 22.97            | x | 0.63           | X | 0.7            | =        | 34.32        | (81) |
| Northwest 0.9x 0.77                 | X   | 1.9        | x | 22.97            | x | 0.63           | x | 0.7            | =        | 13.34        | (81) |
| Northwest 0.9x 0.77                 | X   | 2.58       | x | 22.97            | x | 0.63           | x | 0.7            | =        | 18.11        | (81) |
| Northwest 0.9x 0.77                 | X   | 4.89       | x | 41.38            | x | 0.63           | X | 0.7            | =        | 61.84        | (81) |
| Northwest 0.9x 0.77                 | x   | 1.9        | x | 41.38            | x | 0.63           | X | 0.7            | =        | 24.03        | (81) |
| Northwest 0.9x 0.77                 | x   | 2.58       | x | 41.38            | x | 0.63           | x | 0.7            | =        | 32.63        | (81) |
| Northwest 0.9x 0.77                 | X   | 4.89       | x | 67.96            | x | 0.63           | X | 0.7            | =        | 101.56       | (81) |
| Northwest 0.9x 0.77                 | X   | 1.9        | x | 67.96            | x | 0.63           | x | 0.7            | =        | 39.46        | (81) |
| Northwest 0.9x 0.77                 | X   | 2.58       | x | 67.96            | x | 0.63           | x | 0.7            | =        | 53.58        | (81) |
| Northwest 0.9x 0.77                 | X   | 4.89       | x | 91.35            | x | 0.63           | X | 0.7            | =        | 136.51       | (81) |
| Northwest 0.9x 0.77                 | X   | 1.9        | X | 91.35            | X | 0.63           | X | 0.7            | =        | 53.04        | (81) |
| Northwest 0.9x 0.77                 | X   | 2.58       | x | 91.35            | x | 0.63           | x | 0.7            | =        | 72.02        | (81) |
| Northwest 0.9x 0.77                 | X   | 4.89       | X | 97.38            | X | 0.63           | X | 0.7            | =        | 145.54       | (81) |
| Northwest 0.9x 0.77                 | X   | 1.9        | X | 97.38            | X | 0.63           | X | 0.7            | =        | 56.55        | (81) |
| Northwest 0.9x 0.77                 | X   | 2.58       | x | 97.38            | x | 0.63           | X | 0.7            | =        | 76.79        | (81) |
| Northwest 0.9x 0.77                 | X   | 4.89       | x | 91.1             | X | 0.63           | X | 0.7            | =        | 136.15       | (81) |
| Northwest 0.9x 0.77                 | X   | 1.9        | x | 91.1             | x | 0.63           | X | 0.7            | =        | 52.9         | (81) |
| Northwest 0.9x 0.77                 | X   | 2.58       | x | 91.1             | x | 0.63           | x | 0.7            | =        | 71.83        | (81) |
| Northwest 0.9x 0.77                 | X   | 4.89       | x | 72.63            | x | 0.63           | x | 0.7            | =        | 108.54       | (81) |
| Northwest 0.9x 0.77                 | x   | 1.9        | x | 72.63            | x | 0.63           | x | 0.7            | =        | 42.17        | (81) |
| Northwest 0.9x 0.77                 | X   | 2.58       | x | 72.63            | x | 0.63           | x | 0.7            | ] =      | 57.26        | (81) |
| Northwest 0.9x 0.77                 | X   | 4.89       | x | 50.42            | x | 0.63           | x | 0.7            | ] =      | 75.35        | (81) |
| Northwest 0.9x 0.77                 | X   | 1.9        | x | 50.42            | x | 0.63           | x | 0.7            | ] =      | 29.28        | (81) |
| Northwest 0.9x 0.77                 | X   | 2.58       | X | 50.42            | × | 0.63           | X | 0.7            | =        | 39.76        | (81) |

|          | _                   |            |            |           |              |               |                 |                    | _                                                 |              |                 |            |                 |                    |      |       |       |
|----------|---------------------|------------|------------|-----------|--------------|---------------|-----------------|--------------------|---------------------------------------------------|--------------|-----------------|------------|-----------------|--------------------|------|-------|-------|
| Northwe  | est <sub>0.9x</sub> | 0.77       | X          | 4.8       | 39           | x             | 2               | 8.07               | X                                                 | 0.63         | X               |            | 0.7             |                    | =    | 41.94 | (81)  |
| Northwe  | est <sub>0.9x</sub> | 0.77       | X          | 1.        | 9            | X             | 2               | 8.07               | X                                                 | 0.63         | X               |            | 0.7             |                    | =    | 16.3  | (81)  |
| Northwe  | est <sub>0.9x</sub> | 0.77       | X          | 2.5       | 58           | x             | 2               | 8.07               | X                                                 | 0.63         | X               |            | 0.7             |                    | =    | 22.13 | (81)  |
| Northwe  | est <sub>0.9x</sub> | 0.77       | X          | 4.8       | 39           | x             | 1               | 14.2               | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 21.22 | (81)  |
| Northwe  | est <sub>0.9x</sub> | 0.77       | X          | 1.        | 9            | x             | 1               | 14.2               | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 8.24  | (81)  |
| Northwe  | est <sub>0.9x</sub> | 0.77       | X          | 2.5       | 58           | X             | 1               | 14.2               | X                                                 | 0.63         | X               |            | 0.7             |                    | =    | 11.19 | (81)  |
| Northwe  | est <sub>0.9x</sub> | 0.77       | X          | 4.8       | 39           | x             | 9               | 9.21               | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 13.77 | (81)  |
| Northwe  | est <sub>0.9x</sub> | 0.77       | X          | 1.        | 9            | x             | 9               | 9.21               | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 5.35  | (81)  |
| Northwe  | est <sub>0.9x</sub> | 0.77       | X          | 2.5       | 58           | X             | 9               | 9.21               | X                                                 | 0.63         | X               |            | 0.7             |                    | =    | 7.27  | (81)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.0       | 95           | x             |                 | 26                 | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 9.83  | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.9       | 95           | x             |                 | 54                 | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 20.41 | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.9       | 95           | x             |                 | 96                 | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 36.29 | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.9       | 95           | x             |                 | 150                | x                                                 | 0.63         | x               |            | 0.7             |                    | =    | 56.7  | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.9       | 95           | x             |                 | 192                | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 72.57 | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.0       | 95           | x             | 2               | 200                | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 75.6  | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.9       | 95           | x             |                 | 189                | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 71.44 | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.9       | 95           | x             |                 | 157                | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 59.34 | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.0       | 95           | x             |                 | 115                | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 43.47 | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.0       | 95           | x             |                 | 66                 | x                                                 | 0.63         | X               |            | 0.7             |                    | =    | 24.95 | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.0       | 95           | X             |                 | 33                 | X                                                 | 0.63         | X               |            | 0.7             |                    | =    | 12.47 | (82)  |
| Roofligh | nts <sub>0.9x</sub> | 1          | X          | 0.9       | 95           | x             |                 | 21                 | x                                                 | 0.63         | x               |            | 0.7             |                    | =    | 7.94  | (82)  |
|          |                     |            |            |           |              |               |                 |                    |                                                   |              |                 |            |                 |                    |      |       | _     |
| Solar g  | ains in             | watts, ca  | lculated   | for eac   | h mont       | :h            |                 |                    | (83)m                                             | n = Sum(74)m | n(82)n          | า          |                 |                    |      |       |       |
| (83)m=   | 50.72               | 103.66     | 186.27     | 303.01    | 403.66       | 6 4           | 28.58           | 401.64             | 322                                               | .59 226.22   | 126.0           | 68 6       | 3.93            | 41                 | .34  |       | (83)  |
| Total g  | ains – ir           | nternal a  | nd solar   | (84)m =   | = (73)m      | า + (         | 83)m ,          | , watts            |                                                   |              |                 |            |                 |                    |      |       |       |
| (84)m=   | 366.52              | 417.11     | 488.29     | 587.01    | 669.57       | 7 6           | 76.84           | 638.69             | 565                                               | .36 478.42   | 397.0           | 08 3       | 55.17           | 348                | 3.15 |       | (84)  |
| 7. Me    | an inter            | nal temp   | erature    | (heating  | seaso        | n)            |                 |                    |                                                   |              |                 |            |                 |                    |      |       |       |
| Temp     | erature             | during h   | eating p   | eriods ii | n the liv    | /ing          | area f          | rom Tab            | ole 9                                             | Th1 (°C)     |                 |            |                 |                    |      | 21    | (85)  |
| Utilisa  | ation fac           | tor for ga | ains for I | iving are | ea, h1,      | m (s          | ее Та           | ble 9a)            |                                                   |              |                 |            |                 |                    |      |       |       |
|          | Jan                 | Feb        | Mar        | Apr       | May          | /             | Jun             | Jul                | Α                                                 | ug Sep       | Oc              | t          | Nov             |                    | )ес  |       |       |
| (86)m=   | 1                   | 1          | 0.99       | 0.95      | 0.86         |               | 0.68            | 0.53               | 0.6                                               | 0.87         | 0.98            | 3          | 1               |                    | 1    |       | (86)  |
| Mean     | interna             | l tempera  | ature in   | living ar | ea T1 (      | follo         | w ste           | os 3 to 7          | in T                                              | able 9c)     |                 |            |                 |                    |      |       |       |
| (87)m=   | 19.5                | 19.65      | 19.95      | 20.38     | 20.74        | _             | 20.93           | 20.98              | 20.                                               | <del></del>  | 20.3            | 3          | 9.84            | 19                 | .47  |       | (87)  |
| Temn     | erature             | during h   | eating n   | eriods i  | rest c       | of dw         | /ellina         | from Ta            | hle (                                             | 9, Th2 (°C)  |                 |            |                 | •                  |      |       |       |
| (88)m=   | 19.79               | 19.79      | 19.79      | 19.8      | 19.8         | _             | 19.81           | 19.81              | 19.                                               | <del></del>  | 19.8            | 3          | 19.8            | 19                 | 9.8  |       | (88)  |
|          |                     |            |            |           | L<br>Wolling |               |                 |                    | 00/                                               |              | -!              |            |                 |                    |      | 1     |       |
| (89)m=   | 1                   | tor for ga | 0.98       | 0.94      | 0.8          | $\overline{}$ | 0.58            | 0.39               | 9a)<br>0.4                                        | 7 0.79       | 0.97            | ,          | 0.99            | Ι.                 | 1    |       | (89)  |
|          |                     | ļ          |            |           |              |               |                 |                    | <u> </u>                                          | ļ .          | <u> </u>        |            |                 |                    |      | 1     | · - / |
| 1        |                     |            |            | the rest  | r            | Ť             |                 |                    | <del>i                                     </del> | to 7 in Tal  | <del></del>     | <u>, T</u> | 0 24            | 17                 | 77   |       | (90)  |
| (90)m=   | 17.81               | 18.03      | 18.47      | 19.08     | 19.56        |               | 19.77           | 19.81              | 19                                                | .8 19.64     | 19.0<br>fLA = L |            | 8.31<br>rea ÷ ( |                    | .77  | 0.47  | (90)  |
|          |                     |            |            |           |              |               |                 |                    |                                                   |              | 12/ \ — L       | . viily d  | · ou · (        | ( <del>1</del> ) = |      | 0.47  |       |
| Mean     | interna             | l temners  | atura (fo  | r the wh  | ole dw       | طالم          | $\alpha$ ) = fl | $\Delta \times T1$ | + (1                                              | _ fl Δ\ x T' | 2               |            |                 |                    |      |       |       |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m=            | 18.6      | 18.79             | 19.16               | 19.69       | 20.11     | 20.31     | 20.36     | 20.35       | 20.18            | 19.63      | 19.03                   | 18.57                  |         | (92)  |
|-------------------|-----------|-------------------|---------------------|-------------|-----------|-----------|-----------|-------------|------------------|------------|-------------------------|------------------------|---------|-------|
| Apply             | / adjustn | nent to the       | he mean             | internal    | temper    | ature fro | m Table   | 4e, whe     | ere appro        | priate     |                         | <u>!</u>               | l       |       |
| (93)m=            | 18.6      | 18.79             | 19.16               | 19.69       | 20.11     | 20.31     | 20.36     | 20.35       | 20.18            | 19.63      | 19.03                   | 18.57                  |         | (93)  |
| 8. Sp             | ace hea   | ting requ         | uirement            |             |           |           |           |             |                  |            |                         |                        |         |       |
|                   |           |                   |                     |             |           | ed at ste | ep 11 of  | Table 9     | o, so tha        | t Ti,m=(   | 76)m an                 | d re-calc              | ulate   |       |
| tne u             |           |                   | or gains            |             |           | lum       | l. d      | ۸۰۰۰        | Con              | Oat        | Nov                     | Dag                    |         |       |
| Litilio           | Jan       | Feb               | Mar<br>ains, hm     | Apr         | May       | Jun       | Jul       | Aug         | Sep              | Oct        | Nov                     | Dec                    |         |       |
| (94)m=            | 1         | 0.99              | 0.98                | 0.93        | 0.82      | 0.63      | 0.46      | 0.53        | 0.82             | 0.97       | 0.99                    | 1                      |         | (94)  |
|                   |           |                   | W = (94             |             |           | 0.00      | 0.40      | 0.00        | 0.02             | 0.07       | 0.00                    |                        |         | (= -) |
| (95)m=            | 364.91    | 413.7             | 478.19              | 548.08      | 547.08    | 424.63    | 292.27    | 302.07      | 392.63           | 383.9      | 352.35                  | 346.93                 |         | (95)  |
|                   |           |                   | rnal tem            |             |           | l         | -         |             |                  |            |                         |                        |         | ` ,   |
| (96)m=            | 4.3       | 4.9               | 6.5                 | 8.9         | 11.7      | 14.6      | 16.6      | 16.4        | 14.1             | 10.6       | 7.1                     | 4.2                    |         | (96)  |
|                   | loss rate | for mea           | an intern           | al tempe    | erature.  | Lm . W =  | -[(39)m : | x [(93)m    | <br>– (96)m      | 1          |                         |                        |         |       |
|                   | 1155.97   |                   | 1020.3              | 862.09      | 671.17    | 452.64    | 297.62    | 312.35      | 483.25           | 720.61     | 954.7                   | 1153.54                |         | (97)  |
| Spac              | e heating | g require         | ement fo            | r each m    | nonth, k\ | Mh/mont   | h = 0.02  | 24 x [(97   | )m – (95         | )m] x (4   | 1)m                     |                        |         |       |
| (98)m=            | 588.55    | 475.23            | 403.33              | 226.09      | 92.32     | 0         | 0         | 0           | 0                | 250.51     | 433.69                  | 600.12                 |         |       |
|                   |           |                   |                     |             |           |           |           | Tota        | l per year       | (kWh/year  | ·) = Sum(9              | 8) <sub>15,912</sub> = | 3069.84 | (98)  |
| Spac              | e heatin  | a require         | ement in            | kWh/m²      | /vear     |           |           |             |                  |            |                         | i                      | 51.81   | (99)  |
| •                 |           | •                 |                     |             | •         |           |           |             | NID)             |            |                         |                        | 01.01   |       |
|                   |           |                   | nts – Indi          | viduai n    | eating sy | ystems i  | nciuaing  | micro-C     | MP)              |            |                         |                        |         |       |
| -                 | e heating | •                 | it from se          | econdar     | v/supple  | mentary   | system    |             |                  |            |                         | ı                      | 0       | (201) |
|                   |           |                   | it from m           | •           |           | momany    | -         | (202) = 1 - | - (201) <b>=</b> |            |                         | l<br>I                 | 1       | (202) |
|                   |           |                   |                     | •           | • •       |           |           | . ,         |                  | (202)] =   |                         | ļ                      |         | ╡゛゛   |
|                   |           |                   | ng from i           | •           |           |           |           | (204) - (2  | 02) × [1 –       | (203)] -   |                         | ļ                      | 1       | (204) |
| Efficie           | ency of r | nain spa          | ace heati           | ng syste    | em 1      |           |           |             |                  |            |                         | ļ                      | 93.4    | (206) |
| Effici            | ency of s | seconda           | ry/supple           | ementar     | y heating | g system  | າ, %      |             |                  |            | _                       |                        | 0       | (208) |
|                   | Jan       | Feb               | Mar                 | Apr         | May       | Jun       | Jul       | Aug         | Sep              | Oct        | Nov                     | Dec                    | kWh/ye  | ar    |
| Spac              | e heatin  | g require         | ement (c            | alculate    | d above   | )         |           |             |                  |            |                         |                        | 1       |       |
|                   | 588.55    | 475.23            | 403.33              | 226.09      | 92.32     | 0         | 0         | 0           | 0                | 250.51     | 433.69                  | 600.12                 |         |       |
| (211)n            | n = {[(98 | )m x (20          | 4)] } x 1           | 00 ÷ (20    | 6)        |           |           |             |                  |            |                         |                        |         | (211) |
|                   | 630.14    | 508.81            | 431.84              | 242.06      | 98.84     | 0         | 0         | 0           | 0                | 268.21     | 464.34                  | 642.53                 |         |       |
|                   |           |                   |                     |             |           |           |           | Tota        | I (kWh/yea       | ar) =Sum(2 | 211) <sub>15,1012</sub> | =                      | 3286.77 | (211) |
| Spac              | e heatin  | g fuel (s         | econdar             | y), kWh/    | month     |           |           |             |                  |            |                         | •                      |         |       |
| = {[(98           | )m x (20  | 1)]}x1            | 00 ÷ (20            | 8)          |           |           |           |             |                  |            |                         |                        | ı       |       |
| (215)m=           | 0         | 0                 | 0                   | 0           | 0         | 0         | 0         | 0           | 0                | 0          | 0                       | 0                      |         |       |
|                   |           |                   |                     |             |           |           |           | Tota        | l (kWh/yea       | ar) =Sum(2 | 215) <sub>15,1012</sub> | =                      | 0       | (215) |
| Water             | heating   | l                 |                     |             |           |           |           |             |                  |            |                         | •                      |         |       |
| Output            |           |                   | ter (calc           |             |           | ı         |           |             | ı                |            |                         | <del></del>            | 1       |       |
|                   | 177.01    | 154.62            | 160.87              | 142.69      | 138.15    | 121.67    | 116.57    | 129.95      | 131.38           | 149.61     | 159.7                   | 172.85                 |         | _     |
|                   | ncy of w  |                   |                     |             |           |           |           |             | <u> </u>         |            | 1                       |                        | 80.3    | (216) |
| (217)m=           |           | 87.69             | 87.27               | 86.2        | 84.06     | 80.3      | 80.3      | 80.3        | 80.3             | 86.34      | 87.44                   | 87.93                  |         | (217) |
|                   |           | •                 | kWh/mo              |             |           |           |           |             |                  |            |                         |                        |         |       |
| (219)n<br>(219)m= |           | m x 100<br>176.32 | ) ÷ (217)<br>184.34 | m<br>165.52 | 164.34    | 151.52    | 145.17    | 161.83      | 163.62           | 173.28     | 182.64                  | 196.58                 |         |       |
| (= 10)111         | 00        | 5.52              | .51.57              | . 55.52     | .51.04    | 1 .51.02  |           |             |                  |            | · 3 <u>-</u> .0-        |                        |         |       |
|                   |           |                   |                     |             |           |           |           | Tota        | I = Sum(2        | 19a) =     |                         | [                      | 2066.65 | (219) |

| Annual totals                                                                                 |                                                                                        | IsWb/sees               |          | lsWb/sees                                     |                                  |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|----------|-----------------------------------------------|----------------------------------|
| Space heating fuel used, main system 1                                                        |                                                                                        | kWh/year                |          | <b>kWh/year</b><br>3286.77                    | 7                                |
| Water heating fuel used                                                                       |                                                                                        |                         |          | 2066.65                                       | Ī                                |
| Electricity for pumps, fans and electric keep-hot                                             |                                                                                        |                         |          |                                               |                                  |
| central heating pump:                                                                         |                                                                                        |                         | 30       |                                               | (230c)                           |
| boiler with a fan-assisted flue                                                               |                                                                                        | ľ                       | 45       |                                               | (230e)                           |
| Total electricity for the above, kWh/year                                                     | sum of (230a                                                                           | i)(230g) =              |          | 75                                            | (231)                            |
| Electricity for lighting                                                                      |                                                                                        |                         |          | 269.42                                        | (232)                            |
| 12a. CO2 emissions – Individual heating systems                                               | s including micro-CHP                                                                  |                         |          |                                               |                                  |
| 12a. OOZ cillissions — individual ficating system.                                            | •                                                                                      |                         |          |                                               |                                  |
| 12a. 002 emissions – marvidual ficating systems                                               | <b>Energy</b><br>kWh/year                                                              | Emission fact           | tor      | Emissions<br>kg CO2/yea                       |                                  |
| Space heating (main system 1)                                                                 | Energy                                                                                 |                         | tor<br>= |                                               |                                  |
|                                                                                               | <b>Energy</b><br>kWh/year                                                              | kg CO2/kWh              |          | kg CO2/yea                                    | ar<br>¬                          |
| Space heating (main system 1)                                                                 | Energy<br>kWh/year                                                                     | kg CO2/kWh              | =        | kg CO2/yea                                    | ar<br>](261)                     |
| Space heating (main system 1) Space heating (secondary)                                       | Energy<br>kWh/year<br>(211) x<br>(215) x                                               | 0.216<br>0.519          | =        | kg CO2/yea                                    | (261)<br>(263)                   |
| Space heating (main system 1) Space heating (secondary) Water heating                         | <b>Energy</b> kWh/year (211) x (215) x (219) x                                         | 0.216<br>0.519          | =        | kg CO2/yea<br>709.94<br>0<br>446.4            | (261)<br>(263)<br>(264)          |
| Space heating (main system 1) Space heating (secondary) Water heating Space and water heating | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264) = | 0.216<br>0.519<br>0.216 | = =      | kg CO2/yea<br>709.94<br>0<br>446.4<br>1156.34 | (261)<br>(263)<br>(264)<br>(265) |

TER =

22.53

(273)

|                                                          |                                                           |               | User D    | otaile:          |            |            |            |           |                        |          |
|----------------------------------------------------------|-----------------------------------------------------------|---------------|-----------|------------------|------------|------------|------------|-----------|------------------------|----------|
| A N                                                      | Obrida I I a al va all                                    | (             |           |                  | - NI       |            |            | OTDO      | 040000                 |          |
| Assessor Name: Software Name:                            | Chris Hocknell Stroma FSAP 201                            | 2             |           | Stroma<br>Softwa |            |            |            |           | 016363<br>on: 1.0.4.16 |          |
| Software Hame.                                           | Ottoma 1 O/ ti 201                                        |               |           | Address:         |            |            |            | VCISIC    | 71. 1.0.4.10           |          |
| Address :                                                |                                                           |               | , ,       |                  |            |            |            |           |                        |          |
| 1. Overall dwelling dime                                 | ensions:                                                  |               |           |                  |            |            |            |           |                        |          |
| Ground floor                                             |                                                           |               |           | a(m²)            | (1-)       |            | ight(m)    | 7(2-) -   | Volume(m³              | <u>-</u> |
|                                                          | N. (41 N. (4 N. (4 IN. (4                                 | \.            |           |                  | (1a) x     |            | 2.7        | (2a) =    | 196.69                 | (3a)     |
| Total floor area TFA = (1                                | a)+(1b)+(1c)+(1d)+(1e                                     | )+(1n)        | 7:        | 2.85             | (4)        |            |            |           |                        | _        |
| Dwelling volume                                          |                                                           |               |           |                  | (3a)+(3b)  | )+(3c)+(3c | l)+(3e)+   | .(3n) =   | 196.69                 | (5)      |
| 2. Ventilation rate:                                     | main se                                                   | econdary      |           | other            |            | total      |            |           | m³ per hou             | r        |
| North an of all large and                                | heating h                                                 | eating        | _         |                  | ,          |            |            | 40 -      | -                      | _        |
| Number of chimneys                                       | 0 +                                                       | 0             | + _       | 0                | ] = [      | 0          |            | 40 =      | 0                      | (6a)     |
| Number of open flues                                     | 0 +                                                       | 0             | +         | 0                | ]          | 0          |            | 20 =      | 0                      | (6b)     |
| Number of intermittent fa                                |                                                           |               |           |                  | L          | 3          | X '        | 10 =      | 30                     | (7a)     |
| Number of passive vents                                  | <b>;</b>                                                  |               |           |                  |            | 0          | X '        | 10 =      | 0                      | (7b)     |
| Number of flueless gas fi                                | ires                                                      |               |           |                  |            | 0          | X 4        | 40 =      | 0                      | (7c)     |
|                                                          |                                                           |               |           |                  |            |            |            | Air ch    | anges per ho           | our      |
| Infiltration due to chimne                               | vs_flues and fans = (6)                                   | a)+(6b)+(7a)  | )+(7b)+(7 | 7c) =            | Г          | 30         |            | ÷ (5) =   | 0.15                   | (8)      |
|                                                          | peen carried out or is intende                            |               |           |                  | ontinue fr |            |            | (0)       | 0.13                   |          |
| Number of storeys in the                                 | he dwelling (ns)                                          |               |           |                  |            |            |            |           | 0                      | (9)      |
| Additional infiltration                                  |                                                           |               |           |                  |            |            | [(9)       | -1]x0.1 = | 0                      | (10)     |
| Structural infiltration: 0                               |                                                           |               |           |                  | •          | uction     |            |           | 0                      | (11)     |
| deducting areas of openi                                 | resent, use the value corresp<br>ngs); if equal user 0.35 | oonaing to tr | ne greate | er waii are      | а (апег    |            |            |           |                        |          |
|                                                          | floor, enter 0.2 (unseal                                  | ed) or 0.1    | (seale    | d), else         | enter 0    |            |            |           | 0                      | (12)     |
| If no draught lobby, en                                  | ter 0.05, else enter 0                                    |               |           |                  |            |            |            |           | 0                      | (13)     |
| Percentage of window                                     | s and doors draught st                                    | ripped        |           |                  |            |            |            |           | 0                      | (14)     |
| Window infiltration                                      |                                                           |               |           | 0.25 - [0.2      |            |            |            |           | 0                      | (15)     |
| Infiltration rate                                        |                                                           |               |           | (8) + (10)       | . , , ,    | , , ,      | , ,        |           | 0                      | (16)     |
| Air permeability value,                                  | •                                                         |               | •         | •                | •          | etre of e  | envelope   | area      | 5                      | (17)     |
| If based on air permeabil  Air permeability value applie | -                                                         |               |           |                  |            | io boing u | and        |           | 0.4                    | (18)     |
| Number of sides sheltere                                 |                                                           | s been done   | or a deg  | јгее ан рег      | пеаышу     | is being u | seu        |           | 3                      | (19)     |
| Shelter factor                                           | -                                                         |               |           | (20) = 1 -       | 0.075 x (1 | 9)] =      |            |           | 0.78                   | (20)     |
| Infiltration rate incorporate                            | ting shelter factor                                       |               |           | (21) = (18)      | x (20) =   |            |            |           | 0.31                   | (21)     |
| Infiltration rate modified f                             | or monthly wind speed                                     |               |           |                  |            |            |            |           |                        | _        |
| Jan Feb                                                  | Mar Apr May                                               | Jun           | Jul       | Aug              | Sep        | Oct        | Nov        | Dec       |                        |          |
| Monthly average wind sp                                  | peed from Table 7                                         |               |           |                  |            |            |            |           | =                      |          |
| (22)m= 5.1 5                                             | 4.9 4.4 4.3                                               | 3.8           | 3.8       | 3.7              | 4          | 4.3        | 4.5        | 4.7       |                        |          |
| Wind Factor (22a)m = (2                                  | 2\m ÷ 4                                                   |               |           |                  |            |            |            |           |                        |          |
|                                                          | 2)m ÷ 4<br>1.23   1.1   1.08                              | 0.95          | 0.95      | 0.92             | 1          | 1.08       | 1.12       | 1.18      |                        |          |
| (                                                        | 1.00                                                      | 3.00          | 0.00      | J.02             | •          |            | L <u>-</u> | Lo        | I                      |          |

| Adjusted infiltr                                                                      | 0.39                     | 0.38                  | 0.34         | 0.34      | 0.3            | 0.3                                              | 0.29                                               | 0.31         | 0.34                                             | 0.35                                             | 0.37             | 1             |               |
|---------------------------------------------------------------------------------------|--------------------------|-----------------------|--------------|-----------|----------------|--------------------------------------------------|----------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|------------------|---------------|---------------|
| Calculate effe                                                                        |                          | _                     | rate for t   | he appli  | cable ca       | ise                                              |                                                    |              |                                                  |                                                  |                  |               |               |
| If mechanica                                                                          |                          |                       |              |           |                |                                                  |                                                    |              |                                                  |                                                  |                  | 0             | (2            |
| If exhaust air h                                                                      |                          |                       |              |           |                |                                                  |                                                    |              | o) = (23a)                                       |                                                  |                  | 0             | (2            |
| If balanced with                                                                      |                          | -                     | -            | _         |                |                                                  |                                                    |              |                                                  |                                                  |                  | 0             | (2            |
| a) If balance                                                                         |                          | i                     |              |           | 1              | <del>,                                    </del> | <del>-                                    </del>   | ŕ            | <del>,                                    </del> | <del>-                                    </del> | <u> </u>         | ) ÷ 100]      | 40            |
| 24a)m= 0                                                                              | 0                        | 0                     | 0            | 0         | 0              | 0                                                | 0                                                  | 0            | 0                                                | 0                                                | 0                | ]             | (2            |
| b) If balance                                                                         |                          | i                     |              |           | 1              | <del> </del>                                     | <del>- ^ `                                  </del> | ŕ            | <del>- ` `</del>                                 | <del>-                                    </del> | <del> </del>     | 7             | (0            |
| 24b)m= 0                                                                              | 0                        | 0                     | 0            | 0         | 0              | 0                                                | 0                                                  | 0            | 0                                                | 0                                                | 0                |               | (2            |
| c) If whole h                                                                         | ouse ex<br>n < 0.5 ×     |                       |              | •         | •              |                                                  |                                                    |              | .5 × (23b                                        | ))                                               |                  | _             |               |
| 24c)m= 0                                                                              | 0                        | 0                     | 0            | 0         | 0              | 0                                                | 0                                                  | 0            | 0                                                | 0                                                | 0                |               | (2            |
| d) If natural if (22b)r                                                               | ventilation              |                       |              |           |                |                                                  |                                                    |              | 0.5]                                             |                                                  |                  |               |               |
| 24d)m= 0.58                                                                           | 0.58                     | 0.57                  | 0.56         | 0.56      | 0.54           | 0.54                                             | 0.54                                               | 0.55         | 0.56                                             | 0.56                                             | 0.57             |               | (2            |
| Effective air                                                                         | change                   | rate - er             | nter (24a    | or (24l   | b) or (24      | c) or (24                                        | d) in bo                                           | x (25)       |                                                  |                                                  |                  | _             |               |
| 25)m= 0.58                                                                            | 0.58                     | 0.57                  | 0.56         | 0.56      | 0.54           | 0.54                                             | 0.54                                               | 0.55         | 0.56                                             | 0.56                                             | 0.57             |               | (2            |
| 3. Heat losse                                                                         | s and he                 | eat loss <sub>l</sub> | paramete     | er:       |                |                                                  |                                                    |              |                                                  |                                                  |                  |               |               |
| LEMENT                                                                                | Gros<br>area             | -                     | Openin<br>m  |           | Net Ar<br>A ,r |                                                  | U-valı<br>W/m2                                     |              | A X U<br>(W/I                                    | K)                                               | k-valu<br>kJ/m²· |               | A X k<br>kJ/K |
| oors                                                                                  |                          | • •                   |              |           | 2              | x                                                | 1                                                  | =            | 2                                                | ,                                                |                  |               | (2            |
| Vindows Type                                                                          | e 1                      |                       |              |           | 4.25           | x1                                               | /[1/( 1.4 )+                                       | 0.04] =      | 5.63                                             | 一                                                |                  |               | (2            |
| Vindows Type                                                                          | e 2                      |                       |              |           | 5.9            | x1                                               | /[1/( 1.4 )+                                       | 0.04] =      | 7.82                                             | Ħ                                                |                  |               | (2            |
| Vindows Type                                                                          | e 3                      |                       |              |           | 4.47           | x1                                               | /[1/( 1.4 )+                                       | 0.04] =      | 5.93                                             | =                                                |                  |               | (2            |
| Vindows Type                                                                          | e 4                      |                       |              |           | 0.91           | x1                                               | /[1/( 1.4 )+                                       | 0.04] =      | 1.21                                             | Ħ                                                |                  |               | (2            |
| Rooflights                                                                            |                          |                       |              |           | 0.6817         | 503 x1                                           | /[1/(1.7) +                                        | 0.04] =      | 1.15897                                          | 5                                                |                  |               | (2            |
| Valls Type1                                                                           | 40.5                     | 58                    | 15.5         | 3         | 25.0           | _                                                | 0.18                                               |              | 4.51                                             |                                                  |                  | $\neg \vdash$ | (2            |
| Valls Type2                                                                           | 56.9                     | 18                    | 2            | =         | 54.98          | 3 x                                              | 0.18                                               |              | 9.9                                              | <b>=</b>                                         |                  | <b>=</b> =    | (2            |
| Roof                                                                                  | 72.8                     | 35                    | 0.68         | =         | 72.17          | 7 X                                              | 0.13                                               | = =          | 9.38                                             | ≓ ¦                                              |                  | <b>-</b>      | (3            |
| otal area of e                                                                        |                          |                       |              |           | 170.4          | =                                                |                                                    |              |                                                  |                                                  |                  |               | ``<br>(3      |
| arty wall                                                                             |                          | ,                     |              |           | 23.2           | =                                                | 0                                                  |              | 0                                                | [                                                |                  | $\neg \vdash$ | (;            |
| arty floor                                                                            |                          |                       |              |           | 72.85          | _                                                |                                                    |              |                                                  | <br>                                             |                  | <b>=</b>  =   | (;            |
| for windows and                                                                       | l roof winde             | ows, use e            | effective wi | ndow U-v  |                |                                                  | g formula 1                                        | /[(1/U-valu  | ле)+0.04] а                                      | l<br>as given in                                 | n paragrap       |               | (             |
| include the area                                                                      |                          |                       |              |           |                |                                                  |                                                    | • `          | ,                                                |                                                  | , ,              |               |               |
| abric heat los                                                                        | ss, W/K =                | = S (A x              | U)           |           |                |                                                  | (26)(30)                                           | ) + (32) =   |                                                  |                                                  |                  | 47.46         | (3            |
|                                                                                       | Cm = S(                  | (Axk)                 |              |           |                |                                                  |                                                    | ((28).       | (30) + (32                                       | 2) + (32a)                                       | (32e) =          | 19233.2       | 21 (3         |
| eat capacity                                                                          | narama                   | ter (TMF              | P = Cm ÷     | - TFA) ir | า kJ/m²K       |                                                  |                                                    |              | tive Value                                       |                                                  |                  | 250           | (:            |
| hermal mass                                                                           | •                        | ere the de            | tails of the | construct | tion are no    | t known pi                                       | recisely the                                       | e indicative | e values of                                      | TMP in T                                         | able 1f          |               |               |
| leat capacity<br>hermal mass<br>or design assess<br>an be used inste<br>hermal bridgi | sments wh<br>ad of a dea | tailed calc           | ulation.     |           |                |                                                  | recisely the                                       | e indicative | e values of                                      | TMP in T                                         | able 1f          |               |               |

| Total fabric he                    | at loss     |                   |                  |                    |               |                   |                    | (33) +       | (36) =                 |                        | İ        | 59.63   | (37) |
|------------------------------------|-------------|-------------------|------------------|--------------------|---------------|-------------------|--------------------|--------------|------------------------|------------------------|----------|---------|------|
| Ventilation hea                    |             | alculated         | l monthl         | V                  |               |                   |                    | • •          | ,                      | (25)m x (5)            |          | 39.03   | (0,) |
| Jan                                | Feb         | Mar               | Apr              | May                | Jun           | Jul               | Aug                | Sep          | Oct                    | Nov                    | Dec      |         |      |
| (38)m= 37.59                       | 37.39       | 37.19             | 36.28            | 36.1               | 35.31         | 35.31             | 35.16              | 35.61        | 36.1                   | 36.45                  | 36.82    |         | (38) |
| Heat transfer of                   | coefficier  | nt, W/K           |                  | ı                  | ı             |                   |                    | (39)m        | = (37) + (37)          | 38)m                   |          | l       |      |
| (39)m= 97.21                       | 97.02       | 96.82             | 95.9             | 95.73              | 94.93         | 94.93             | 94.78              | 95.24        | 95.73                  | 96.08                  | 96.44    |         |      |
| Heat loss para                     | meter (H    | HLP), W/          | m²K              | •                  | •             | •                 | •                  |              | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub>  | 12 /12=  | 95.9    | (39) |
| (40)m= 1.33                        | 1.33        | 1.33              | 1.32             | 1.31               | 1.3           | 1.3               | 1.3                | 1.31         | 1.31                   | 1.32                   | 1.32     |         |      |
| Number of day                      | ys in moi   | nth (Tab          | le 1a)           | •                  | •             | •                 |                    | ,            | Average =              | Sum(40) <sub>1</sub>   | 12 /12=  | 1.32    | (40) |
| Jan                                | Feb         | Mar               | Apr              | May                | Jun           | Jul               | Aug                | Sep          | Oct                    | Nov                    | Dec      |         |      |
| (41)m= 31                          | 28          | 31                | 30               | 31                 | 30            | 31                | 31                 | 30           | 31                     | 30                     | 31       |         | (41) |
|                                    |             |                   |                  |                    |               |                   | •                  |              |                        |                        |          | l       |      |
| 4. Water hea                       | ting enei   | rav regui         | irement:         |                    |               |                   |                    |              |                        |                        | kWh/ye   | ear:    |      |
|                                    |             |                   |                  |                    |               |                   |                    |              |                        |                        |          |         |      |
| if TFA > 13.9                      |             |                   | [1 - exn         | ( <u>-0 0003</u>   | R49 v (TF     | -Δ -13 9          | 1211 + 0 (         | 0013 x (1    | ΓFΔ -13                |                        | 31       |         | (42) |
| if TFA £ 13.9                      |             | · 1.70 X          | i cxp            | ( 0.0000           | 7-10 X (11    | 7. 10.0           | <i>)</i> 2)] · 0.0 | ) X 010 X    | 1170 10.               | .0)                    |          |         |      |
| Annual averag                      |             |                   |                  |                    |               |                   |                    |              |                        |                        | .14      |         | (43) |
| Reduce the annua not more that 125 | _           |                   |                  |                    | -             | -                 | to achieve         | a water us   | se target o            | t                      |          |         |      |
|                                    | <del></del> |                   | i                | <b>.</b>           | <u> </u>      | i                 |                    | 0            | 0-4                    | NI                     |          |         |      |
| Jan Hot water usage i              | Feb         | Mar<br>day for ea | Apr<br>ach month | May<br>  Vd.m = fa | Jun           | Jul<br>Table 1c x | Aug (43)           | Sep          | Oct                    | Nov                    | Dec      |         |      |
| (44)m= 98.05                       | 94.49       | 90.92             | 87.36            | 83.79              | 80.23         | 80.23             | 83.79              | 87.36        | 90.92                  | 94.49                  | 98.05    |         |      |
| (44)///                            | 04.40       | 00.02             | 07.00            | 00.70              | 00.20         | 00.20             | 00.70              |              |                        | m(44) <sub>112</sub> = |          | 1069.69 | (44) |
| Energy content of                  | f hot water | used - cal        | culated me       | onthly $= 4$ .     | 190 x Vd,r    | m x nm x E        | OTm / 3600         |              |                        | . ,                    |          |         | ` ′  |
| (45)m= 145.41                      | 127.18      | 131.24            | 114.42           | 109.78             | 94.74         | 87.79             | 100.74             | 101.94       | 118.8                  | 129.68                 | 140.82   |         |      |
|                                    |             |                   |                  |                    |               |                   |                    |              | Γotal = Su             | m(45) <sub>112</sub> = |          | 1402.53 | (45) |
| If instantaneous w                 |             |                   |                  | not water          |               | enter 0 ın        | boxes (46)         |              |                        |                        |          | l       |      |
| (46)m= 21.81<br>Water storage      | 19.08       | 19.69             | 17.16            | 16.47              | 14.21         | 13.17             | 15.11              | 15.29        | 17.82                  | 19.45                  | 21.12    |         | (46) |
| Storage volum                      |             | ) includin        | ng anv so        | olar or W          | /WHRS         | storage           | within sa          | ame ves      | sel                    |                        | 0        |         | (47) |
| If community h                     | , ,         |                   | •                |                    |               | _                 |                    |              |                        |                        | <u> </u> |         | (**) |
| Otherwise if no                    | •           |                   |                  | _                  |               |                   | . ,                | ers) ente    | er '0' in (            | 47)                    |          |         |      |
| Water storage                      | loss:       |                   |                  |                    |               |                   |                    |              |                        |                        |          |         |      |
| a) If manufact                     | turer's de  | eclared l         | oss facto        | or is kno          | wn (kWl       | n/day):           |                    |              |                        |                        | 0        |         | (48) |
| Temperature f                      | actor fro   | m Table           | 2b               |                    |               |                   |                    |              |                        |                        | 0        |         | (49) |
| Energy lost fro                    |             | _                 | -                |                    |               |                   | (48) x (49)        | ) =          |                        |                        | 0        |         | (50) |
| b) If manufact<br>Hot water stor   |             |                   | -                |                    |               |                   |                    |              |                        |                        | •        |         | (E4) |
| If community h                     | _           |                   |                  | IC Z (KVV          | i i/iiii G/uc | ay <i>)</i>       |                    |              |                        |                        | 0        |         | (51) |
| Volume factor                      | •           |                   | 011 110          |                    |               |                   |                    |              |                        |                        | 0        |         | (52) |
| Temperature f                      | actor fro   | m Table           | 2b               |                    |               |                   |                    |              |                        |                        | 0        |         | (53) |
| Energy lost fro                    | m water     | · storage         | , kWh/ye         | ear                |               |                   | (47) x (51)        | ) x (52) x ( | 53) =                  |                        | 0        |         | (54) |
| Enter (50) or                      | (54) in (5  | 55)               |                  |                    |               |                   |                    |              |                        |                        | 0        |         | (55) |
|                                    |             |                   |                  |                    |               |                   |                    |              |                        |                        |          |         |      |

| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | storage                                                                                                     | loss cal                                                                                                                                       | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                          | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                                              | ((56)m = (                                                                                    | 55) × (41)                                                                      | m                                                |                                                         |                                                                      |               |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|---------------|----------------------------------------------|
| (56)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                           | 0                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                     | 0                                                                                            | 0                                                                                             | 0                                                                               | 0                                                | 0                                                       | 0                                                                    |               | (56)                                         |
| If cylinde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er contains                                                                                                 | dedicated                                                                                                                                      | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)ı                                                                                       | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                                           | H11)] ÷ (5                                                                                   | 0), else (5                                                                                   | 7)m = (56)                                                                      | m where (                                        | H11) is fro                                             | m Append                                                             | ix H          |                                              |
| (57)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                           | 0                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                     | 0                                                                                            | 0                                                                                             | 0                                                                               | 0                                                | 0                                                       | 0                                                                    |               | (57)                                         |
| Primar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y circuit                                                                                                   | loss (an                                                                                                                                       | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m Table                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |                                                                                              |                                                                                               |                                                                                 |                                                  |                                                         | 0                                                                    |               | (58)                                         |
| Primar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y circuit                                                                                                   | loss cal                                                                                                                                       | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                          | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                                              | (58) ÷ 36                                                                                    | 65 × (41)                                                                                     | m                                                                               |                                                  |                                                         |                                                                      |               |                                              |
| (mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dified by                                                                                                   | factor fr                                                                                                                                      | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                        | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                                             | ter heatii                                                                                   | ng and a                                                                                      | cylinde                                                                         | r thermo                                         | stat)                                                   |                                                                      | •             |                                              |
| (59)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                           | 0                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                     | 0                                                                                            | 0                                                                                             | 0                                                                               | 0                                                | 0                                                       | 0                                                                    |               | (59)                                         |
| Combi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | loss ca                                                                                                     | lculated                                                                                                                                       | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                           | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                                             | 65 × (41                                                                                     | )m                                                                                            |                                                                                 |                                                  |                                                         |                                                                      |               |                                              |
| (61)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.97                                                                                                       | 43.49                                                                                                                                          | 46.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.08                                                                                             | 42.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.56                                                                                                 | 40.88                                                                                        | 42.7                                                                                          | 43.08                                                                           | 46.33                                            | 46.6                                                    | 49.97                                                                |               | (61)                                         |
| Total h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eat requ                                                                                                    | uired for                                                                                                                                      | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                         | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l for eac                                                                                             | h month                                                                                      | (62)m =                                                                                       | 0.85 × (                                                                        | (45)m +                                          | (46)m +                                                 | (57)m +                                                              | (59)m + (61)m |                                              |
| (62)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 195.38                                                                                                      | 170.67                                                                                                                                         | 177.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 157.5                                                                                             | 152.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 134.3                                                                                                 | 128.67                                                                                       | 143.44                                                                                        | 145.02                                                                          | 165.13                                           | 176.28                                                  | 190.79                                                               |               | (62)                                         |
| Solar DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -IW input o                                                                                                 | calculated                                                                                                                                     | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                                        | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                                             | ve quantity                                                                                  | /) (enter '0                                                                                  | if no sola                                                                      | r contribut                                      | ion to wate                                             | er heating)                                                          | •             |                                              |
| (add a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dditiona                                                                                                    | l lines if                                                                                                                                     | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or V                                                                                          | WWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                                               | , see Ap                                                                                     | pendix (                                                                                      | 3)                                                                              |                                                  | _                                                       |                                                                      |               |                                              |
| (63)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                           | 0                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                     | 0                                                                                            | 0                                                                                             | 0                                                                               | 0                                                | 0                                                       | 0                                                                    |               | (63)                                         |
| Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t from w                                                                                                    | ater hea                                                                                                                                       | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                              |                                                                                               |                                                                                 |                                                  |                                                         |                                                                      |               |                                              |
| (64)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 195.38                                                                                                      | 170.67                                                                                                                                         | 177.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 157.5                                                                                             | 152.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 134.3                                                                                                 | 128.67                                                                                       | 143.44                                                                                        | 145.02                                                                          | 165.13                                           | 176.28                                                  | 190.79                                                               |               |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                     | -                                                                                            | Outp                                                                                          | out from wa                                                                     | ater heate                                       | r (annual) <sub>1</sub>                                 | 12                                                                   | 1937.22       | (64)                                         |
| Heat g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ains froi                                                                                                   | m water                                                                                                                                        | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/mo                                                                                            | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                                             | × (45)m                                                                                      | + (61)m                                                                                       | n] + 0.8 x                                                                      | ((46)m                                           | + (57)m                                                 | + (59)m                                                              | ]             |                                              |
| (65)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.84                                                                                                       | 53.16                                                                                                                                          | 55.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.81                                                                                             | 47.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.00                                                                                                 | 00.44                                                                                        | i                                                                                             |                                                                                 |                                                  |                                                         | 1                                                                    |               | (0-)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.01                                                                                             | 47.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.39                                                                                                 | 39.41                                                                                        | 44.17                                                                                         | 44.66                                                                           | 51.08                                            | 54.77                                                   | 59.32                                                                |               | (65)                                         |
| inclu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıde (57)ı                                                                                                   | m in calc                                                                                                                                      | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ.                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                              | ļ                                                                                            | ļ                                                                                             |                                                                                 |                                                  | ļ                                                       | 59.32<br>munity h                                                    | eating        | (65)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of (65)m                                                                                          | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                              | ļ                                                                                            | ļ                                                                                             |                                                                                 |                                                  | ļ                                                       | ļ                                                                    | eating        | (65)                                         |
| 5. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ternal ga                                                                                                   | ains (see                                                                                                                                      | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                              | ļ                                                                                            | ļ                                                                                             |                                                                                 |                                                  | ļ                                                       | ļ                                                                    | eating        | (65)                                         |
| 5. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ternal ga                                                                                                   | ains (see                                                                                                                                      | culation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of (65)m<br>and 5a                                                                                | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                              | ļ                                                                                            | ļ                                                                                             |                                                                                 |                                                  | ļ                                                       | ļ                                                                    | eating        | (65)                                         |
| 5. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ternal ga                                                                                                   | ains (see<br>s (Table                                                                                                                          | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                                             | s in the o                                                                                   | dwelling                                                                                      | or hot w                                                                        | ater is fr                                       | om com                                                  | munity h                                                             | eating        | (66)                                         |
| 5. In Metab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olic gain<br>Jan<br>115.66                                                                                  | s (Table<br>Feb<br>115.66                                                                                                                      | ETable 5<br>5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>5 and 5a<br>ts<br>Apr<br>115.66                                                       | only if c ):  May  115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun<br>115.66                                                                                         | s in the o                                                                                   | Aug<br>115.66                                                                                 | or hot w<br>Sep<br>115.66                                                       | ater is fr<br>Oct                                | om com                                                  | munity h                                                             | eating        |                                              |
| 5. In Metab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olic gain<br>Jan<br>115.66                                                                                  | s (Table<br>Feb<br>115.66                                                                                                                      | ETable 5<br>5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>5 and 5a<br>ts<br>Apr<br>115.66                                                       | only if c ):  May  115.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun<br>115.66                                                                                         | Jul 115.66                                                                                   | Aug<br>115.66                                                                                 | or hot w<br>Sep<br>115.66                                                       | ater is fr<br>Oct                                | om com                                                  | munity h                                                             | eating        |                                              |
| 5. In: Metab  (66)m= Lightin (67)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | olic gain Jan 115.66 g gains 18.17                                                                          | s (Table<br>Feb<br>115.66<br>(calculat                                                                                                         | Table 5  5), Wat  Mar  115.66  ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m and 5a ts Apr 115.66 ppendix 9.94                                                        | only if constraints only if constraints only if constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint of the constraints on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint of the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on t | Jun<br>115.66<br>ion L9 o                                                                             | Jul<br>115.66<br>r L9a), a                                                                   | Aug<br>115.66<br>Iso see                                                                      | Sep<br>115.66<br>Table 5                                                        | Oct 115.66                                       | Nov                                                     | Dec                                                                  | eating        | (66)                                         |
| 5. In: Metab  (66)m= Lightin (67)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | olic gain Jan 115.66 g gains 18.17                                                                          | s (Table<br>Feb<br>115.66<br>(calculat                                                                                                         | Table 5  5), Wat  Mar  115.66  ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m and 5a ts Apr 115.66 ppendix 9.94                                                        | only if constraints only if constraints only if constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint on the constraints on the constraint of the constraints on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint of the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on t | Jun<br>115.66<br>ion L9 o                                                                             | Jul<br>115.66<br>r L9a), a                                                                   | Aug<br>115.66<br>Iso see                                                                      | Sep<br>115.66<br>Table 5                                                        | Oct 115.66                                       | Nov                                                     | Dec                                                                  | eating        | (66)                                         |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 115.66 g gains 18.17 nces ga                                                                  | s (Table<br>Feb<br>115.66<br>(calcular<br>16.14<br>ins (calc                                                                                   | Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Ev | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29                                        | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L                                                         | Jul<br>115.66<br>r L9a), a<br>6.78                                                           | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                                 | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta                                     | Oct 115.66 15.01 ble 5 167.07                    | Nov<br>115.66                                           | Dec 115.66                                                           | eating        | (66)<br>(67)                                 |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 115.66 g gains 18.17 nces ga                                                                  | s (Table<br>Feb<br>115.66<br>(calcular<br>16.14<br>ins (calc                                                                                   | Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Ev | of (65)m 5 and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29                                      | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L                                                         | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51                                     | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                                 | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta                                     | Oct 115.66 15.01 ble 5 167.07                    | Nov<br>115.66                                           | Dec 115.66                                                           | eating        | (66)<br>(67)                                 |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 115.66 g gains 18.17 nces gains 203.86 ng gains 34.57                                         | s (Table<br>Feb<br>115.66<br>(calcular<br>16.14<br>ins (calc<br>205.97<br>(calcular<br>34.57                                                   | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57                          | only if constructions only if constructions only if constructions on the construction of the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction of the construction on the construction of the construction on the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction  | Jun 115.66 ion L9 of 6.27 uation L 161.5                                                              | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a                          | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39                                       | Sep 115.66 Table 5 11.82 see Ta 155.72 ee Table                                 | Oct 115.66  15.01 ble 5 167.07                   | Nov<br>115.66<br>17.52                                  | Dec 115.66 18.68                                                     | eating        | (66)<br>(67)<br>(68)                         |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 115.66 g gains 18.17 nces gains 203.86 ng gains 34.57                                         | s (Table<br>Feb<br>115.66<br>(calcular<br>16.14<br>ins (calc<br>205.97<br>(calcular<br>34.57                                                   | ETable 5 E 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57                          | only if constructions only if constructions only if constructions on the construction of the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction on the construction of the construction on the construction of the construction on the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction  | Jun 115.66 ion L9 of 6.27 uation L 161.5                                                              | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a                          | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39                                       | Sep 115.66 Table 5 11.82 see Ta 155.72 ee Table                                 | Oct 115.66  15.01 ble 5 167.07                   | Nov<br>115.66<br>17.52                                  | Dec 115.66 18.68                                                     | eating        | (66)<br>(67)<br>(68)                         |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 115.66 g gains 18.17 nces gains 203.86 ng gains 34.57 s and far                               | s (Table Feb 115.66 (calculat 16.14 ins (calc 205.97 (calculat 34.57 ns gains                                                                  | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29 ppendix 34.57 5a) 3                  | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 115.66 ion L9 of 6.27 uation L 161.5 tion L15 34.57                                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a;<br>34.57                | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57                | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57            | Nov<br>115.66<br>17.52<br>181.4                         | Dec 115.66 18.68 194.86                                              | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 115.66 g gains 18.17 nces gains 203.86 ng gains 34.57 s and far                               | s (Table Feb 115.66 (calculat 16.14 ins (calc 205.97 (calculat 34.57 ns gains                                                                  | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29 ppendix 34.57 5a) 3                  | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 115.66 ion L9 of 6.27 uation L 161.5 tion L15 34.57                                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a;<br>34.57                | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57                | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57            | Nov<br>115.66<br>17.52<br>181.4                         | Dec 115.66 18.68 194.86                                              | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olic gain Jan 115.66 g gains 18.17 nces ga 203.86 ng gains 34.57 s and far 3 s e.g. ev                      | s (Table Feb 115.66 (calculations (calculations (calculations)) (calculations (calculations)) (calculations) 34.57 Insigning apporation -92.53 | culation of Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64 tted in Ap 34.57 (Table 5 3 on (negation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 3 tive value         | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>tion L15<br>34.57                          | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57                | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57                | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57            | Nov<br>115.66<br>17.52<br>181.4                         | Dec 115.66 18.68 194.86 34.57                                        | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olic gain Jan 115.66 g gains 18.17 nces ga 203.86 ng gains 34.57 s and far 3 s e.g. ev                      | s (Table Feb 115.66 (calculations (calculations (calculations)) (calculations (calculations)) (calculations) 34.57 ns gains 3                  | culation of Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64 tted in Ap 34.57 (Table 5 3 on (negation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 3 tive value         | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>tion L15<br>34.57                          | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57                | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57                | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57            | Nov<br>115.66<br>17.52<br>181.4                         | Dec 115.66 18.68 194.86 34.57                                        | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olic gain Jan 115.66 g gains 18.17 nces ga 203.86 ng gains 34.57 s and far s e.g. ev -92.53 heating 81.78   | s (Table Feb 115.66 (calcular 16.14 ins (calcular 34.57 ns gains 3 aporatio -92.53 gains (T 79.11                                              | culation of the Table 5  25), Wat Mar 115.66  ted in Ap 13.13  ulated in 200.64  ted in Ap 34.57  (Table 5 3  on (negation of the Table 5)  74.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 n Append 189.29 ppendix 34.57 5a) 3 tive valu -92.53 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>tion L15<br>34.57<br>3                     | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57                | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57<br>3           | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57<br>3 | Oct 115.66 15.01 ble 5 167.07 5 34.57 3 -92.53   | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>3           | munity h  Dec 115.66  18.68  194.86  34.57  3  -92.53                | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m= Total i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | olic gain Jan 115.66 g gains 18.17 nces ga 203.86 ng gains 34.57 s and far s e.g. ev -92.53 heating 81.78   | s (Table Feb 115.66 (calculations (calculations (calculations) 34.57 ns gains 3 aporation -92.53 gains (T                                      | culation of Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64 tted in Al 34.57 (Table 5 3 on (negation of 192.53) Table 5) 74.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of (65)m 5 and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29 ppendix 34.57 5a) 3 tive valu -92.53 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>tion L15<br>34.57<br>3<br>ole 5)<br>-92.53 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57                | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57<br>3           | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57<br>3 | Oct 115.66 15.01 ble 5 167.07 5 34.57 3 -92.53   | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>3           | munity h  Dec 115.66  18.68  194.86  34.57  3  -92.53                | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m= Total i (73)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | olic gain Jan 115.66 g gains 18.17 nces ga 203.86 ng gains 34.57 s and far 3 s e.g. ev -92.53 heating 81.78 | s (Table Feb 115.66 (calcular 16.14 ins (calcular 34.57 ns gains 3 aporatio -92.53 gains (T 79.11 gains = 361.92                               | culation of the Table 5  25), Wat Mar 115.66  ted in Ap 13.13  ulated in 200.64  ted in Ap 34.57  (Table 5 3  on (negation of the Table 5)  74.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 n Append 189.29 ppendix 34.57 5a) 3 tive valu -92.53 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>tion L15<br>34.57<br>3<br>ole 5)<br>-92.53 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57<br>3<br>-92.53 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57<br>3<br>-92.53 | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57<br>3 | Oct 115.66  15.01 ble 5 167.07 5 34.57  3 -92.53 | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>3<br>-92.53 | munity h  Dec   115.66   18.68   194.86   34.57   3   -92.53   79.73 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Fac<br>Table 6d | ctor | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|-------------------------------------|------|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 11.28            | x | 0.63           | x | 0.7            | =        | 3.14         | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 22.97            | x | 0.63           | x | 0.7            | =        | 6.39         | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 41.38            | x | 0.63           | x | 0.7            | =        | 11.51        | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 67.96            | x | 0.63           | x | 0.7            | =        | 18.9         | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 91.35            | x | 0.63           | x | 0.7            | =        | 25.4         | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 97.38            | x | 0.63           | x | 0.7            | =        | 27.08        | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 91.1             | X | 0.63           | X | 0.7            | =        | 25.34        | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | X | 72.63            | x | 0.63           | X | 0.7            | <b>=</b> | 20.2         | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | X | 50.42            | x | 0.63           | x | 0.7            | ] =      | 14.02        | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 28.07            | x | 0.63           | x | 0.7            | <b>=</b> | 7.81         | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 14.2             | x | 0.63           | x | 0.7            | <b>=</b> | 3.95         | (75) |
| Northeast 0.9x 0.77                 | x    | 0.91       | x | 9.21             | x | 0.63           | x | 0.7            | <b>=</b> | 2.56         | (75) |
| Southeast 0.9x 0.77                 | x    | 4.25       | X | 36.79            | x | 0.63           | X | 0.7            | <b>=</b> | 47.79        | (77) |
| Southeast 0.9x 0.77                 | x    | 5.9        | x | 36.79            | x | 0.63           | x | 0.7            | =        | 66.34        | (77) |
| Southeast 0.9x 0.77                 | x    | 4.47       | x | 36.79            | x | 0.63           | x | 0.7            | <b>=</b> | 50.26        | (77) |
| Southeast 0.9x 0.77                 | x    | 4.25       | x | 62.67            | x | 0.63           | X | 0.7            | <b>=</b> | 81.4         | (77) |
| Southeast 0.9x 0.77                 | x    | 5.9        | x | 62.67            | x | 0.63           | x | 0.7            | <b>=</b> | 113.01       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.47       | x | 62.67            | x | 0.63           | x | 0.7            | <b>=</b> | 85.62        | (77) |
| Southeast 0.9x 0.77                 | x    | 4.25       | x | 85.75            | x | 0.63           | X | 0.7            | <b>=</b> | 111.38       | (77) |
| Southeast 0.9x 0.77                 | x    | 5.9        | X | 85.75            | x | 0.63           | X | 0.7            | ] =      | 154.62       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.47       | X | 85.75            | x | 0.63           | x | 0.7            | ] =      | 117.15       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.25       | x | 106.25           | x | 0.63           | X | 0.7            | <b>=</b> | 138.01       | (77) |
| Southeast 0.9x 0.77                 | x    | 5.9        | x | 106.25           | x | 0.63           | x | 0.7            | =        | 191.58       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.47       | x | 106.25           | x | 0.63           | x | 0.7            | =        | 145.15       | (77) |
| Southeast 0.9x 0.77                 | X    | 4.25       | X | 119.01           | X | 0.63           | X | 0.7            | =        | 154.58       | (77) |
| Southeast 0.9x 0.77                 | x    | 5.9        | x | 119.01           | X | 0.63           | X | 0.7            | =        | 214.59       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.47       | x | 119.01           | X | 0.63           | x | 0.7            | =        | 162.58       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.25       | X | 118.15           | X | 0.63           | X | 0.7            | =        | 153.46       | (77) |
| Southeast 0.9x 0.77                 | x    | 5.9        | X | 118.15           | X | 0.63           | X | 0.7            | =        | 213.04       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.47       | X | 118.15           | X | 0.63           | X | 0.7            | =        | 161.4        | (77) |
| Southeast 0.9x 0.77                 | X    | 4.25       | X | 113.91           | X | 0.63           | X | 0.7            | =        | 147.95       | (77) |
| Southeast 0.9x 0.77                 | x    | 5.9        | x | 113.91           | X | 0.63           | X | 0.7            | =        | 205.39       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.47       | x | 113.91           | x | 0.63           | x | 0.7            | <b>=</b> | 155.61       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.25       | x | 104.39           | x | 0.63           | x | 0.7            | <b>=</b> | 135.59       | (77) |
| Southeast 0.9x 0.77                 | x    | 5.9        | x | 104.39           | x | 0.63           | x | 0.7            | ] =      | 188.23       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.47       | x | 104.39           | x | 0.63           | x | 0.7            | =        | 142.61       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.25       | x | 92.85            | x | 0.63           | x | 0.7            | =        | 120.6        | (77) |
| Southeast 0.9x 0.77                 | x    | 5.9        | x | 92.85            | x | 0.63           | x | 0.7            | =        | 167.42       | (77) |
| Southeast 0.9x 0.77                 | x    | 4.47       | X | 92.85            | × | 0.63           | x | 0.7            | ] =      | 126.84       | (77) |

| Southeast 0.9x             | 0.77         | X      | 4.2       | 5        | X             | 69.27          | x      | 0.63         | X             | 0.7            | =      | 89.97 | (77) |
|----------------------------|--------------|--------|-----------|----------|---------------|----------------|--------|--------------|---------------|----------------|--------|-------|------|
| Southeast <sub>0.9x</sub>  | 0.77         | X      | 5.9       | )        | x             | 69.27          | x      | 0.63         | x             | 0.7            | =      | 124.9 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | x      | 4.4       | 7        | x             | 69.27          | x      | 0.63         | x             | 0.7            | =      | 94.63 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | X      | 4.2       | 5        | X             | 44.07          | x      | 0.63         | x             | 0.7            | =      | 57.24 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | x      | 5.9       | )        | x             | 44.07          | x      | 0.63         | x             | 0.7            | =      | 79.46 | (77) |
| Southeast 0.9x             | 0.77         | X      | 4.4       | 7        | x             | 44.07          | x      | 0.63         | ×             | 0.7            | =      | 60.2  | (77) |
| Southeast 0.9x             | 0.77         | X      | 4.2       | 5        | x             | 31.49          | x      | 0.63         | ×             | 0.7            | =      | 40.9  | (77) |
| Southeast 0.9x             | 0.77         | X      | 5.9       | ,        | x             | 31.49          | x      | 0.63         | ×             | 0.7            | =      | 56.78 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | X      | 4.4       | 7        | X             | 31.49          | X      | 0.63         | x             | 0.7            | =      | 43.02 | (77) |
| Rooflights 0.9x            | 1            | X      | 0.68      | 8        | X             | 26             | x      | 0.63         | x             | 0.7            | =      | 7.04  | (82) |
| Rooflights <sub>0.9x</sub> | 1            | x      | 0.68      | 8        | x             | 54             | x      | 0.63         | ×             | 0.7            | =      | 14.61 | (82) |
| Rooflights 0.9x            | 1            | X      | 0.68      | 8        | x             | 96             | x      | 0.63         | ×             | 0.7            | =      | 25.98 | (82) |
| Rooflights 0.9x            | 1            | x      | 0.68      | 8        | x             | 150            | x      | 0.63         | ×             | 0.7            | =      | 40.59 | (82) |
| Rooflights 0.9x            | 1            | x      | 0.68      | 8        | x             | 192            | x      | 0.63         | ×             | 0.7            | =      | 51.95 | (82) |
| Rooflights 0.9x            | 1            | X      | 0.68      | 8        | x             | 200            | x      | 0.63         | x             | 0.7            | =      | 54.12 | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X      | 0.68      | 8        | x             | 189            | x      | 0.63         | x             | 0.7            | =      | 51.14 | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X      | 0.68      | 8        | x             | 157            | x      | 0.63         | ×             | 0.7            | =      | 42.48 | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X      | 0.68      | 8        | x             | 115            | x      | 0.63         | X             | 0.7            | =      | 31.12 | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X      | 0.6       | 8        | x             | 66             | x      | 0.63         | X             | 0.7            | =      | 17.86 | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X      | 0.68      | 8        | x             | 33             | x      | 0.63         | X             | 0.7            | =      | 8.93  | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X      | 0.68      | 8        | x             | 21             | x      | 0.63         | X             | 0.7            | =      | 5.68  | (82) |
|                            |              |        |           |          |               |                |        |              |               |                |        |       |      |
| Solar gains in wa          | atts, calcul | ated   | for each  | month    | )             |                | (83)m  | = Sum(74)m . | (82)m         |                |        |       |      |
| ` '                        |              | ).63   | 534.23    | 609.1    |               | 09.1 585.43    | 529    | 9.1 460.01   | 335.1         | 209.79         | 148.93 |       | (83) |
| Total gains – inte         | ernal and s  | solar  | (84)m =   | (73)m    | + (8          | 33)m , watts   |        |              |               |                |        | •     |      |
| (84)m= 539.07 6            | 662.94 769   | ).32   | 861.95    | 915.61   | 89            | 95.06 858.38   | 808    | .37 750.29   | 646.6         | 545.47         | 502.9  |       | (84) |
| 7. Mean interna            | ıl tempera   | ture ( | (heating  | seasor   | 1)            |                |        |              |               |                |        |       |      |
| Temperature du             | uring heati  | ng pe  | eriods in | the livi | ng            | area from Tal  | ole 9  | Th1 (°C)     |               |                |        | 21    | (85) |
| Utilisation facto          | r for gains  | for li | iving are | a, h1,n  | ) (s          | ee Table 9a)   |        |              |               |                |        |       |      |
| Jan                        | Feb M        | 1ar    | Apr       | May      |               | Jun Jul        | Α      | ug Sep       | Oct           | Nov            | Dec    |       |      |
| (86)m= 1                   | 0.99 0.      | 97     | 0.92      | 0.81     | (             | 0.48           | 0.5    | 0.76         | 0.95          | 0.99           | 1      |       | (86) |
| Mean internal to           | emperatur    | e in I | iving are | a T1 (f  | ollo          | w steps 3 to 7 | 7 in T | able 9c)     |               |                |        |       |      |
| (87)m= 19.64               | 19.87 20     | .18    | 20.54     | 20.81    | 2             | 0.95 20.99     | 20.    | 98 20.89     | 20.52         | 20             | 19.6   |       | (87) |
| Temperature du             | uring heati  | ng pe  | eriods in | rest of  | dw            | elling from Ta | able 9 | ), Th2 (°C)  |               |                |        | •     |      |
| · — —                      |              | .82    | 19.83     | 19.83    | _             | 9.84 19.84     | 19.    | <del> </del> | 19.83         | 19.83          | 19.82  |       | (88) |
| Utilisation facto          | r for gaine  | for n  | est of dv | velling  | h2            | m (see Tahle   | 9a1    |              |               |                |        | ı     |      |
|                            |              | 96     | 0.89      | 0.75     | $\overline{}$ | 0.36           | 0.     | 4 0.67       | 0.92          | 0.99           | 1      |       | (89) |
| ` '                        | ļ .          |        | !         |          |               | ļ.             |        |              |               |                |        |       |      |
| Mean internal to           |              | e in t | 19.31     | 19.66    | Ť             | 9.81 19.84     | 19.    |              | e 9c)<br>19.3 | 18.57          | 17.98  |       | (90) |
| 10.04                      | 10.00   10   |        | 10.01     | 19.00    | <u> </u>      | 0.01 19.04     | 19.    |              |               | ring area ÷ (4 |        | 0.45  | (91) |
|                            |              |        |           |          |               |                |        |              |               | 3 00 (         | ′      | 0.45  | (31) |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m=       | 18.76     | 19.04             | 19.42               | 19.86       | 20.17              | 20.32       | 20.35          | 20.35      | 20.27           | 19.85                 | 19.21                   | 18.71                  |            | (92)            |
|--------------|-----------|-------------------|---------------------|-------------|--------------------|-------------|----------------|------------|-----------------|-----------------------|-------------------------|------------------------|------------|-----------------|
| Apply        | adjustn   | nent to the       | he mean             | internal    | temper             | ature fro   | m Table        | 4e, whe    | ere appro       | priate                | !                       | <u> </u>               |            |                 |
| (93)m=       | 18.76     | 19.04             | 19.42               | 19.86       | 20.17              | 20.32       | 20.35          | 20.35      | 20.27           | 19.85                 | 19.21                   | 18.71                  |            | (93)            |
| 8. Spa       | ace hea   | ting requ         | uirement            |             |                    |             |                |            |                 |                       |                         |                        |            |                 |
|              |           |                   |                     | nperatur    | e obtain           | ed at ste   | ep 11 of       | Table 9l   | b, so tha       | t Ti,m=(              | 76)m an                 | d re-calc              | ulate      |                 |
|              |           |                   | or gains i          |             |                    |             |                |            |                 | , ,                   | ,                       |                        |            |                 |
|              | Jan       | Feb               | Mar                 | Apr         | May                | Jun         | Jul            | Aug        | Sep             | Oct                   | Nov                     | Dec                    |            |                 |
| Utilisa      | ition fac | tor for g         | ains, hm            | :           |                    |             |                |            |                 |                       |                         |                        |            |                 |
| (94)m=       | 0.99      | 0.98              | 0.95                | 0.89        | 0.77               | 0.58        | 0.41           | 0.46       | 0.71            | 0.92                  | 0.98                    | 0.99                   |            | (94)            |
| Usefu        | I gains,  | hmGm ,            | W = (94             | l)m x (84   | 4)m                | _           |                | -          | _               |                       | _                       |                        |            |                 |
| (95)m=       | 534.46    | 649.47            | 733.32              | 766.78      | 701.46             | 519.67      | 352.33         | 368.2      | 530.72          | 595.47                | 535.82                  | 499.65                 |            | (95)            |
| Month        | nly avera | age exte          | rnal tem            | perature    | from Ta            | able 8      |                | _          |                 |                       |                         |                        |            |                 |
| (96)m=       | 4.3       | 4.9               | 6.5                 | 8.9         | 11.7               | 14.6        | 16.6           | 16.4       | 14.1            | 10.6                  | 7.1                     | 4.2                    |            | (96)            |
| Heat I       | oss rate  | for mea           | an intern           | al tempe    | erature,           | Lm , W =    | =[(39)m :      | x [(93)m   | – (96)m         | ]                     |                         |                        | '          |                 |
| (97)m=       | 1405.37   | 1371.43           | 1250.97             | 1051.05     | 811.13             | 543.09      | 356.15         | 374.29     | 587.16          | 885.12                | 1163.74                 | 1398.98                |            | (97)            |
| Space        | heating   | g require         | ement fo            | r each m    | nonth, k\          | Wh/mont     | h = 0.02       | 24 x [(97  | )m – (95        | )m] x (4              | 1)m                     |                        |            |                 |
| (98)m=       | 647.95    | 485.16            | 385.13              | 204.68      | 81.6               | 0           | 0              | 0          | 0               | 215.51                | 452.1                   | 669.1                  |            |                 |
| •            |           |                   |                     |             |                    | •           |                | Tota       | l per year      | (kWh/year             | ·) = Sum(9              | 8) <sub>15,912</sub> = | 3141.22    | (98)            |
| Space        | e heating | a require         | ement in            | kWh/m²      | <sup>2</sup> /vear |             |                |            |                 |                       |                         | i                      | 43.12      | (99)            |
| ·            |           |                   |                     |             |                    |             | a a la callaca |            | NID)            |                       |                         | l                      |            |                 |
|              |           |                   | nts – Indi          | viduai n    | eating sy          | ystems I    | ncluaing       | micro-C    | HP)             |                       |                         |                        |            |                 |
| •            | e heatin  | •                 | it from se          | econdan     | v/supple           | mentary     | evetem         |            |                 |                       |                         | ı                      | 0          | (201)           |
|              |           |                   |                     | •           |                    | illelitai y | -              | (202) - 4  | (204) -         |                       |                         | l                      | 0          | ╡ `             |
|              |           |                   | it from m           | •           |                    |             |                | (202) = 1  | , ,             |                       |                         | ļ                      | 1          | (202)           |
| Fracti       | on of to  | al heatii         | ng from i           | main sys    | stem 1             |             |                | (204) = (2 | 02) × [1 –      | (203)] =              |                         |                        | 1          | (204)           |
| Efficie      | ency of r | nain spa          | ace heati           | ng syste    | em 1               |             |                |            |                 |                       |                         |                        | 93.4       | (206)           |
| Efficie      | ency of s | econda            | ry/supple           | ementar     | y heating          | g system    | າ, %           |            |                 |                       |                         | Ī                      | 0          | (208)           |
|              | Jan       | Feb               | Mar                 | Apr         | May                | Jun         | Jul            | Aug        | Sep             | Oct                   | Nov                     | Dec                    | kWh/ye     | <b>–</b><br>∘ar |
| Space        |           |                   | ement (c            |             |                    |             | oui            | _ /tug     | ССР             | 001                   | 1101                    |                        | KVVIII y C | ·ui             |
| Ориос        | 647.95    | 485.16            | 385.13              | 204.68      | 81.6               | 0           | 0              | 0          | 0               | 215.51                | 452.1                   | 669.1                  |            |                 |
| (244)        |           |                   |                     |             |                    |             |                |            | <u> </u>        |                       | ļ                       |                        |            | (244)           |
| (211)11      | 693.74    | 519.44            | 4)] } x 1           | 219.14      | 87.36              | 0           | 0              | 0          | 0               | 230.73                | 484.05                  | 716.38                 |            | (211)           |
|              | 093.74    | 313.44            | 412.54              | 213.14      | 07.50              |             | U              |            | l (kWh/yea      |                       |                         |                        | 2202.0     | (211)           |
|              |           |                   |                     |             |                    |             |                | 1010       | ii (KVVIII y CC | ar) Curri(2           | - ' ' <b>/</b> 15,1012  | ·                      | 3363.2     | (211)           |
| •            |           | •                 | econdar             | , ,         | month              |             |                |            |                 |                       |                         |                        |            |                 |
| $= \{[(98)]$ |           | 0 (1)] } X 1      | 00 ÷ (20            | 0           | 0                  | 0           | 0              | 0          | 0               | 0                     | 0                       | 0                      |            |                 |
| (215)111=    | U         | 0                 | U                   | 0           | 0                  | U           | U              |            | l (kWh/yea      |                       | _                       | -                      | _          | 7(045)          |
|              |           |                   |                     |             |                    |             |                | TOla       | ii (KVVII/yea   | ar) –Surri(2          | 213) <sub>15,1012</sub> | _                      | 0          | (215)           |
|              | heating   |                   |                     |             |                    |             |                |            |                 |                       |                         |                        |            |                 |
| Output       |           |                   | ter (calc           |             |                    | 124.2       | 120.67         | 142 44     | 145.02          | 165 12                | 176 20                  | 100.70                 |            |                 |
| Lttie; =     | 195.38    | 170.67            | 177.57              | 157.5       | 152.48             | 134.3       | 128.67         | 143.44     | 145.02          | 165.13                | 176.28                  | 190.79                 | 20.5       | 7/040           |
|              |           | ater hea          |                     | <u> </u>    |                    |             |                |            |                 |                       |                         | 0= -                   | 80.3       | (216)           |
| (217)m=      |           | 87.53             | 86.95               | 85.71       | 83.55              | 80.3        | 80.3           | 80.3       | 80.3            | 85.72                 | 87.32                   | 87.95                  |            | (217)           |
|              |           | •                 | kWh/mo              |             |                    |             |                |            |                 |                       |                         |                        |            |                 |
| (219)m=      |           | n x 100<br>194.97 | ) ÷ (217)<br>204.22 | m<br>183.75 | 182.5              | 167.25      | 160.23         | 178.62     | 180.6           | 192.64                | 201.88                  | 216.94                 |            |                 |
| (213)111=    | ۷۷۷.43    | 184.87            | ∠∪ <del>4</del> .∠∠ | 100.70      | 102.0              | 107.20      | 100.23         | l          | I = Sum(2       |                       | 201.00                  | £ 10.84                | 0000.00    | 7,040           |
|              |           |                   |                     |             |                    |             |                | TOTA       | ıı – Suili(2    | 13a) <sub>112</sub> = |                         |                        | 2286.03    | (219)           |

| Annual totals                                     |                                            | kWh/yea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _    | kWh/year                |                         |
|---------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|-------------------------|
| Space heating fuel used, main system 1            |                                            | KWII/yea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •    | 3363.2                  | 7                       |
| Water heating fuel used                           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 2286.03                 | Ŧ .                     |
| Electricity for pumps, fans and electric keep-hot |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                         | _                       |
| central heating pump:                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30   | ]                       | (230c)                  |
| boiler with a fan-assisted flue                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45   | j                       | (230e)                  |
| Total electricity for the above, kWh/year         | sum of (230a                               | )(230g) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 75                      | (231)                   |
| Electricity for lighting                          |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 320.92                  | (232)                   |
| 12a. CO2 emissions – Individual heating system    | s including micro-CHP                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                         |                         |
|                                                   | <b>Energy</b><br>kWh/year                  | Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emission factors in the Emissi | etor | Emissions<br>kg CO2/yea |                         |
| Space heating (main system 1)                     | (211) x                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _    |                         |                         |
|                                                   |                                            | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _    | 726.45                  | (261)                   |
| Space heating (secondary)                         | (215) x                                    | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =    | 726.45<br>0             | (261)                   |
| Space heating (secondary) Water heating           | (215) x<br>(219) x                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                         |                         |
|                                                   |                                            | 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =    | 0                       | (263)                   |
| Water heating                                     | (219) x                                    | 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =    | 0 493.78                | (263)                   |
| Water heating Space and water heating             | (219) x<br>(261) + (262) + (263) + (264) = | 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =    | 0<br>493.78<br>1220.23  | (263)<br>(264)<br>(265) |

TER =

19.57

(273)

|                                                      |                                                           |              | User D    | otaila:          |                  |             |            |                     |                        |          |
|------------------------------------------------------|-----------------------------------------------------------|--------------|-----------|------------------|------------------|-------------|------------|---------------------|------------------------|----------|
| A N                                                  | Obrida I I a alva all                                     |              |           |                  | - NI             |             |            | OTDO                | 040000                 |          |
| Assessor Name: Software Name:                        | Chris Hocknell Stroma FSAP 201                            | 2            |           | Stroma<br>Softwa | _                |             |            |                     | 016363<br>on: 1.0.4.16 |          |
| Software Hame.                                       | Ottoma 1 O/ ti 201                                        |              |           | Address:         |                  |             |            | VCISIO              | 71. 1.0.4.10           |          |
| Address :                                            |                                                           |              |           |                  |                  |             |            |                     |                        |          |
| 1. Overall dwelling dime                             | ensions:                                                  |              |           |                  |                  |             |            |                     |                        |          |
| Ground floor                                         |                                                           |              |           | a(m²)            | (1-)             |             | ight(m)    | ] <sub>(0=)</sub> = | Volume(m³              | <u>-</u> |
|                                                      | N. (41 N. (4 N. (4 IN. (4                                 | \. (4 \      |           |                  | (1a) x           |             | 2.7        | (2a) =              | 165.78                 | (3a)     |
| Total floor area TFA = (1                            | a)+(1b)+(1c)+(1d)+(1e                                     | )+(1n)       | 6         | 61.4             | (4)              |             |            |                     |                        | _        |
| Dwelling volume                                      |                                                           |              |           |                  | (3a)+(3b         | )+(3c)+(3c  | d)+(3e)+   | .(3n) =             | 165.78                 | (5)      |
| 2. Ventilation rate:                                 | main se                                                   | econdary     | •         | other            |                  | total       |            |                     | m³ per hou             | r        |
| North and Salekan and                                | heating h                                                 | eating       |           |                  | , <sub>-</sub> - |             |            | 40 - 1              | -                      | _        |
| Number of chimneys                                   | 0 +                                                       | 0            | ]         | 0                | ] = [            | 0           |            | 40 =                | 0                      | (6a)     |
| Number of open flues                                 | 0 +                                                       | 0            | ] + _     | 0                | ] = [            | 0           |            | 20 =                | 0                      | (6b)     |
| Number of intermittent fa                            |                                                           |              |           |                  | L                | 2           | X '        | 10 =                | 20                     | (7a)     |
| Number of passive vents                              | 3                                                         |              |           |                  | L                | 0           | X ·        | 10 =                | 0                      | (7b)     |
| Number of flueless gas fi                            | ires                                                      |              |           |                  |                  | 0           | X 4        | 40 =                | 0                      | (7c)     |
|                                                      |                                                           |              |           |                  |                  |             |            | Δir ch              | anges per ho           | nur      |
| Infiltration due to chimne                           | vs_flues and fans = (6)                                   | a)+(6b)+(7a  | )+(7b)+(7 | 7c) =            | Г                | 20          |            | ÷ (5) =             | 0.12                   | (8)      |
| If a pressurisation test has b                       | •                                                         |              |           |                  | ontinue fr       |             |            | . (5) –             | 0.12                   |          |
| Number of storeys in the                             | he dwelling (ns)                                          |              |           |                  |                  |             |            |                     | 0                      | (9)      |
| Additional infiltration                              |                                                           |              |           |                  |                  |             | [(9)       | -1]x0.1 =           | 0                      | (10)     |
| Structural infiltration: 0                           |                                                           |              |           |                  | •                | uction      |            |                     | 0                      | (11)     |
| deducting areas of openii                            | resent, use the value corresp<br>ngs); if equal user 0.35 | oonaing to t | ne greau  | er wan are       | a (aner          |             |            |                     |                        |          |
| If suspended wooden t                                | floor, enter 0.2 (unseal                                  | ed) or 0.1   | (seale    | ed), else        | enter 0          |             |            |                     | 0                      | (12)     |
| If no draught lobby, en                              | ter 0.05, else enter 0                                    |              |           |                  |                  |             |            |                     | 0                      | (13)     |
| Percentage of windows                                | s and doors draught st                                    | ripped       |           |                  |                  |             |            |                     | 0                      | (14)     |
| Window infiltration                                  |                                                           |              |           | 0.25 - [0.2      |                  |             | (4-)       |                     | 0                      | (15)     |
| Infiltration rate                                    | 50                                                        |              |           | (8) + (10)       |                  | , , ,       |            |                     | 0                      | (16)     |
| Air permeability value,<br>If based on air permeabil | •                                                         |              | •         | -                | •                | etre of e   | envelope   | area                | 5                      | (17)     |
| Air permeability value applie                        | -                                                         |              |           |                  |                  | is heina u  | sed        |                     | 0.37                   | (18)     |
| Number of sides sheltere                             |                                                           | 20011 40110  | o, a aog  | ,. 00 a po.      | v                | .o 2011.g u |            |                     | 2                      | (19)     |
| Shelter factor                                       |                                                           |              |           | (20) = 1 -       | 0.075 x (1       | 19)] =      |            |                     | 0.85                   | (20)     |
| Infiltration rate incorporat                         | ting shelter factor                                       |              |           | (21) = (18)      | x (20) =         |             |            |                     | 0.32                   | (21)     |
| Infiltration rate modified f                         | or monthly wind speed                                     |              |           |                  |                  |             |            |                     |                        |          |
| Jan Feb                                              | Mar Apr May                                               | Jun          | Jul       | Aug              | Sep              | Oct         | Nov        | Dec                 |                        |          |
| Monthly average wind sp                              | eed from Table 7                                          |              |           |                  |                  |             |            |                     |                        |          |
| (22)m= 5.1 5                                         | 4.9 4.4 4.3                                               | 3.8          | 3.8       | 3.7              | 4                | 4.3         | 4.5        | 4.7                 |                        |          |
| Wind Factor (22a)m = (2                              | 2)m ÷ 4                                                   |              |           |                  |                  |             |            |                     |                        |          |
|                                                      | 1.23 1.1 1.08                                             | 0.95         | 0.95      | 0.92             | 1                | 1.08        | 1.12       | 1.18                |                        |          |
| ` ',   '                                             |                                                           |              |           |                  | •                |             | L <u>-</u> |                     | J                      |          |

| Adjusted infiltra                                                                                                                                                                                           | ation rate                                                                                             | (allowi                                                                | ng for sh                                                              | nelter an               | id wind s                                                                                  | speed) =                                         | : (21a) x                                                                    | (22a)m                                                      |                                                                     |                                           |                    |                       |                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|--------------------|-----------------------|-----------------------------------------------------------------------------------------|
| 0.4                                                                                                                                                                                                         | 0.39                                                                                                   | 0.39                                                                   | 0.35                                                                   | 0.34                    | 0.3                                                                                        | 0.3                                              | 0.29                                                                         | 0.32                                                        | 0.34                                                                | 0.35                                      | 0.37               | ]                     |                                                                                         |
| Calculate effec                                                                                                                                                                                             |                                                                                                        | _                                                                      | rate for t                                                             | he appli                | cable ca                                                                                   | ise                                              |                                                                              |                                                             |                                                                     |                                           |                    |                       |                                                                                         |
| If mechanica                                                                                                                                                                                                |                                                                                                        |                                                                        | andiv N. (O                                                            | 2h) = (22a              | a) v Emy (                                                                                 | oguation (                                       | NEW other                                                                    | nuina (22h                                                  | ·\ = (22a\                                                          |                                           |                    | 0                     | (23a)                                                                                   |
| If exhaust air he                                                                                                                                                                                           |                                                                                                        |                                                                        |                                                                        |                         |                                                                                            |                                                  |                                                                              |                                                             | )) = (23a)                                                          |                                           |                    | 0                     | (23b)                                                                                   |
| If balanced with                                                                                                                                                                                            |                                                                                                        | -                                                                      | -                                                                      | _                       |                                                                                            |                                                  |                                                                              |                                                             | OL )                                                                | 001 )                                     | 4 (00.)            | 0                     | (23c)                                                                                   |
| a) If balance                                                                                                                                                                                               |                                                                                                        |                                                                        |                                                                        |                         | 1                                                                                          | <del>-                                    </del> | <del>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </del>                            | ŕ                                                           | <del> </del>                                                        | <del></del>                               | <del>- ` ` `</del> | ) ÷ 100]<br>1         | (24a)                                                                                   |
| (24a)m= 0                                                                                                                                                                                                   | 0                                                                                                      | 0                                                                      | 0                                                                      | 0                       | 0                                                                                          | 0                                                | 0                                                                            | 0                                                           | 0<br>2h\m + (1                                                      | 0                                         | 0                  | J                     | (2 <del>4</del> a)                                                                      |
| b) If balance                                                                                                                                                                                               | 0                                                                                                      | 0                                                                      | 0                                                                      | 0                       | 0                                                                                          | 0                                                | 0                                                                            | 0                                                           | 0                                                                   | 0                                         | 0                  | 1                     | (24b)                                                                                   |
| c) If whole he                                                                                                                                                                                              |                                                                                                        | ļ                                                                      | <u> </u>                                                               |                         | <u> </u>                                                                                   | <u> </u>                                         |                                                                              | <u> </u>                                                    |                                                                     |                                           |                    | J                     | ( )                                                                                     |
| •                                                                                                                                                                                                           | า < 0.5 × (                                                                                            |                                                                        |                                                                        | -                       |                                                                                            |                                                  |                                                                              |                                                             | .5 × (23b                                                           | ))                                        |                    |                       |                                                                                         |
| (24c)m= 0                                                                                                                                                                                                   | 0                                                                                                      | 0                                                                      | 0                                                                      | 0                       | 0                                                                                          | 0                                                | 0                                                                            | 0                                                           | 0                                                                   | 0                                         | 0                  | ]                     | (24c)                                                                                   |
| d) If natural v                                                                                                                                                                                             | ventilatior                                                                                            | າ or wh                                                                | ole hous                                                               | e positiv               | ve input                                                                                   | ventilati                                        | on from l                                                                    | oft                                                         | !                                                                   |                                           |                    | •                     |                                                                                         |
| if (22b)m                                                                                                                                                                                                   | n = 1, ther                                                                                            | า (24d)เ                                                               | m = (22l                                                               | o)m othe                | erwise (2                                                                                  | 24d)m =                                          | 0.5 + [(2                                                                    | 2b)m² x                                                     | 0.5]                                                                |                                           | •                  | ,                     |                                                                                         |
| (24d)m= 0.58                                                                                                                                                                                                | 0.58                                                                                                   | 0.57                                                                   | 0.56                                                                   | 0.56                    | 0.54                                                                                       | 0.54                                             | 0.54                                                                         | 0.55                                                        | 0.56                                                                | 0.56                                      | 0.57               |                       | (24d)                                                                                   |
| Effective air                                                                                                                                                                                               |                                                                                                        |                                                                        | nter (24a                                                              | ) or (24k               | <del>´`</del>                                                                              | c) or (24                                        | ld) in box                                                                   | (25)                                                        |                                                                     |                                           |                    | ,                     |                                                                                         |
| (25)m= 0.58                                                                                                                                                                                                 | 0.58                                                                                                   | 0.57                                                                   | 0.56                                                                   | 0.56                    | 0.54                                                                                       | 0.54                                             | 0.54                                                                         | 0.55                                                        | 0.56                                                                | 0.56                                      | 0.57               |                       | (25)                                                                                    |
| 3. Heat losses                                                                                                                                                                                              | s and hea                                                                                              | it loss r                                                              | paramete                                                               | er:                     |                                                                                            |                                                  |                                                                              |                                                             |                                                                     |                                           |                    |                       |                                                                                         |
| ELEMENT                                                                                                                                                                                                     | Gross<br>area (r                                                                                       |                                                                        | Openin<br>m                                                            |                         | Net Ar<br>1, A                                                                             |                                                  | U-valı<br>W/m2                                                               |                                                             | A X U<br>(W/ł                                                       | <b>〈</b> )                                | k-value<br>kJ/m²·  |                       | A X k<br>kJ/K                                                                           |
| Doors                                                                                                                                                                                                       |                                                                                                        |                                                                        |                                                                        |                         | 2                                                                                          | x                                                | 1                                                                            | =                                                           | 2                                                                   |                                           |                    |                       | (26)                                                                                    |
| Windows Type                                                                                                                                                                                                | : 1                                                                                                    |                                                                        |                                                                        |                         | 1.69                                                                                       | x1                                               | /[1/( 1.4 )+                                                                 | 0.04] =                                                     | 2.24                                                                |                                           |                    |                       | (27)                                                                                    |
| Windows Type                                                                                                                                                                                                | 2                                                                                                      |                                                                        |                                                                        |                         |                                                                                            | = ,                                              |                                                                              |                                                             |                                                                     |                                           |                    |                       |                                                                                         |
| Windows Type                                                                                                                                                                                                | . 3                                                                                                    |                                                                        |                                                                        |                         | 0.42                                                                                       | . X.I                                            | /[1/( 1.4 )+                                                                 | 0.04] =                                                     | 0.56                                                                |                                           |                    |                       | (27)                                                                                    |
| Windows Turns                                                                                                                                                                                               |                                                                                                        |                                                                        |                                                                        |                         | 2.87                                                                                       | = .                                              | /[1/( 1.4 )+<br>/[1/( 1.4 )+                                                 |                                                             | 0.56                                                                |                                           |                    |                       | (27)<br>(27)                                                                            |
| Windows Type                                                                                                                                                                                                |                                                                                                        |                                                                        |                                                                        |                         |                                                                                            | x1                                               |                                                                              | 0.04] =                                                     |                                                                     |                                           |                    |                       |                                                                                         |
| Windows Type Windows Type                                                                                                                                                                                   | 4                                                                                                      |                                                                        |                                                                        |                         | 2.87                                                                                       | x1                                               | /[1/( 1.4 )+                                                                 | 0.04] =<br>0.04] =                                          | 3.8                                                                 |                                           |                    |                       | (27)                                                                                    |
| •                                                                                                                                                                                                           | 4                                                                                                      | $\neg$                                                                 | 13.30                                                                  | 5 T                     | 3.82                                                                                       | x1 x1 x1                                         | /[1/( 1.4 )+<br>/[1/( 1.4 )+                                                 | 0.04] =<br>0.04] =                                          | 3.8<br>5.06                                                         |                                           |                    | <b>-</b>              | (27)<br>(27)                                                                            |
| Windows Type                                                                                                                                                                                                | 5                                                                                                      | _                                                                      | 13.30                                                                  | 3                       | 2.87<br>3.82<br>2.87                                                                       | x1 x1 x1 x1 x1 x1 x1                             | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>                             | 0.04] =<br>0.04] =<br>0.04] =                               | 3.8<br>5.06<br>3.8<br>6.85                                          |                                           |                    |                       | (27)<br>(27)<br>(27)<br>(29)                                                            |
| Windows Type Walls Type1                                                                                                                                                                                    | 51.43                                                                                                  | _                                                                      | 2                                                                      | 6                       | 2.87<br>3.82<br>2.87<br>38.07<br>33.99                                                     | x1 x1 x1 7 x x 5 x                               | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.18                         | 0.04] =<br>0.04] =<br>0.04] =<br>=<br>= =                   | 3.8<br>5.06<br>3.8<br>6.85<br>6.11                                  |                                           |                    |                       | (27)<br>(27)<br>(27)<br>(29)<br>(29)                                                    |
| Windows Type<br>Walls Type1<br>Walls Type2<br>Roof                                                                                                                                                          | 51.43<br>35.95<br>61.4                                                                                 |                                                                        |                                                                        | 6                       | 2.87<br>3.82<br>2.87<br>38.07<br>33.99<br>61.4                                             | x1 x1 x1 7 x x x x x x x x x x x x x x x         | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>                             | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = = | 3.8<br>5.06<br>3.8<br>6.85                                          |                                           |                    |                       | (27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)                                            |
| Windows Type Walls Type1 Walls Type2 Roof Total area of el                                                                                                                                                  | 51.43<br>35.95<br>61.4                                                                                 |                                                                        | 2                                                                      | 6                       | 2.87<br>3.82<br>2.87<br>38.07<br>33.99<br>61.4                                             | x1 x1 x1 7 x 15 x x 18                           | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.18<br>0.18                 | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = = | 3.8<br>5.06<br>3.8<br>6.85<br>6.11<br>7.98                          |                                           |                    |                       | (27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)                                    |
| Windows Type Walls Type1 Walls Type2 Roof Total area of el Party wall                                                                                                                                       | 51.43<br>35.95<br>61.4                                                                                 |                                                                        | 2                                                                      | 6                       | 2.87<br>3.82<br>2.87<br>38.07<br>33.99<br>61.4<br>148.7                                    | x1 x1 x1 7 x 5 x x 78 x x                        | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.18                         | 0.04] = 0.04] = 0.04] = = = = = = =                         | 3.8<br>5.06<br>3.8<br>6.85<br>6.11                                  |                                           |                    |                       | (27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)                            |
| Windows Type Walls Type1 Walls Type2 Roof Total area of el                                                                                                                                                  | 51.43<br>35.95<br>61.4                                                                                 | m²                                                                     | 0                                                                      |                         | 2.87 3.82 2.87 38.07 33.99 61.4 148.7 17.92                                                | x1 x1 x1 7 x x 5 x x x 2 x x                     | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.18<br>0.13                 | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = = | 3.8<br>5.06<br>3.8<br>6.85<br>6.11<br>7.98                          | is given in                               | paragrapl          |                       | (27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)                                    |
| Windows Type Walls Type1 Walls Type2 Roof Total area of el Party wall Party floor                                                                                                                           | 51.43<br>35.95<br>61.4<br>1ements, 1                                                                   | m²<br>vs, use e                                                        | 0 0                                                                    | ndow U-va               | 2.87 3.82 2.87 38.07 33.99 61.4 148.7 17.92 61.4 alue calcul                               | x1 x1 x1 7 x x 5 x x x 2 x x                     | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.18<br>0.13                 | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = = | 3.8<br>5.06<br>3.8<br>6.85<br>6.11<br>7.98                          | ] [                                       | paragraph          |                       | (27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)                            |
| Windows Type Walls Type1 Walls Type2 Roof Total area of el Party wall Party floor * for windows and                                                                                                         | 51.43 35.95 61.4 lements, I                                                                            | m²<br>ws, use e<br>ides of in                                          | 0  effective winternal wall                                            | ndow U-va               | 2.87 3.82 2.87 38.07 33.99 61.4 148.7 17.92 61.4 alue calcul                               | x1 x1 x1 7 x x 5 x x x 2 x x                     | /[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.18<br>0.13                 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=  <br>=      | 3.8<br>5.06<br>3.8<br>6.85<br>6.11<br>7.98                          | ]<br>]<br>]<br>[<br>]<br>[<br>]<br>[<br>] | paragrapl          | h 3.2                 | (27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32a)                   |
| Windows Type Walls Type1 Walls Type2 Roof Total area of ele Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity (                                                    | 51.43<br>35.95<br>61.4<br>aroof window<br>as on both si<br>as, W/K =<br>Cm = S(A                       | m² ws, use e ides of in S (A x                                         | 0  offective winternal walk                                            | ndow U-va               | 2.87 3.82 2.87 38.07 33.99 61.4 148.7 17.92 61.4 alue calculatitions                       | x1 x1 x1 x1 x1 xx x1 xx xx xx xx xx xx x         | /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.13  0  g formula 1.          | 0.04] =   0.04] =   0.04] =   =   =   =     =               | 3.8<br>5.06<br>3.8<br>6.85<br>6.11<br>7.98<br>0<br>0<br>ue)+0.04] a | 2) + (32a).                               |                    |                       | (27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32a)                   |
| Windows Type Walls Type1 Walls Type2 Roof Total area of ele Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity ( Thermal mass                                       | 51.43 35.95 61.4  roof window as on both sites, W/K = Cm = S(A)                                        | m² ws, use e ides of in S (A x A x k ) er (TMF                         | 2 0 offective winternal wall U) $P = Cm \div$                          | ndow U-va<br>Is and pan | 2.87 3.82 2.87 38.07 33.99 61.4 148.7 17.92 61.4 alue calculatitions                       | x1 x1 x1 7 x 5 x 2 x 8 2 x lated using           | /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.13  0  g formula 1. (26)(30) | 0.04] =   0.04] =   0.04] =   =   =   =     =               | 3.8 5.06 3.8 6.85 6.11 7.98 0 ue)+0.04] a                           | 2) + (32a).<br>: Medium                   | (32e) =            | 40.66                 | (27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32a)                   |
| Windows Type Walls Type1 Walls Type2 Roof Total area of elements Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity of Thermal mass For design assess               | 51.43 35.95 61.4  roof window as on both sies, W/K = Cm = S(A parameter where                          | m² ws, use e ides of in S (A x A x k) er (TMF                          | 2 0 offective with ternal walk U) $P = Cm \div tails of the$           | ndow U-va<br>Is and pan | 2.87 3.82 2.87 38.07 33.99 61.4 148.7 17.92 61.4 alue calculatitions                       | x1 x1 x1 7 x 5 x 2 x 8 2 x lated using           | /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.13  0  g formula 1. (26)(30) | 0.04] =   0.04] =   0.04] =   =   =   =     =               | 3.8 5.06 3.8 6.85 6.11 7.98 0 ue)+0.04] a                           | 2) + (32a).<br>: Medium                   | (32e) =            | 40.66                 | (27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32a)<br>(33)<br>8 (34)         |
| Windows Type Walls Type1 Walls Type2 Roof Total area of ele Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity ( Thermal mass For design assess can be used instead | 51.43 35.95 61.4 aroof window as on both since S, W/K = Cm = S(A) parameter system and of a detail     | m²  s, use e ides of in S (A x x k )  er (TMF)  re the det illed calcu | offective winternal walk  U)  P = Cm ÷ tails of the tails of the       | ndow U-vals and part    | 2.87 3.82 2.87 38.07 33.99 61.4 148.7 17.92 61.4 alue calculatitions                       | x1 x1 x1 x1 x1 xx x1 xx xx xx xx xx xx x         | /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.13  0  g formula 1. (26)(30) | 0.04] =   0.04] =   0.04] =   =   =   =     =               | 3.8 5.06 3.8 6.85 6.11 7.98 0 ue)+0.04] a                           | 2) + (32a).<br>: Medium                   | (32e) =            | 40.66<br>17050<br>250 | (27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32a)<br>(33)<br>8 (34)<br>(35) |
| Windows Type Walls Type1 Walls Type2 Roof Total area of elements Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity of Thermal mass For design assess               | 51.43 35.95 61.4 aroof window as on both sies, W/K = Cm = S(A parameter and of a detailer sies; S (L x | m² ws, use e ides of in S (A x A x k) er (TMF re the det iled calcu    | offective winternal walk U)  P = Cm = tails of the ulation. culated to | ndow U-valls and pand   | 2.87 3.82 2.87 38.07 33.99 61.4 148.7 17.92 61.4 alue calculatitions  n kJ/m²k tion are no | x1 x1 x1 x1 x1 xx x1 xx xx xx xx xx xx x         | /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.13  0  g formula 1. (26)(30) | 0.04] =   0.04] =   0.04] =   =   =   =     =               | 3.8 5.06 3.8 6.85 6.11 7.98 0 ue)+0.04] a                           | 2) + (32a).<br>: Medium                   | (32e) =            | 40.66                 | (27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32a)<br>(33)<br>8 (34)<br>(35) |

| Total fabric heat los                                              | · Q                                              |            |                |                  |             |             | (33) +                | (36) =                 |                        | İ        | 53.18   | (37) |
|--------------------------------------------------------------------|--------------------------------------------------|------------|----------------|------------------|-------------|-------------|-----------------------|------------------------|------------------------|----------|---------|------|
| Ventilation heat los                                               |                                                  | d monthl   | V              |                  |             |             | ` ′                   | = 0.33 × (             | 25)m x (5)             |          | 55.16   | (07) |
| Jan Fe                                                             |                                                  | Apr        | May            | Jun              | Jul         | Aug         | Sep                   | Oct                    | Nov                    | Dec      |         |      |
| (38)m= 31.77 31.                                                   | _                                                | 30.64      | 30.49          | 29.8             | 29.8        | 29.68       | 30.07                 | 30.49                  | 30.79                  | 31.1     |         | (38) |
| Heat transfer coeffi                                               | cient, W/K                                       | Į.         | <b>!</b>       | Į                | <b>!</b>    | <u>!</u>    | (39)m                 | = (37) + (37)          |                        | <u> </u> |         |      |
| (39)m= 84.95 84.                                                   | <del></del>                                      | 83.82      | 83.67          | 82.98            | 82.98       | 82.85       | 83.25                 | 83.67                  | 83.97                  | 84.28    |         |      |
| Heat loss paramete                                                 | r (HLP), W                                       | /m²K       |                |                  |             | •           |                       | Average =<br>= (39)m ÷ |                        | 12 /12=  | 83.82   | (39) |
| (40)m= 1.38 1.3                                                    | 8 1.38                                           | 1.37       | 1.36           | 1.35             | 1.35        | 1.35        | 1.36                  | 1.36                   | 1.37                   | 1.37     |         |      |
| Number of days in                                                  | month (Tab                                       | ole 1a)    | •              | •                | •           |             | ,                     | Average =              | Sum(40) <sub>1.</sub>  | 12 /12=  | 1.37    | (40) |
| Jan Fe                                                             | <u> </u>                                         | Apr        | May            | Jun              | Jul         | Aug         | Sep                   | Oct                    | Nov                    | Dec      |         |      |
| (41)m= 31 28                                                       | 31                                               | 30         | 31             | 30               | 31          | 31          | 30                    | 31                     | 30                     | 31       |         | (41) |
|                                                                    | •                                                | •          | •              |                  | •           | •           |                       | •                      |                        |          | !       |      |
| 4. Water heating e                                                 | nergy requ                                       | irement:   |                |                  |             |             |                       |                        |                        | kWh/ye   | ear:    |      |
| A                                                                  | NI                                               |            |                |                  |             |             |                       |                        |                        | -        | 1       |      |
| Assumed occupant if TFA > 13.9, N                                  |                                                  | ( [1 - exp | (-0.0003       | 349 x (TF        | FA -13.9    | )2)1 + 0.0  | 0013 x ( <sup>-</sup> | ΓFA -13.               |                        | 02       |         | (42) |
| if TFA £ 13.9, N                                                   |                                                  | . [        | ( 0.000        |                  |             | /_/]        | /                     |                        | • ,                    |          |         |      |
| Annual average ho                                                  |                                                  |            |                |                  |             |             |                       |                        |                        | 2.2      |         | (43) |
| Reduce the annual aver<br>not more that 125 litres                 | -                                                |            |                | _                | -           | to acnieve  | a water us            | se target o            | T                      |          |         |      |
| Jan Fe                                                             | <del>-                                    </del> | Apr        | May            | Jun              | Jul         | Aug         | Sep                   | Oct                    | Nov                    | Dec      |         |      |
| Hot water usage in litres                                          | -                                                | <u> </u>   |                |                  |             |             | Seb                   | Oct                    | INOV                   | Dec      |         |      |
| (44)m= 90.42 87.                                                   | 3 83.84                                          | 80.55      | 77.27          | 73.98            | 73.98       | 77.27       | 80.55                 | 83.84                  | 87.13                  | 90.42    |         |      |
| `                                                                  |                                                  |            | l .            |                  |             | l           | -                     | rotal = Su             | m(44) <sub>112</sub> = |          | 986.36  | (44) |
| Energy content of hot w                                            | ater used - ca                                   | lculated m | onthly $= 4$ . | 190 x Vd,r       | m x nm x E  | OTm / 3600  | kWh/mor               | nth (see Ta            | bles 1b, 1             | c, 1d)   |         |      |
| (45)m= 134.09 117                                                  | 27 121.01                                        | 105.5      | 101.23         | 87.36            | 80.95       | 92.89       | 94                    | 109.55                 | 119.58                 | 129.85   |         |      |
| Windowski and a start                                              |                                                  | 1 - 1 /-   |                |                  |             | h (40       |                       | Total = Su             | m(45) <sub>112</sub> = |          | 1293.28 | (45) |
| If instantaneous water h                                           |                                                  | · ·        | not water      | r storage),<br>r | enter U in  |             | ) to (61)             |                        |                        |          | l       |      |
| (46)m= 20.11 17.5<br>Water storage loss                            | 1                                                | 15.83      | 15.18          | 13.1             | 12.14       | 13.93       | 14.1                  | 16.43                  | 17.94                  | 19.48    |         | (46) |
| Storage volume (lite                                               |                                                  | ng anv s   | olar or W      | /WHRS            | storage     | within sa   | ame ves               | sel                    |                        | 0        |         | (47) |
| If community heatir                                                | •                                                |            |                |                  | _           |             |                       |                        |                        | 0        |         | ( )  |
| Otherwise if no stor                                               | •                                                |            | _              |                  |             | . ,         | ers) ente             | er '0' in (            | 47)                    |          |         |      |
| Water storage loss                                                 |                                                  |            |                |                  |             |             |                       |                        |                        |          |         |      |
| a) If manufacturer's                                               | declared                                         | loss fact  | or is kno      | wn (kWł          | n/day):     |             |                       |                        |                        | 0        |         | (48) |
| Temperature factor                                                 | from Table                                       | 2b         |                |                  |             |             |                       |                        |                        | 0        |         | (49) |
| Energy lost from wa                                                | _                                                | -          |                |                  |             | (48) x (49) | ) =                   |                        |                        | 0        |         | (50) |
| <ul><li>b) If manufacturer's</li><li>Hot water storage I</li></ul> |                                                  | -          |                |                  |             |             |                       |                        |                        | 0        |         | (51) |
| If community heating                                               |                                                  |            | 10 2 (1111     | 11/110/00        | <b>4y</b> / |             |                       |                        |                        | U        |         | (31) |
| Volume factor from                                                 | _                                                |            |                |                  |             |             |                       |                        |                        | 0        |         | (52) |
| Temperature factor                                                 | from Table                                       | e 2b       |                |                  |             |             |                       |                        |                        | 0        |         | (53) |
| Energy lost from wa                                                | ater storage                                     | e, kWh/y   | ear            |                  |             | (47) x (51) | x (52) x (            | 53) =                  |                        | 0        |         | (54) |
| Enter (50) or (54) i                                               | า (55)                                           |            |                |                  |             |             |                       |                        |                        | 0        |         | (55) |
|                                                                    |                                                  |            |                |                  |             |             |                       |                        |                        |          |         |      |

| Water                                                  | storage                                                 | loss cal                            | culated f                                               | or each                  | month                   |                      |                 | ((56)m = (           | 55) × (41)ı         | m               |                      |                      |               |              |
|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------------------------------------------|--------------------------|-------------------------|----------------------|-----------------|----------------------|---------------------|-----------------|----------------------|----------------------|---------------|--------------|
| (56)m=                                                 | 0                                                       | 0                                   | 0                                                       | 0                        | 0                       | 0                    | 0               | 0                    | 0                   | 0               | 0                    | 0                    |               | (56)         |
| If cylinde                                             | er contains                                             | dedicated                           | d solar sto                                             | rage, (57)ı              | n = (56)m               | x [(50) – (          | H11)] ÷ (5      | 0), else (5          | 7)m = (56)          | m where (       | H11) is fro          | m Append             | ı<br>ix H     |              |
| (57)m=                                                 | 0                                                       | 0                                   | 0                                                       | 0                        | 0                       | 0                    | 0               | 0                    | 0                   | 0               | 0                    | 0                    |               | (57)         |
| Primar                                                 | y circuit                                               | loss (an                            | nual) fro                                               | m Table                  | 3                       |                      |                 |                      |                     |                 |                      | 0                    |               | (58)         |
| Primar                                                 | y circuit                                               | loss cal                            | culated t                                               | for each                 | month (                 | 59)m = (             | (58) ÷ 36       | 65 × (41)            | m                   |                 |                      |                      | •             |              |
| (mod                                                   | dified by                                               | factor fr                           | om Tabl                                                 | e H5 if t                | here is s               | solar wat            | er heatir       | ng and a             | cylinde             | r thermo        | stat)                |                      |               |              |
| (59)m=                                                 | 0                                                       | 0                                   | 0                                                       | 0                        | 0                       | 0                    | 0               | 0                    | 0                   | 0               | 0                    | 0                    |               | (59)         |
| Combi                                                  | loss cal                                                | culated                             | for each                                                | month (                  | 61)m =                  | (60) ÷ 36            | 65 × (41)       | )m                   |                     |                 |                      |                      |               |              |
| (61)m=                                                 | 46.08                                                   | 40.1                                | 42.72                                                   | 39.72                    | 39.37                   | 36.48                | 37.7            | 39.37                | 39.72               | 42.72           | 42.97                | 46.08                |               | (61)         |
| Total h                                                | neat requ                                               | uired for                           | water he                                                | eating ca                | alculated               | for eac              | n month         | (62)m =              | 0.85 × (            | (45)m +         | (46)m +              | (57)m +              | (59)m + (61)m |              |
| (62)m=                                                 | 180.16                                                  | 157.38                              | 163.74                                                  | 145.23                   | 140.61                  | 123.84               | 118.65          | 132.26               | 133.72              | 152.27          | 162.55               | 175.93               |               | (62)         |
| Solar Di                                               | HW input o                                              | alculated                           | using App                                               | endix G or               | Appendix                | H (negati            | ve quantity     | /) (enter '0         | if no sola          | r contributi    | ion to wate          | er heating)          | '             |              |
| (add a                                                 | dditional                                               | lines if                            | FGHRS                                                   | and/or \                 | VWHRS                   | applies              | , see Ap        | pendix (             | €)                  |                 |                      |                      |               |              |
| (63)m=                                                 | 0                                                       | 0                                   | 0                                                       | 0                        | 0                       | 0                    | 0               | 0                    | 0                   | 0               | 0                    | 0                    |               | (63)         |
| Output                                                 | t from wa                                               | ater hea                            | ter                                                     |                          |                         | -                    |                 |                      |                     |                 | -                    | -                    |               |              |
| (64)m=                                                 | 180.16                                                  | 157.38                              | 163.74                                                  | 145.23                   | 140.61                  | 123.84               | 118.65          | 132.26               | 133.72              | 152.27          | 162.55               | 175.93               |               |              |
|                                                        |                                                         |                                     |                                                         |                          |                         |                      |                 | Outp                 | out from wa         | ater heater     | r (annual)₁          | 12                   | 1786.33       | (64)         |
| Heat g                                                 | ains fror                                               | n water                             | heating,                                                | kWh/mo                   | onth 0.2                | 5 ′ [0.85            | × (45)m         | + (61)m              | n] + 0.8 x          | ( [(46)m        | + (57)m              | + (59)m              | ]             | _            |
| (65)m=                                                 | 56.1                                                    | 49.02                               | 50.92                                                   | 45.01                    | 43.5                    | 38.17                | 36.34           | 40.73                | 41.19               | 47.11           | 50.5                 | 54.7                 |               | (65)         |
| inclu                                                  | ude (57)r                                               | n in calc                           | culation of                                             | of (65)m                 | only if c               | ylinder i            | s in the o      | dwelling             | or hot w            | ater is fr      | om com               | munity h             | eating        |              |
|                                                        | ternal ga                                               |                                     |                                                         |                          |                         | •                    |                 |                      |                     |                 |                      | •                    |               |              |
|                                                        | olic gain                                               | •                                   |                                                         |                          | , -                     |                      |                 |                      |                     |                 |                      |                      |               |              |
| Wictab                                                 | Jan                                                     | Feb                                 | Mar                                                     | Apr                      | May                     | Jun                  | Jul             | Aug                  | Sep                 | Oct             | Nov                  | Dec                  |               |              |
| (66)m=                                                 | 101.05                                                  | 101.05                              | 101.05                                                  | 101.05                   | 101.05                  | 101.05               | 101.05          | 101.05               | 101.05              | 101.05          | 101.05               | 101.05               |               | (66)         |
| Liahtin                                                | ىـــــــا<br>ig gains                                   | (calculat                           | ted in Ar                                               | nendix                   | eguat                   | ion I 9 o            | r I 9a) a       | lso see              | Lable 5             |                 |                      |                      | l             |              |
| (67)m=                                                 | 15.74                                                   | 13.98                               | 11.37                                                   | 8.61                     | 6.44                    | 5.43                 | 5.87            | 7.63                 | 10.24               | 13.01           | 15.18                | 16.18                |               | (67)         |
|                                                        | nces gai                                                |                                     |                                                         |                          | liv I en                | Luation I            | 13 or I 1       | (a) also             |                     |                 |                      |                      |               |              |
| (68)m=                                                 | 176.46                                                  | 178.29                              | 173.68                                                  | 163.86                   | 151.46                  | 139.8                | 132.02          | 130.18               | 134.8               | 144.62          | 157.02               | 168.68               |               | (68)         |
|                                                        | ng gains                                                |                                     |                                                         |                          |                         | l                    |                 |                      |                     | <u> </u>        |                      | .00.00               |               | ` ,          |
| (69)m=                                                 |                                                         |                                     | icu iii A                                               |                          |                         |                      |                 |                      | e rabie             |                 |                      |                      |               | (69)         |
|                                                        | 33.1                                                    | 33.1                                | 33.1                                                    | 33.1                     | 33.1                    | 33.1                 | 33.1            | 33.1                 | 33.1                | 33.1            | 33.1                 | 33.1                 |               | (03)         |
|                                                        |                                                         |                                     |                                                         |                          | 33.1                    | 33.1                 | 33.1            | 33.1                 | 33.1                | 33.1            | 33.1                 | 33.1                 |               | (09)         |
| Pumps                                                  | 33.1<br>s and far                                       |                                     |                                                         |                          | 33.1                    | 33.1                 | 33.1            | 33.1                 | 33.1                | 33.1            | 33.1                 | 33.1                 |               | (70)         |
| Pumps<br>(70)m=                                        | and far                                                 | ns gains<br>3                       | (Table 5                                                | 5a)<br>3                 | 3                       | 3                    |                 |                      |                     |                 |                      |                      |               | , ,          |
| Pumps<br>(70)m=                                        | and far                                                 | ns gains<br>3                       | (Table 5                                                | 5a)<br>3                 | 3                       | 3                    |                 |                      |                     |                 |                      |                      |               | , ,          |
| Pumps<br>(70)m=<br>Losses<br>(71)m=                    | 3<br>s e.g. ev                                          | ns gains<br>3<br>aporatio<br>-80.84 | (Table 5<br>3<br>n (negat                               | 5a)<br>3<br>ive valu     | 3<br>es) (Tab           | 3<br>le 5)           | 3               | 3                    | 3                   | 3               | 3                    | 3                    |               | (70)         |
| Pumps<br>(70)m=<br>Losses<br>(71)m=                    | and far<br>3<br>s e.g. ev                               | ns gains<br>3<br>aporatio<br>-80.84 | (Table 5<br>3<br>n (negat                               | 5a)<br>3<br>ive valu     | 3<br>es) (Tab           | 3<br>le 5)           | 3               | 3                    | 3                   | 3               | 3                    | 3                    |               | (70)         |
| Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m= | s and far<br>3<br>s e.g. ev<br>-80.84<br>heating        | aporatio<br>-80.84<br>gains (T      | (Table 5<br>3<br>n (negat<br>-80.84<br>able 5)<br>68.44 | 3<br>tive valu<br>-80.84 | 3<br>es) (Tab<br>-80.84 | 3<br>le 5)<br>-80.84 | -80.84<br>48.84 | 3<br>-80.84<br>54.74 | 3<br>-80.84<br>57.2 | 3 -80.84        | 3<br>-80.84<br>70.14 | 3<br>-80.84<br>73.52 |               | (70)<br>(71) |
| Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m= | and far<br>3<br>s e.g. ev<br>-80.84<br>heating<br>75.41 | aporatio<br>-80.84<br>gains (T      | (Table 5<br>3<br>n (negat<br>-80.84<br>able 5)<br>68.44 | 3<br>tive valu<br>-80.84 | 3<br>es) (Tab<br>-80.84 | 3<br>le 5)<br>-80.84 | -80.84<br>48.84 | 3<br>-80.84<br>54.74 | 3<br>-80.84<br>57.2 | -80.84<br>63.31 | 3<br>-80.84<br>70.14 | 3<br>-80.84<br>73.52 |               | (70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:             | Access Facto<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|--------------------------|--------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Southwest <sub>0.9</sub> | 0.77                     | x | 3.82       | x | 36.79            | ] | 0.63           | x | 0.7            | =        | 42.95        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 2.87       | x | 36.79            | ] | 0.63           | x | 0.7            | =        | 32.27        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | X | 3.82       | x | 62.67            | ] | 0.63           | x | 0.7            | =        | 73.17        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 2.87       | x | 62.67            | Ī | 0.63           | x | 0.7            | ] =      | 54.97        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 3.82       | x | 85.75            | ] | 0.63           | x | 0.7            | =        | 100.11       | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | X | 2.87       | x | 85.75            | ] | 0.63           | x | 0.7            | =        | 75.21        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | X | 3.82       | x | 106.25           | ] | 0.63           | x | 0.7            | =        | 124.04       | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 2.87       | x | 106.25           | ] | 0.63           | x | 0.7            | =        | 93.19        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | X | 3.82       | x | 119.01           | ] | 0.63           | x | 0.7            | =        | 138.94       | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | X | 2.87       | x | 119.01           | ] | 0.63           | x | 0.7            | <b>=</b> | 104.39       | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 3.82       | x | 118.15           | ] | 0.63           | x | 0.7            | =        | 137.93       | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 2.87       | x | 118.15           | ] | 0.63           | x | 0.7            | =        | 103.63       | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 3.82       | x | 113.91           | ] | 0.63           | x | 0.7            | =        | 132.98       | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 2.87       | x | 113.91           | ] | 0.63           | x | 0.7            | =        | 99.91        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | X | 3.82       | x | 104.39           | ] | 0.63           | x | 0.7            | =        | 121.87       | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 2.87       | x | 104.39           | ] | 0.63           | x | 0.7            | =        | 91.56        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 3.82       | x | 92.85            | ] | 0.63           | x | 0.7            | =        | 108.4        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 2.87       | x | 92.85            | ] | 0.63           | x | 0.7            | =        | 81.44        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 3.82       | x | 69.27            | ] | 0.63           | x | 0.7            | =        | 80.87        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 2.87       | x | 69.27            | ] | 0.63           | x | 0.7            | =        | 60.76        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 3.82       | x | 44.07            | ] | 0.63           | x | 0.7            | =        | 51.45        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | x | 2.87       | x | 44.07            | ] | 0.63           | x | 0.7            | =        | 38.65        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | X | 3.82       | x | 31.49            | ] | 0.63           | X | 0.7            | =        | 36.76        | (79) |
| Southwest <sub>0.9</sub> | 0.77                     | X | 2.87       | x | 31.49            | ] | 0.63           | X | 0.7            | =        | 27.62        | (79) |
| Northwest 0.9            | 0.77                     | X | 1.69       | X | 11.28            | x | 0.63           | X | 0.7            | =        | 11.65        | (81) |
| Northwest 0.9            | 0.77                     | X | 0.42       | x | 11.28            | x | 0.63           | X | 0.7            | =        | 1.45         | (81) |
| Northwest 0.9            | 0.77                     | X | 2.87       | x | 11.28            | X | 0.63           | X | 0.7            | =        | 9.9          | (81) |
| Northwest 0.9            | 0.77                     | X | 1.69       | x | 22.97            | x | 0.63           | X | 0.7            | =        | 23.72        | (81) |
| Northwest 0.9            | 0.77                     | X | 0.42       | X | 22.97            | X | 0.63           | X | 0.7            | =        | 2.95         | (81) |
| Northwest 0.9            | 0.77                     | X | 2.87       | x | 22.97            | x | 0.63           | X | 0.7            | =        | 20.14        | (81) |
| Northwest 0.9            | 0.77                     | X | 1.69       | x | 41.38            | x | 0.63           | x | 0.7            | =        | 42.74        | (81) |
| Northwest 0.9            |                          | X | 0.42       | X | 41.38            | X | 0.63           | X | 0.7            | =        | 5.31         | (81) |
| Northwest 0.9            | 0.77                     | X | 2.87       | x | 41.38            | x | 0.63           | x | 0.7            | =        | 36.29        | (81) |
| Northwest 0.9            | 0.77                     | X | 1.69       | x | 67.96            | x | 0.63           | X | 0.7            | =        | 70.2         | (81) |
| Northwest 0.9            | 0.77                     | X | 0.42       | x | 67.96            | X | 0.63           | X | 0.7            | =        | 8.72         | (81) |
| Northwest 0.9            | 0.77                     | X | 2.87       | x | 67.96            | x | 0.63           | X | 0.7            | =        | 59.6         | (81) |
| Northwest 0.9            | 0.77                     | X | 1.69       | x | 91.35            | x | 0.63           | x | 0.7            | ] =      | 94.36        | (81) |
| Northwest 0.9            |                          | X | 0.42       | x | 91.35            | x | 0.63           | x | 0.7            | ] =      | 11.72        | (81) |
| Northwest 0.9            | 0.77                     | X | 2.87       | × | 91.35            | x | 0.63           | x | 0.7            | ] =      | 80.12        | (81) |

| Northwest 0.9x            | 0.77                                             | ×                 | 1.69                                              | ٦ ×            | 97.                                              | 38       | x      | 0.63         | ×        | 0.7            |          | 100.6 | (81)  |
|---------------------------|--------------------------------------------------|-------------------|---------------------------------------------------|----------------|--------------------------------------------------|----------|--------|--------------|----------|----------------|----------|-------|-------|
| Northwest 0.9x            | 0.77                                             | = x               | 0.42                                              | ] ×            | 97.                                              |          | x      | 0.63         | x        | 0.7            |          | 12.5  | (81)  |
| Northwest 0.9x            | 0.77                                             | $=$ $\frac{1}{x}$ | 2.87                                              | 」^<br>」×       | 97.                                              |          | x      | 0.63         |          | 0.7            | =        | 85.42 | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | ×                 | 1.69                                              | ] ×            | 91                                               |          | x      | 0.63         | = x      | 0.7            | = -      | 94.1  | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | ا ×               | 0.42                                              | i x            | 91                                               |          | x      | 0.63         | ا<br>×   | 0.7            | _ =      | 11.69 | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | =  x              | 2.87                                              | ۲<br>۲         | 91                                               |          | x      | 0.63         | = x      | 0.7            | =        | 79.91 | (81)  |
| Northwest 0.9x            | 0.77                                             | = x               | 1.69                                              | ۲<br>x         | 72.                                              |          | x      | 0.63         | ×        | 0.7            |          | 75.02 | (81)  |
| Northwest 0.9x            | 0.77                                             | ×                 | 0.42                                              | i x            | 72.                                              |          | x      | 0.63         | = x      | 0.7            | = =      | 9.32  | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | ×                 | 2.87                                              | i x            | 72.                                              | .63      | x      | 0.63         | ×        | 0.7            | =        | 63.7  | (81)  |
| Northwest 0.9x            | 0.77                                             | x                 | 1.69                                              | i ×            | 50.                                              | .42      | x      | 0.63         | ×        | 0.7            |          | 52.08 | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | x                 | 0.42                                              | Ī×             | 50.                                              | .42      | x      | 0.63         | ×        | 0.7            | <u> </u> | 6.47  | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | ×                 | 2.87                                              | X              | 50.                                              | .42      | x      | 0.63         | ×        | 0.7            | =        | 44.22 | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | ×                 | 1.69                                              | x              | 28.                                              | .07      | x      | 0.63         | ×        | 0.7            | =        | 28.99 | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | X                 | 0.42                                              | ×              | 28.                                              | .07      | x      | 0.63         | x        | 0.7            |          | 3.6   | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | X                 | 2.87                                              | ×              | 28.                                              | .07      | x      | 0.63         | X        | 0.7            | =        | 24.62 | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | X                 | 1.69                                              | x              | 14                                               | 1.2      | x      | 0.63         | X        | 0.7            | =        | 14.66 | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | X                 | 0.42                                              | X              | 14                                               | 1.2      | x      | 0.63         | x        | 0.7            | =        | 1.82  | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | X                 | 2.87                                              | ×              | 14                                               | 1.2      | x      | 0.63         | x        | 0.7            | =        | 12.45 | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | X                 | 1.69                                              | X              | 9.2                                              | 21       | x      | 0.63         | X        | 0.7            | =        | 9.52  | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | X                 | 0.42                                              | ×              | 9.2                                              | 21       | x      | 0.63         | X        | 0.7            | =        | 1.18  | (81)  |
| Northwest <sub>0.9x</sub> | 0.77                                             | X                 | 2.87                                              | X              | 9.2                                              | 21       | x      | 0.63         | X        | 0.7            | =        | 8.08  | (81)  |
|                           |                                                  |                   |                                                   |                |                                                  |          |        |              |          |                |          |       |       |
| Solar gains in            |                                                  | ı                 | 1                                                 |                | 1                                                | 1        |        | = Sum(74)m . |          |                |          | 1     | (00)  |
| (83)m= 98.23              |                                                  | 59.67             | 355.76 429.                                       |                | 440.08                                           | 418.6    | 361    | .48 292.62   | 198.83   | 3 119.04       | 83.16    |       | (83)  |
| Total gains – i           |                                                  |                   | <del>` '                                   </del> |                | <del>`                                    </del> |          | 0.10   | 05   554 40  | 470.00   |                | 007.05   | l     | (0.4) |
| (84)m= 422.15             |                                                  | 69.48             | 647.06 702                                        |                | 694.63                                           | 661.64   | 610    | .35   551.18 | 476.09   | 9 417.7        | 397.85   |       | (84)  |
| 7. Mean inter             |                                                  |                   | Ĭ                                                 |                |                                                  |          |        |              |          |                |          |       | _     |
| Temperature               | •                                                | • .               |                                                   | _              |                                                  |          | ole 9, | Th1 (°C)     |          |                |          | 21    | (85)  |
| Utilisation fac           | <del></del>                                      |                   |                                                   | Ť              |                                                  |          |        |              |          |                |          | 1     |       |
| Jan                       | <del>                                     </del> | Mar               | Apr Ma                                            | <del>- +</del> | Jun                                              | Jul      |        | ug Sep       | Oct      | +              | Dec      |       |       |
| (86)m= 1                  | 0.99                                             | 0.98              | 0.94 0.8                                          | 5              | 0.69                                             | 0.53     | 0.5    | 9 0.83       | 0.97     | 0.99           | 1        |       | (86)  |
| Mean interna              |                                                  |                   | ving area T1                                      | (foll          | ow steps                                         | s 3 to 7 | in T   | able 9c)     |          |                |          | •     |       |
| (87)m= 19.54              | 19.72 2                                          | 20.02             | 20.41 20.7                                        | 4              | 20.93                                            | 20.98    | 20.    | 97 20.83     | 20.4     | 19.89          | 19.5     |       | (87)  |
| Temperature               | during hea                                       | ating pe          | eriods in rest                                    | of d           | welling f                                        | rom Ta   | ble 9  | 9, Th2 (°C)  |          |                |          |       |       |
| (88)m= 19.78              | 19.78 1                                          | 19.78             | 19.79 19.7                                        | 9              | 19.8                                             | 19.8     | 19.    | .8 19.8      | 19.79    | 19.79          | 19.78    |       | (88)  |
| Utilisation fac           | tor for gain                                     | ns for re         | est of dwellin                                    | g, h2          | 2,m (see                                         | Table    | 9a)    |              |          |                |          |       |       |
| (89)m= 1                  | 0.99                                             | 0.97              | 0.92 0.8                                          |                | 0.59                                             | 0.4      | 0.4    | 5 0.75       | 0.95     | 0.99           | 1        |       | (89)  |
| Mean interna              | I temperatu                                      | ure in t          | he rest of dw                                     | ellin          | T2 (fol                                          | low ste  | ps 3   | to 7 in Tabl | e 9c)    |                |          | -     |       |
| (90)m= 17.85              |                                                  | 18.56             | 19.11 19.5                                        |                | 19.75                                            | 19.79    | 19.    |              | 19.11    | 18.38          | 17.81    |       | (90)  |
|                           | ·                                                |                   |                                                   |                |                                                  |          |        | f            | LA = Liv | ring area ÷ (4 | 4) =     | 0.5   | (91)  |
|                           |                                                  |                   |                                                   |                |                                                  |          |        |              |          |                |          |       | _     |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18.6                                                                                                                                                                                            | 9 18.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.76                                                                                                    | 20.14                                                                   | 20.34                 | 20.39            | 20.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.24                                           | 19.75                                                         | 19.13                                                                                 | 18.65                                    |                          | (92)                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|--------------------------|-----------------------------------------------------------|
| Apply adjus                                                                                                                                                                                            | stment to t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | he mear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | internal                                                                                                 | tempera                                                                 | ature fro             | m Table          | 4e, whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | re appro                                        | priate                                                        | •                                                                                     |                                          |                          |                                                           |
| (93)m= 18.6                                                                                                                                                                                            | 9 18.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.76                                                                                                    | 20.14                                                                   | 20.34                 | 20.39            | 20.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.24                                           | 19.75                                                         | 19.13                                                                                 | 18.65                                    |                          | (93)                                                      |
| 8. Space h                                                                                                                                                                                             | eating req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i                                                                                                        |                                                                         |                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                               |                                                                                       |                                          |                          |                                                           |
| Set Ti to th                                                                                                                                                                                           | e mean in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ternal ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mperatui                                                                                                 | re obtain                                                               | ed at ste             | ep 11 of         | Table 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o, so tha                                       | t Ti,m=(                                                      | 76)m an                                                                               | d re-calc                                | ulate                    |                                                           |
| the utilisati                                                                                                                                                                                          | on factor fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | using Ta                                                                                                 | ble 9a                                                                  |                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                               |                                                                                       |                                          |                          |                                                           |
| Jar                                                                                                                                                                                                    | n Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                      | May                                                                     | Jun                   | Jul              | Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sep                                             | Oct                                                           | Nov                                                                                   | Dec                                      |                          |                                                           |
| Utilisation f                                                                                                                                                                                          | actor for g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ains, hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1:                                                                                                       |                                                                         |                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                               |                                                                                       |                                          |                          |                                                           |
| (94)m= 0.99                                                                                                                                                                                            | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.92                                                                                                     | 0.82                                                                    | 0.64                  | 0.47             | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.78                                            | 0.95                                                          | 0.99                                                                                  | 0.99                                     |                          | (94)                                                      |
| Useful gair                                                                                                                                                                                            | s, hmGm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , W = (94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4)m x (84                                                                                                | 4)m                                                                     |                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                               |                                                                                       |                                          |                          |                                                           |
| (95)m= 419.4                                                                                                                                                                                           | 2 489.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 552.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 597.31                                                                                                   | 573.62                                                                  | 443.82                | 307.92           | 319.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 431.92                                          | 451.93                                                        | 412.57                                                                                | 395.83                                   |                          | (95)                                                      |
| Monthly av                                                                                                                                                                                             | erage exte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ernal tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | perature                                                                                                 | from Ta                                                                 | able 8                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                               |                                                                                       |                                          |                          |                                                           |
| (96)m= 4.3                                                                                                                                                                                             | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.9                                                                                                      | 11.7                                                                    | 14.6                  | 16.6             | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.1                                            | 10.6                                                          | 7.1                                                                                   | 4.2                                      |                          | (96)                                                      |
| Heat loss r                                                                                                                                                                                            | ate for me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | an intern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al tempe                                                                                                 | erature, I                                                              | Lm , W =              | =[(39)m :        | x [(93)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | – (96)m                                         | ]                                                             | _                                                                                     |                                          |                          |                                                           |
| (97)m= 1222.                                                                                                                                                                                           | 44 1188.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1081.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 909.93                                                                                                   | 705.94                                                                  | 476.13                | 314.13           | 329.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 511.5                                           | 765.55                                                        | 1010.54                                                                               | 1218.02                                  |                          | (97)                                                      |
| Space hea                                                                                                                                                                                              | ting require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ement fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r each n                                                                                                 | nonth, k\                                                               | Wh/mon                | th = 0.02        | 24 x [(97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )m – (95                                        | )m] x (4                                                      | 1)m                                                                                   |                                          |                          |                                                           |
| (98)m= 597.4                                                                                                                                                                                           | 5 469.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 393.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225.08                                                                                                   | 98.45                                                                   | 0                     | 0                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                               | 233.33                                                        | 430.54                                                                                | 611.7                                    |                          |                                                           |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                        | -                                                                       |                       | -                | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l per year                                      | (kWh/year                                                     | ) = Sum(9                                                                             | 8)15,912 =                               | 3059.52                  | (98)                                                      |
| Space hea                                                                                                                                                                                              | tina reauir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ement in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m²                                                                                                   | ²/vear                                                                  |                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                               |                                                                                       |                                          | 49.83                    | (99)                                                      |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                         |                       | a a la callación |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VIID)                                           |                                                               |                                                                                       | <u>l</u>                                 |                          | `                                                         |
| 9a. Energy i                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ils – ina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ividuai n                                                                                                | eating sy                                                               | ystems i              | ncluaing         | micro-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,ПР)                                            |                                                               |                                                                                       |                                          |                          |                                                           |
| Space hea<br>Fraction of                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | at from s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | econdar                                                                                                  | v/sunnle                                                                | mentary               | evetem           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                               |                                                                                       | ſ                                        | 0                        | (201)                                                     |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at 110111 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cooridar                                                                                                 | y/ Suppic                                                               | montary               | 3 7 3 ( ) 111    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                               |                                                                                       |                                          | U                        | 1(201)                                                    |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ! 4                                                                                                      | (-)                                                                     |                       | -                | (202) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (201) -                                         |                                                               |                                                                                       | l                                        |                          | (000)                                                     |
|                                                                                                                                                                                                        | space hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                        | , ,                                                                     |                       |                  | (202) = 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ` /                                             |                                                               |                                                                                       |                                          | 1                        | (202)                                                     |
| Fraction of Fraction of                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                        | , ,                                                                     |                       |                  | ` /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - (201) =<br>02) × [1 -                         | (203)] =                                                      |                                                                                       | [                                        | 1                        | (202)                                                     |
|                                                                                                                                                                                                        | total heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | main sys                                                                                                 | stem 1                                                                  |                       |                  | ` /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ` /                                             | (203)] =                                                      |                                                                                       | [<br>[<br>[                              |                          | = ' '                                                     |
| Fraction of                                                                                                                                                                                            | total heati<br>of main spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng from<br>ace heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | main syste                                                                                               | stem 1<br>em 1                                                          | g systen              |                  | ` /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ` /                                             | (203)] =                                                      |                                                                                       |                                          | 1                        | (204)                                                     |
| Fraction of Efficiency of                                                                                                                                                                              | total heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng from<br>ace heat<br>ry/suppl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main syste                                                                                               | stem 1<br>em 1<br>y heating                                             |                       | 1, %             | (204) = (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02) × [1 –                                      | ` '*                                                          | Nov                                                                                   | Dec l                                    | 93.4                     | (204)<br>(206)<br>(208)                                   |
| Fraction of Efficiency of Efficiency of                                                                                                                                                                | total heati of main spoof of seconda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng from<br>ace heat<br>ry/suppl<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | main system<br>ing system<br>ementar                                                                     | stem 1<br>em 1<br>y heating<br>May                                      | Jun                   |                  | ` /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ` /                                             | (203)] =                                                      | Nov                                                                                   | Dec                                      | 1 93.4                   | (204)<br>(206)<br>(208)                                   |
| Fraction of Efficiency of                                                                                                                                                                              | total heati of main spoof of seconda n Feb ting require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng from<br>ace heat<br>ry/suppl<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | main system<br>ing system<br>ementar                                                                     | stem 1<br>em 1<br>y heating<br>May                                      | Jun                   | 1, %             | (204) = (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02) × [1 –                                      | ` '*                                                          | Nov<br>430.54                                                                         | Dec 611.7                                | 93.4                     | (204)<br>(206)<br>(208)                                   |
| Efficiency of Efficiency of User Space head 597.4                                                                                                                                                      | total heati of main span of seconda n Feb ting require 5 469.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng from ace heat ry/supple Mar ement (c) 393.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main systementar  Apr calculated 225.08                                                                  | stem 1 em 1 y heating May d above) 98.45                                | Jun                   | ı, %<br>Jul      | (204) = (2)<br>Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02) × [1 – 1                                    | Oct                                                           |                                                                                       |                                          | 93.4                     | (204)<br>(206)<br>(208)<br>ear                            |
| Fraction of Efficiency of Efficiency of Jar Space hea  597.4  (211)m = {[(                                                                                                                             | total heating from the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the followi | ng from ace heat ry/supple Mar ement (c 393.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | main systementar Apr calculatee 225.08                                                                   | stem 1 em 1 y heating May d above) 98.45                                | Jun<br>)<br>0         | n, %<br>Jul<br>0 | (204) = (2)<br>Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02) × [1 – 1                                    | Oct 233.33                                                    | 430.54                                                                                | 611.7                                    | 93.4                     | (204)<br>(206)<br>(208)                                   |
| Efficiency of Efficiency of User Space head 597.4                                                                                                                                                      | total heating from the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the following the followi | ng from ace heat ry/supple Mar ement (c) 393.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main systementar  Apr calculated 225.08                                                                  | stem 1 em 1 y heating May d above) 98.45                                | Jun                   | ı, %<br>Jul      | (204) = (2<br>Aug<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02) × [1 -   Sep 0                              | Oct 233.33                                                    | 430.54                                                                                | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ear                            |
| Fraction of Efficiency of Efficiency of Jar Space hea  597.4  (211)m = {[(639.6)]                                                                                                                      | total heati of main span of secondar n Feb ting require 5 469.3 98)m x (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng from ace heat ary/supplement (compared as 393.67 acc) 393.67 acc) 3421.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | main systementar Apr calculated 225.08 00 ÷ (20 240.99                                                   | stem 1 em 1 y heating May d above) 98.45 06) 105.4                      | Jun<br>)<br>0         | n, %<br>Jul<br>0 | (204) = (2<br>Aug<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02) × [1 – 1                                    | Oct 233.33                                                    | 430.54                                                                                | 611.7                                    | 93.4                     | (204)<br>(206)<br>(208)<br>ear                            |
| Fraction of Efficiency of Efficiency of Jar Space hea  597.4  (211)m = {[( 639.6)                                                                                                                      | total heating from the secondary of secondary from February from the secondary from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from Fe | ng from ace heat ary/supplement (compared ary)] } x 1 421.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | main systementar  Apr calculated 225.08  100 ÷ (20 240.99)  y), kWh/                                     | stem 1 em 1 y heating May d above) 98.45 06) 105.4                      | Jun<br>)<br>0         | n, %<br>Jul<br>0 | (204) = (2<br>Aug<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02) × [1 -   Sep 0                              | Oct 233.33                                                    | 430.54                                                                                | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ear                            |
| Fraction of Efficiency of Efficiency of Space hea  597.4  (211)m = {[(639.6)   Space hea = {[(98)m x (                                                                                                 | total heating from the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and th | ng from ace heat ary/supplement (compared as 393.67 accordance) A 21.49 accordance on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on  | main systementar  Apr calculated 225.08  00 ÷ (20 240.99  y), kWh/                                       | stem 1 em 1 y heating May d above) 98.45 06) 105.4                      | Jun 0 0               | n, %  Jul  0     | (204) = (2) Aug 0 Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02) × [1 –   Sep  0  0  1 (kWh/yea              | Oct 233.33 249.82 ar) =Sum(2                                  | 430.54<br>460.96<br>211) <sub>15,1012</sub>                                           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ear                            |
| Fraction of Efficiency of Efficiency of Jar Space hea  597.4  (211)m = {[( 639.6)                                                                                                                      | total heating from the secondary of secondary from February from the secondary from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from February from Fe | ng from ace heat ary/supplement (compared ary)] } x 1 421.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | main systementar  Apr calculated 225.08  100 ÷ (20 240.99)  y), kWh/                                     | stem 1 em 1 y heating May d above) 98.45 06) 105.4                      | Jun<br>)<br>0         | n, %<br>Jul<br>0 | (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) | 02) × [1 -   Sep  0  0  I (kWh/yea              | Oct 233.33 249.82 ar) =Sum(2                                  | 430.54<br>460.96<br>211) <sub>15,1012</sub>                                           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>(211)<br>(211)        |
| Fraction of Efficiency of Efficiency of  Jar Space hea  597.4  (211)m = {[( 639.6)  Space hea = {[(98)m x ( (215)m=0]                                                                                  | total heati of main span of secondar n Feb ting require 5 469.3 98)m x (20 6 502.46 ting fuel (secondary)] } x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng from ace heat ary/supplement (compared as 393.67 accordance) A 21.49 accordance on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on the condar on  | main systementar  Apr calculated 225.08  00 ÷ (20 240.99  y), kWh/                                       | stem 1 em 1 y heating May d above) 98.45 06) 105.4                      | Jun 0 0               | n, %  Jul  0     | (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) | 02) × [1 –   Sep  0  0  1 (kWh/yea              | Oct 233.33 249.82 ar) =Sum(2                                  | 430.54<br>460.96<br>211) <sub>15,1012</sub>                                           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ear                            |
| Fraction of Efficiency of Efficiency of Jar Space hea  597.4  (211)m = {[( 639.6  Space hea = {[(98)m x ( (215)m= 0  Water heati                                                                       | total heati of main span of secondar n Feb ting require 5 469.3 98)m x (20 6 502.46 ting fuel (s 201)] } x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng from ace heat ary/supplement (compared as a secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the secondar on the | main systementar Apr calculatect 225.08 00 ÷ (20 240.99  y), kWh/ 8) 0                                   | stem 1 em 1 y heating May d above) 98.45 06) 105.4 month                | Jun 0 0               | n, %  Jul  0     | (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) | 02) × [1 -   Sep  0  0  I (kWh/yea              | Oct 233.33 249.82 ar) =Sum(2                                  | 430.54<br>460.96<br>211) <sub>15,1012</sub>                                           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>(211)<br>(211)        |
| Fraction of Efficiency of Efficiency of  Jar Space hea  597.4  (211)m = {[( 639.6)  Space hea = {[(98)m x ( (215)m= 0)  Water heati Output from                                                        | total heating free free free free free free free fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng from ace heat ry/supplement (color 393.67  04)] } x 1  421.49  econdar 00 ÷ (20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | main systementar Apr calculated 225.08 00 ÷ (20 240.99  y), kWh/ 08) 0                                   | stem 1 em 1 y heating May d above) 98.45 06) 105.4 month 0              | Jun 0 0               | o 0              | (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) | 02) × [1 –   Sep  0  0  1 (kWh/yea              | Oct  233.33  249.82  ar) =Sum(2                               | 430.54<br>460.96<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>(211)<br>(211)        |
| Fraction of Efficiency of Efficiency of Jar Space hea  597.4  (211)m = {[( 639.6)  Space hea = {[(98)m x ( (215)m= 0  Water heati Output from 180.1                                                    | total heati of main span of secondar n Feb ting require 5 469.3 98)m x (20 6 502.46 ting fuel (s 201)] } x 1 0  ng water heating total secondar water heating fuel (s 157.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng from ace heat ary/supplement (color of the supplement)   Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main systementar Apr calculatect 225.08 00 ÷ (20 240.99  y), kWh/ 8) 0                                   | stem 1 em 1 y heating May d above) 98.45 06) 105.4 month                | Jun 0 0               | n, %  Jul  0     | (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) | 02) × [1 -   Sep  0  0  I (kWh/yea              | Oct 233.33 249.82 ar) =Sum(2                                  | 430.54<br>460.96<br>211) <sub>15,1012</sub>                                           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ear<br>(211)<br>(211) |
| Fraction of Efficiency of Efficiency of Space hea  597.4  (211)m = {[( 639.6)  Space hea = {[(98)m x ( (215)m=0  Water heati Output from 180.4  Efficiency of                                          | total heating frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  frequire  fr | mg from ace heat ary/supplement (color as a secondar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of the condar of th | main systementar  Apr calculated 225.08  00 ÷ (20 240.99  y), kWh/ 8)  0  ulated al 145.23               | stem 1 em 1 y heating May d above) 98.45 06) 105.4 month 0              | Jun 0 0 0 123.84      | o 0 118.65       | (204) = (2) Aug  0 Tota  132.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02) × [1 – 1  Sep  0  0  1 (kWh/yea  133.72     | Oct  233.33  249.82  ar) =Sum(2  0  ar) =Sum(2                | 430.54<br>460.96<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ear<br>(211)<br>(211) |
| Fraction of Efficiency of Efficiency of Space head  [597.4]  (211)m = {[( 639.6]  Space head = {[(98)m x ( (215)m= 0  Water heati Output from [180.7] Efficiency of (217)m= [87.8]                     | total heati of main span of secondar n Feb ting require 5 469.3 98)m x (20 6 502.46  ting fuel (s 201)] } x 1 0  ng water heati 6 157.38 water heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng from ace heat ary/supplement (color of the street street)   Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | main systementar  Apr calculated 225.08  00 ÷ (20 240.99)  y), kWh/ 08)  0  ulated al 145.23             | stem 1 em 1 y heating May d above) 98.45 06) 105.4 month 0              | Jun 0 0               | o 0              | (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) | 02) × [1 –   Sep  0  0  1 (kWh/yea              | Oct  233.33  249.82  ar) =Sum(2                               | 430.54<br>460.96<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ear<br>(211)<br>(211) |
| Fraction of Efficiency of Efficiency of Space head  597.4  (211)m = {[( 639.6  Space head = {[(98)m x ( (215)m= 0  Water heati Output from 180.7  Efficiency of (217)m= 87.8  Fuel for water           | total heating main spans of secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar secondar se | ng from ace heat ary/supplement (color of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the  | main systementar  Apr calculated 225.08  00 ÷ (20 240.99  y), kWh/ 08)  0  ulated at 145.23  86.15  onth | stem 1 em 1 y heating May d above) 98.45 06) 105.4 month 0              | Jun 0 0 0 123.84      | o 0 118.65       | (204) = (2) Aug  0 Tota  132.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02) × [1 – 1  Sep  0  0  1 (kWh/yea  133.72     | Oct  233.33  249.82  ar) =Sum(2  0  ar) =Sum(2                | 430.54<br>460.96<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ear<br>(211)<br>(211) |
| Fraction of Efficiency of Efficiency of Space hea  597.4  (211)m = {[( 639.6)  Space hea = {[(98)m x ( (215)m= 0  Water heati Output from 180.4  Efficiency of (217)m= 87.8  Fuel for wate (219)m = (6 | total heating fractions from the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the sec | mg from ace heat ary/supplement (color of ter (calcolor 163.74 ater ary (217)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | main systementar  Apr calculated 225.08  00 ÷ (20 240.99  y), kWh/ 8)  0  ulated al 145.23  86.15  onth  | stem 1 em 1 y heating May d above) 98.45 06) 105.4 month 0 bove) 140.61 | Jun 0 0 0 123.84 80.3 | o 0 118.65 80.3  | (204) = (2) Aug  0 Tota  132.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02) × [1 – 100] Sep  0 0 1 (kWh/yea 133.72 80.3 | Oct  233.33  249.82  ar) =Sum(2  0  ar) =Sum(2  152.27        | 430.54<br>460.96<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub><br>162.55 | 611.7<br>654.93<br>=<br>0<br>=<br>175.93 | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ear<br>(211)<br>(211) |
| Fraction of Efficiency of Efficiency of Space head  597.4  (211)m = {[( 639.6  Space head = {[(98)m x ( (215)m= 0  Water heati Output from 180.7  Efficiency of (217)m= 87.8  Fuel for water           | total heating fractions from the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the sec | ng from ace heat ary/supplement (color of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the  | main systementar  Apr calculated 225.08  00 ÷ (20 240.99  y), kWh/ 08)  0  ulated at 145.23  86.15  onth | stem 1 em 1 y heating May d above) 98.45 06) 105.4 month 0              | Jun 0 0 0 123.84      | o 0 118.65       | (204) = (2) Aug  0 Tota  132.26  80.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02) × [1 – 1  Sep  0  0  1 (kWh/yea  133.72     | Oct  233.33  249.82  ar) =Sum(2  0  ar) =Sum(2  152.27  86.12 | 430.54<br>460.96<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 611.7                                    | 1<br>93.4<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ear<br>(211)<br>(211) |

| Annual totals                                                                                                                                     |                                                                                        | kWh/yea                         | ır  | kWh/yea                           | r                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|-----|-----------------------------------|----------------------------------|
| Space heating fuel used, main system 1                                                                                                            |                                                                                        | •                               |     | 3275.71                           |                                  |
| Water heating fuel used                                                                                                                           |                                                                                        |                                 |     | 2104.23                           | $\bar{1}$                        |
| Electricity for pumps, fans and electric keep-hot                                                                                                 |                                                                                        |                                 |     |                                   |                                  |
| central heating pump:                                                                                                                             |                                                                                        |                                 | 30  | ]                                 | (230c)                           |
| boiler with a fan-assisted flue                                                                                                                   |                                                                                        |                                 | 45  | Ī                                 | (230e)                           |
| Total electricity for the above, kWh/year                                                                                                         | sum of (230a                                                                           | )(230g) =                       |     | 75                                | (231)                            |
| Cloatricity for lighting                                                                                                                          |                                                                                        |                                 |     | 278.04                            | (232)                            |
| Electricity for lighting                                                                                                                          |                                                                                        |                                 |     |                                   |                                  |
| 12a. CO2 emissions – Individual heating systems                                                                                                   | s including micro-CHP                                                                  |                                 |     |                                   |                                  |
|                                                                                                                                                   | s including micro-CHP  Energy kWh/year                                                 | Emission fac                    |     | Emissions<br>kg CO2/ye            |                                  |
|                                                                                                                                                   | Energy                                                                                 |                                 |     |                                   |                                  |
| 12a. CO2 emissions – Individual heating systems                                                                                                   | <b>Energy</b><br>kWh/year                                                              | kg CO2/kWh                      |     | kg CO2/ye                         | ar                               |
| 12a. CO2 emissions – Individual heating systems  Space heating (main system 1)                                                                    | Energy<br>kWh/year                                                                     | kg CO2/kWh                      | =   | kg CO2/ye                         | ar<br>(261)                      |
| 12a. CO2 emissions – Individual heating systems  Space heating (main system 1)  Space heating (secondary)                                         | Energy<br>kWh/year<br>(211) x<br>(215) x                                               | kg CO2/kWh  0.216  0.519        | =   | kg CO2/ye                         | ar<br>(261)<br>(263)             |
| 12a. CO2 emissions – Individual heating systems  Space heating (main system 1)  Space heating (secondary)  Water heating                          | <b>Energy</b> kWh/year (211) x (215) x (219) x                                         | kg CO2/kWh  0.216  0.519        | =   | kg CO2/ye 707.55 0 454.51         | (261)<br>(263)<br>(264)          |
| 12a. CO2 emissions – Individual heating systems  Space heating (main system 1)  Space heating (secondary)  Water heating  Space and water heating | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264) = | kg CO2/kWh  0.216  0.519  0.216 | = = | kg CO2/ye 707.55 0 454.51 1162.07 | (261)<br>(263)<br>(264)<br>(265) |

TER =

21.91

(273)

|                                                         |                                                           |               | User D    | otaila:          |                  |            |            |                     |                        |      |
|---------------------------------------------------------|-----------------------------------------------------------|---------------|-----------|------------------|------------------|------------|------------|---------------------|------------------------|------|
| A N                                                     | Obrida I I a alva all                                     | (             |           |                  | - NI             |            |            | OTDO                | 040000                 |      |
| Assessor Name: Software Name:                           | Chris Hocknell Stroma FSAP 201                            | 2             |           | Stroma<br>Softwa |                  |            |            |                     | 016363<br>on: 1.0.4.16 |      |
| Software Hame.                                          | Ottoma 1 O/ ti 201                                        |               |           | Address:         |                  |            |            | VCISIO              | 71. 1.0.4.10           |      |
| Address :                                               |                                                           |               | , ,       |                  |                  |            |            |                     |                        |      |
| 1. Overall dwelling dime                                | ensions:                                                  |               |           |                  |                  |            |            |                     |                        |      |
| Ground floor                                            |                                                           |               |           | a(m²)            | (1-)             |            | ight(m)    | ] <sub>(0=)</sub> = | Volume(m³              | _    |
|                                                         | N. (41 N. (4 N. (4 IN. (4                                 | \.            |           |                  | (1a) x           |            | 2.7        | (2a) =              | 203.58                 | (3a) |
| Total floor area TFA = (1                               | a)+(1b)+(1c)+(1d)+(1e                                     | )+(1n)        | 7         | 75.4             | (4)              |            |            |                     |                        | _    |
| Dwelling volume                                         |                                                           |               |           |                  | (3a)+(3b)        | )+(3c)+(3c | d)+(3e)+   | .(3n) =             | 203.58                 | (5)  |
| 2. Ventilation rate:                                    | main se                                                   | econdary      |           | other            |                  | total      |            |                     | m³ per hou             | r    |
| North an of all large are                               | heating h                                                 | eating        | _         |                  | , <sub>-</sub> - |            |            | 40 - 1              | -                      | _    |
| Number of chimneys                                      | 0 +                                                       | 0             | + _       | 0                | ] = [            | 0          |            | 40 =                | 0                      | (6a) |
| Number of open flues                                    | 0 +                                                       | 0             | +         | 0                | ]                | 0          |            | 20 =                | 0                      | (6b) |
| Number of intermittent fa                               |                                                           |               |           |                  | L                | 3          | X '        | 10 =                | 30                     | (7a) |
| Number of passive vents                                 | 3                                                         |               |           |                  | L                | 0          | X ·        | 10 =                | 0                      | (7b) |
| Number of flueless gas f                                | ires                                                      |               |           |                  |                  | 0          | X 4        | 40 =                | 0                      | (7c) |
|                                                         |                                                           |               |           |                  |                  |            |            | Δir ch              | nanges per ho          | niir |
| Infiltration due to chimne                              | vs_flues and fans = (6)                                   | a)+(6b)+(7a)  | )+(7b)+(7 | 7c) =            | Г                | 30         |            | ÷ (5) =             | 0.15                   | (8)  |
|                                                         | peen carried out or is intende                            |               |           |                  | ontinue fr       |            |            | . (3) =             | 0.15                   | (0)  |
| Number of storeys in t                                  | he dwelling (ns)                                          |               |           |                  |                  |            |            |                     | 0                      | (9)  |
| Additional infiltration                                 |                                                           |               |           |                  |                  |            | [(9)       | -1]x0.1 =           | 0                      | (10) |
|                                                         | .25 for steel or timber f                                 |               |           |                  | •                | uction     |            |                     | 0                      | (11) |
| if both types of wall are p<br>deducting areas of openi | resent, use the value corresp<br>ngs); if equal user 0.35 | ponaing to tr | ne greate | er wall are      | a (aπer          |            |            |                     |                        |      |
|                                                         | floor, enter 0.2 (unseal                                  | ed) or 0.1    | (seale    | d), else         | enter 0          |            |            |                     | 0                      | (12) |
| If no draught lobby, en                                 | ter 0.05, else enter 0                                    |               |           |                  |                  |            |            |                     | 0                      | (13) |
| Percentage of window                                    | s and doors draught st                                    | ripped        |           |                  |                  |            |            |                     | 0                      | (14) |
| Window infiltration                                     |                                                           |               |           | 0.25 - [0.2      |                  |            |            |                     | 0                      | (15) |
| Infiltration rate                                       |                                                           |               |           | (8) + (10)       | . , , ,          | , , ,      | . ,        |                     | 0                      | (16) |
| Air permeability value,                                 | •                                                         |               | •         | •                | •                | etre of e  | envelope   | area                | 5                      | (17) |
| If based on air permeabil                               | -                                                         |               |           |                  |                  | in haina   |            |                     | 0.4                    | (18) |
| Air permeability value applie  Number of sides sheltere |                                                           | s been done   | or a deg  | jree air pei     | пеавшу           | is being u | sea        |                     | 1                      | (19) |
| Shelter factor                                          | ,                                                         |               |           | (20) = 1 -       | 0.075 x (1       | 9)] =      |            |                     | 0.92                   | (20) |
| Infiltration rate incorpora                             | ting shelter factor                                       |               |           | (21) = (18)      | x (20) =         |            |            |                     | 0.37                   | (21) |
| Infiltration rate modified f                            | or monthly wind speed                                     |               |           |                  |                  |            |            |                     |                        |      |
| Jan Feb                                                 | Mar Apr May                                               | Jun           | Jul       | Aug              | Sep              | Oct        | Nov        | Dec                 |                        |      |
| Monthly average wind sp                                 | peed from Table 7                                         | •             |           |                  |                  |            |            |                     | •                      |      |
| (22)m= 5.1 5                                            | 4.9 4.4 4.3                                               | 3.8           | 3.8       | 3.7              | 4                | 4.3        | 4.5        | 4.7                 |                        |      |
| Wind Factor (22a)m = (2                                 | 2)m ÷ 4                                                   |               |           |                  |                  |            |            |                     |                        |      |
|                                                         | 2)m ÷ 4<br>1.23   1.1   1.08                              | 0.95          | 0.95      | 0.92             | 1                | 1.08       | 1.12       | 1.18                | 1                      |      |
| (                                                       | 1.00                                                      | 3.00          | 0.00      | J.02             | •                |            | L <u>-</u> |                     | J                      |      |

| Adjusted infiltra                                   | ation rate                | (allowi    | ng for sh   | nelter an  | nd wind s          | peed) =     | (21a) x      | (22a)m            |                           |            |           | -                     |                |
|-----------------------------------------------------|---------------------------|------------|-------------|------------|--------------------|-------------|--------------|-------------------|---------------------------|------------|-----------|-----------------------|----------------|
| 0.47                                                | 0.46                      | 0.45       | 0.4         | 0.4        | 0.35               | 0.35        | 0.34         | 0.37              | 0.4                       | 0.41       | 0.43      |                       |                |
| <i>Calcul<mark>ate effed</mark></i><br>If mechanica |                           | _          | rate for ti | пе арріі   | cable ca           | se          |              |                   |                           |            |           | 0                     | (23            |
| If exhaust air he                                   |                           |            | endix N, (2 | 3b) = (23a | a) × Fmv (e        | quation (I  | N5)) , othe  | rwise (23b        | ) = (23a)                 |            |           | 0                     | (23            |
| If balanced with                                    | heat recov                | ery: effic | iency in %  | allowing f | for in-use fa      | actor (fron | n Table 4h   | ) =               |                           |            |           | 0                     | (23            |
| a) If balance                                       | d mechai                  | nical ve   | entilation  | with he    | at recove          | ery (MVI    | HR) (24a     | a)m = (22         | 2b)m + (2                 | 23b) × [   | 1 – (23c) | ÷ 100]                | `              |
| (24a)m= 0                                           | 0                         | 0          | 0           | 0          | 0                  | 0           | 0            | 0                 | 0                         | 0          | 0         | ]                     | (24            |
| b) If balance                                       | d mechai                  | nical ve   | entilation  | without    | heat rec           | overy (I    | ИV) (24b     | )m = (22          | 2b)m + (2                 | 23b)       | •         | •                     |                |
| (24b)m= 0                                           | 0                         | 0          | 0           | 0          | 0                  | 0           | 0            | 0                 | 0                         | 0          | 0         |                       | (24            |
| c) If whole h                                       | ouse extr                 | act ver    | itilation c | r positiv  | ve input v         | entilatio   | on from o    | outside           | <u>-</u>                  |            |           |                       |                |
| if (22b)m                                           | า < 0.5 ×                 | (23b), t   | hen (240    | c) = (23b  | o); otherv         | vise (24    | c) = (22h    | o) m + 0.         | 5 × (23b                  | )          | 1         | 1                     |                |
| (24c)m= 0                                           | 0                         | 0          | 0           | 0          | 0                  | 0           | 0            | 0                 | 0                         | 0          | 0         |                       | (24            |
| d) If natural v<br>if (22b)m                        | ventilation<br>n = 1, the |            |             | •          | •                  |             |              |                   | 0.5]                      |            |           |                       |                |
| (24d)m= 0.61                                        | 0.61                      | 0.6        | 0.58        | 0.58       | 0.56               | 0.56        | 0.56         | 0.57              | 0.58                      | 0.59       | 0.59      |                       | (24            |
| Effective air                                       | change r                  | ate - er   | nter (24a   | ) or (24l  | b) or (24d         | c) or (24   | d) in bo     | (25)              |                           |            |           | _                     |                |
| (25)m= 0.61                                         | 0.61                      | 0.6        | 0.58        | 0.58       | 0.56               | 0.56        | 0.56         | 0.57              | 0.58                      | 0.59       | 0.59      |                       | (25            |
| 3. Heat losses                                      | s and hea                 | at loss r  | paramete    | ār.        |                    |             |              |                   |                           |            |           |                       |                |
| ELEMENT                                             | Gross                     | •          | Openin      |            | Net Ar             | ea          | U-val        | ue                | AXU                       |            | k-value   | 9                     | AXk            |
|                                                     | area (                    | m²)        | m           |            | A ,n               | n²          | W/m2         | :Κ                | (W/ł                      | <)         | kJ/m²·l   | K                     | kJ/K           |
| Doors                                               |                           |            |             |            | 2                  | X           | 1            | = [               | 2                         |            |           |                       | (26            |
| Windows Type                                        | : 1                       |            |             |            | 0.93               | x1          | /[1/( 1.4 )+ | 0.04] =           | 1.23                      |            |           |                       | (27            |
| Windows Type                                        | 2                         |            |             |            | 1.98               | x1          | /[1/( 1.4 )+ | 0.04] =           | 2.62                      |            |           |                       | (27            |
| Windows Type                                        | : 3                       |            |             |            | 1.63               | x1          | /[1/( 1.4 )+ | 0.04] =           | 2.16                      |            |           |                       | (27            |
| Windows Type                                        | 4                         |            |             |            | 2.04               | x1          | /[1/( 1.4 )+ | 0.04] =           | 2.7                       |            |           |                       | (27            |
| Windows Type                                        | : 5                       |            |             |            | 5.69               | x1          | /[1/( 1.4 )+ | 0.04] =           | 7.54                      |            |           |                       | (27            |
| Vindows Type                                        | 6                         |            |             |            | 0.87               | x1          | /[1/( 1.4 )+ | 0.04] =           | 1.15                      |            |           |                       | (27            |
| Windows Type                                        | 7                         |            |             |            | 1.47               | x1          | /[1/( 1.4 )+ | 0.04] =           | 1.95                      |            |           |                       | (27            |
| Rooflights                                          |                           |            |             |            | 0.77057            | 92 x1       | /[1/(1.7) +  | 0.04] =           | 1.30998                   | 5          |           |                       | (27            |
| Nalls Type1                                         | 68.45                     | ;          | 16.08       | 3          | 52.37              | ×           | 0.18         | =                 | 9.43                      |            |           |                       | (29            |
| Walls Type2                                         | 4.03                      |            | 2           |            | 2.03               | x           | 0.18         | <u> </u>          | 0.37                      |            |           | $\exists$ $\sqsubset$ | (29            |
| Roof                                                | 75.4                      |            | 0.77        |            | 74.63              | X           | 0.13         | <u> </u>          | 9.7                       |            |           | $\exists$ $\sqsubset$ | (30            |
| Total area of e                                     | lements,                  | m²         |             |            | 147.88             | 3           |              |                   |                           |            |           |                       | (31            |
| Party wall                                          |                           |            |             |            | 42.95              | X           | 0            |                   | 0                         |            |           | $\neg  \sqcap$        | (32            |
| Party floor                                         |                           |            |             |            | 75.4               |             |              |                   |                           |            |           | <b>i</b> i            | (32            |
| for windows and                                     |                           |            |             |            |                    | ated using  | formula 1    | /[(1/U-valu       | ıe)+0.04] a               | s given in | paragraph | 1 3.2                 |                |
|                                                     |                           |            |             | s and par  | titions            |             | (26) (20)    | ) + (30) =        |                           |            |           | Γ                     | <del></del> 1. |
|                                                     | _ \^!!!                   | 5 (A X     | U)          |            |                    |             | (26)(30)     | ) + (32) <b>=</b> |                           |            |           | 44.04                 | . (33          |
| ** include the area<br>Fabric heat los              |                           | •          | ,           |            |                    |             |              | ((00)             | (20) + (00                | N L (20-1  | (20-)     |                       |                |
|                                                     | Cm = S(A                  | Axk)       | ŕ           | TEA\!      | م ار ا ارام عالم ا |             |              |                   | (30) + (32<br>tive Value: | , , ,      | (32e) =   | 14882.6<br>250        | (34)           |

| herma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55 . S (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X I) Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | culated                                                                                                                                                                  | using Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pendix i                                                                                                                            | •                                                                                                                              |                                                                                                       |                                                                  |                                                        |                                                                                                     |                                     | 14.96   |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------|---------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are not kn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | own (36) =                                                                                                                                                               | = 0.15 x (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1)                                                                                                                                  |                                                                                                                                |                                                                                                       |                                                                  |                                                        |                                                                                                     |                                     |         | _          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | abric he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                                                                                                |                                                                                                       | • ,                                                              | (36) =                                                 |                                                                                                     |                                     | 59      | (3         |
| entila<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | <b>.</b>                                                                                                                       |                                                                                                       | ` ′                                                              |                                                        | 25)m x (5)                                                                                          |                                     | 1       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apr                                                                                                                                                                      | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                                                                                                 | Jul                                                                                                                            | Aug                                                                                                   | Sep                                                              | Oct                                                    | Nov                                                                                                 | Dec                                 |         |            |
| 8)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.08                                                                                                                                                                    | 38.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.69                                                                                                                               | 37.69                                                                                                                          | 37.47                                                                                                 | 38.13                                                            | 38.84                                                  | 39.33                                                                                               | 39.86                               |         | (3         |
| - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oefficier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                                                                                                |                                                                                                       | · ,                                                              | = (37) + (                                             | <del></del>                                                                                         |                                     | 1       |            |
| 9)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.08                                                                                                                                                                    | 97.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96.68                                                                                                                               | 96.68                                                                                                                          | 96.47                                                                                                 | 97.12                                                            | 97.83                                                  | 98.33                                                                                               | 98.85                               |         | <b>—</b> , |
| eat lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ss para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | meter (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ILP), W/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²K                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                                                                                                |                                                                                                       |                                                                  | Average =<br>= (39)m ÷                                 | Sum(39) <sub>1</sub> .                                                                              | 12 /12=                             | 98.08   | (          |
| ))m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.28                                                                                                                                | 1.28                                                                                                                           | 1.28                                                                                                  | 1.29                                                             | 1.3                                                    | 1.3                                                                                                 | 1.31                                |         |            |
| umbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs in mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nth (Tabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | le 1a)                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                                                                                                |                                                                                                       | ,                                                                | Average =                                              | Sum(40) <sub>1.</sub>                                                                               | 12 /12=                             | 1.3     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apr                                                                                                                                                                      | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                                                                                                 | Jul                                                                                                                            | Aug                                                                                                   | Sep                                                              | Oct                                                    | Nov                                                                                                 | Dec                                 | ]       |            |
| )m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                       | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                  | 31                                                                                                                             | 31                                                                                                    | 30                                                               | 31                                                     | 30                                                                                                  | 31                                  |         | (          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                                                                                                |                                                                                                       |                                                                  |                                                        |                                                                                                     |                                     |         |            |
| . Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ter heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing ener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gy requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rement:                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                                                                                                |                                                                                                       |                                                                  |                                                        |                                                                                                     | kWh/y                               | ear:    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 4                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | - 4 4 4 4 4                                                                                                                    |                                                                                                       |                                                                  | 4 4 4                                                  |                                                                                                     | .37                                 | 4       |            |
| if TF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A > 13.9<br>A £ 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9, N = 1<br>9, N = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + 1.76 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     |                                                                                                                                | )2)] + 0.0                                                                                            | ·                                                                | ΓFA -13.                                               |                                                                                                     |                                     | 1       |            |
| if TF.<br>if TF.<br>inual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A > 13.9<br>A £ 13.9<br>averag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9, N = 1<br>9, N = 1<br>e hot wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + 1.76 x<br>ater usag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ge in litre                                                                                                                                                              | es per da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ay Vd,av                                                                                                                            | erage =                                                                                                                        | )2)] + 0.0<br>(25 x N)<br>to achieve                                                                  | + 36                                                             |                                                        | 90                                                                                                  | ).48                                | ]       | (          |
| if TF.<br>if TF.<br>nnual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A > 13.9<br>A £ 13.9<br>averag<br>the annua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9, N = 1<br>9, N = 1<br>e hot wa<br>al average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 1.76 x<br>ater usag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ge in litre                                                                                                                                                              | es per da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ay Vd,av<br>Iwelling is                                                                                                             | erage =                                                                                                                        | (25 x N)                                                                                              | + 36                                                             |                                                        | 90                                                                                                  |                                     | ]       | (          |
| if TF,<br>if TF,<br>nnual<br>duce<br>t more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A > 13.9 A £ 13.9 averag the annua that 125  Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O, N = 1 O, N = 1 e hot want average litres per p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge in litre<br>usage by<br>day (all w                                                                                                                                    | es per da<br>5% if the d<br>vater use, l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Vd,av<br>lwelling is<br>hot and co                                                                                               | erage =<br>designed i<br>ld)<br>Jul                                                                                            | (25 x N)<br>to achieve                                                                                | + 36                                                             |                                                        | 90                                                                                                  |                                     | ]<br>]  | (          |
| if TF,<br>if TF,<br>nnual<br>duce<br>t more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A > 13.9 A £ 13.9 averag the annua that 125  Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O, N = 1 O, N = 1 e hot want average litres per p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge in litre<br>usage by<br>day (all w                                                                                                                                    | es per da<br>5% if the d<br>vater use, l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Vd,av<br>lwelling is<br>hot and co                                                                                               | erage =<br>designed i<br>ld)<br>Jul                                                                                            | (25 x N)<br>to achieve                                                                                | + 36<br>a water us                                               | se target o                                            | 90                                                                                                  | 0.48                                | ]       | (          |
| if TF. inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual inual | A > 13.9 A £ 13.9 averag the annua that 125  Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O, N = 1 O, N = 1 e hot want average litres per p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge in litre<br>usage by<br>day (all w                                                                                                                                    | es per da<br>5% if the d<br>vater use, l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Vd,av<br>lwelling is<br>hot and co                                                                                               | erage =<br>designed i<br>ld)<br>Jul                                                                                            | (25 x N)<br>to achieve                                                                                | + 36<br>a water us<br>Sep                                        | Oct                                                    | 90<br>Nov<br>95.91                                                                                  | Dec 99.53                           | ]       |            |
| if TF, if TF, innual duce t more t wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A > 13.9 A £ 13.9 averag the annua that 125 Jan er usage in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ge in litre usage by day (all w Apr ach month 88.67                                                                                                                      | es per da<br>5% if the d<br>vater use, I<br>May<br>Vd,m = fa<br>85.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ay Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from                                                                           | erage = designed (d)  Jul Table 1c x  81.43                                                                                    | (25 x N)<br>to achieve<br>Aug                                                                         | + 36 a water us Sep 88.67                                        | Oct  92.29  Total = Su                                 | 90 Nov 95.91 m(44) <sub>112</sub> =                                                                 | Dec 99.53                           | 1085.79 |            |
| if TF, innual duce t more t wate )m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A > 13.9 A £ 13.9 averag the annua that 125 Jan er usage in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ge in litre usage by day (all w Apr ach month 88.67                                                                                                                      | es per da<br>5% if the d<br>vater use, I<br>May<br>Vd,m = fa<br>85.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ay Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from                                                                           | erage = designed (d)  Jul Table 1c x  81.43                                                                                    | (25 x N) to achieve Aug (43) 85.05                                                                    | + 36 a water us Sep 88.67                                        | Oct  92.29  Total = Su                                 | 90 Nov 95.91 m(44)112 =                                                                             | Dec 99.53                           | 1085.79 |            |
| if TF, if TF, innual induce it more it wate i)m= ergy con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A > 13.9 A £ 13.9 averag the annual that 125 Jan er usage in 99.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | + 1.76 x ater usag hot water person per Mar day for ea  92.29  used - cale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ge in litre usage by day (all w Apr ach month 88.67                                                                                                                      | es per da<br>5% if the d<br>vater use, l<br>May<br>Vd,m = fa<br>85.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ay Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from<br>81.43                                                                  | erage = designed (d)  Jul Table 1c x  81.43                                                                                    | (25 x N) to achieve  Aug (43)  85.05                                                                  | + 36 a water us  Sep  88.67  0 kWh/mor  103.47                   | Oct  92.29  Total = Su  120.59                         | 90<br>Nov<br>95.91<br>m(44) <sub>112</sub> =                                                        | 99.53<br>c, 1d)                     | 1085.79 | (<br>(     |
| if TF, if TF, nnual duce t more t wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A > 13.9 A £ 13.9 averag the annual that 125 Jan er usage in 99.53 content of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P, N = 1 P, N = 1 P, N = 1 P hot was A average A litres per p Peb A litres per P5.91 A litres per P5.91 A litres per P5.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + 1.76 x ater usag hot water person per Mar day for ea  92.29  used - calc  133.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ge in litre usage by day (all w  Apr ach month  88.67  culated mo                                                                                                        | es per da 5% if the day atter use, l  May  Vd,m = fa  85.05  onthly = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from<br>81.43<br>190 x Vd,r                                                    | erage = designed (d)  Jul Table 1c x  81.43  m x nm x E  89.11                                                                 | (25 x N) to achieve  Aug (43)  85.05                                                                  | + 36 a water us  Sep  88.67  0 kWh/mor  103.47                   | Oct  92.29  Total = Su  120.59                         | 90<br>Nov<br>95.91<br>m(44) <sub>112</sub> = ables 1b, 1<br>131.63                                  | 99.53<br>c, 1d)                     |         |            |
| if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if | A > 13.9 A £ 13.9 averag the annual that 125 Jan er usage in 99.53 content of 147.6 aneous w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | + 1.76 x ater usag hot water person per Mar day for ea  92.29  used - calc  133.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ge in litre usage by day (all w  Apr ach month  88.67  culated mo                                                                                                        | es per da 5% if the day atter use, l  May  Vd,m = fa  85.05  onthly = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from<br>81.43<br>190 x Vd,r                                                    | erage = designed (d)  Jul Table 1c x  81.43  m x nm x E  89.11                                                                 | (25 x N) to achieve  Aug (43)  85.05  27m / 3600 102.25                                               | + 36 a water us  Sep  88.67  0 kWh/mor  103.47                   | Oct  92.29  Total = Su  120.59                         | 90<br>Nov<br>95.91<br>m(44) <sub>112</sub> = ables 1b, 1<br>131.63                                  | 99.53<br>c, 1d)                     |         |            |
| if TF, if TF, nnual duce  t more  t wate  ergy c  enstant  nstant  ater:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A > 13.9 A £ 13.9 averag the annual that 125 Jan er usage in 99.53 content of 147.6 aneous w 22.14 storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | ter usage hot water person per Mar day for ea 92.29 used - calce 133.21 ag at point 19.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ge in litre usage by day (all w Apr ach month 88.67  culated mo 116.14  of use (no                                                                                       | es per da 5% if the day atter use, I May Vd,m = fa 85.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 1<br>81.43<br>190 x Vd,r<br>96.16                                         | erage = designed id)  Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  13.37                                              | (25 x N) to achieve  Aug (43)  85.05  DTm / 3600  102.25  boxes (46)  15.34                           | + 36 a water us  Sep  88.67  0 kWh/mor  103.47  0 to (61)  15.52 | Oct  92.29  Total = Su  120.59  Total = Su  18.09      | 90<br>Nov<br>95.91<br>m(44) <sub>112</sub> = ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> =        | 99.53<br>= c, 1d)<br>142.94<br>=    |         |            |
| if TF. if TF. if TF. innual duce t more t t water ergy c ergy c innual innual mstant innual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A > 13.9 A £ 13.9 averag the annual that 125  Jan er usage in 99.53 content of 147.6 aneous w 22.14 storage e volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | ter usage hot water person per Mar day for ear 92.29  used - calc 133.21  ng at point 19.98  including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ge in litre usage by day (all w  Apr ach month  88.67  culated mo  116.14  of use (no  17.42                                                                             | es per da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if the da 5% if th | ay Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from<br>81.43<br>190 x Vd,r<br>96.16<br>storage),                              | erage = designed (d)  Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  13.37                                              | (25 x N) to achieve  Aug (43)  85.05  7Tm / 3600  102.25  boxes (46)  15.34  within sa                | + 36 a water us  Sep  88.67  0 kWh/mor  103.47  0 to (61)  15.52 | Oct  92.29  Total = Su  120.59  Total = Su  18.09      | 90<br>Nov<br>95.91<br>m(44) <sub>112</sub> = ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> =        | 99.53<br>                           |         |            |
| if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if TF, if | A > 13.9 A £ 13.9 averag the annual that 125 Jan er usage ir 99.53 content of 147.6 aneous w 22.14 storage e volum nunity h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P, N = 1 P, N = 1 P, N = 1 P hot was al average litres per p Peb P litres per P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ter usage hot water person per Mar day for ear 92.29 used - calcular 19.98 including nd no tal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ge in litre usage by day (all w Apr ach month 88.67  culated mo 116.14  of use (no 17.42  ng any so nk in dw                                                             | es per da 5% if the d vater use, I  May  Vd,m = fa  85.05  onthly = 4.  111.44  o hot water  16.72  olar or W velling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Vd,av welling is not and co  Jun  ctor from 1  81.43  190 x Vd,r  96.16  storage),  14.42  /WHRS  nter 110                       | erage = designed id)  Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  13.37  storage ) litres in                         | (25 x N) to achieve  Aug (43)  85.05  7Tm / 3600  102.25  boxes (46)  15.34  within sa                | + 36 a water us  Sep  88.67  0 kWh/mor  103.47  15.52  ame ves   | Oct  92.29  Total = Su  120.59  Total = Su  18.09  Sel | 900<br>Nov<br>95.91<br>m(44) <sub>112</sub> = ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> =       | 99.53<br>= c, 1d)<br>142.94<br>=    |         |            |
| if TF. if TF. if TF. innual duce  t more  t water  ergy c  ergy c  orage  committee  herw  ater:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A > 13.9 A £ 13.9 averag the annual that 125 Jan 99.53 content of 147.6 aneous w 22.14 storage e volum nunity h vise if no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | ter usage hot water person per Mar day for ear 92.29  used - calca 133.21  ng at point 19.98  including the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the market water the | ge in litre usage by day (all w  Apr ach month  88.67  culated mo  116.14  of use (no  17.42  ag any so nk in dw er (this in                                             | es per da 5% if the d vater use, l  May  Vd,m = fa  85.05  onthly = 4.  111.44  o hot water  16.72  olar or W velling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Vd,av lwelling is not and co  Jun ctor from 81.43  190 x Vd,r 96.16  storage), 14.42  /WHRS nter 110 nstantar                    | erage = designed (d)  Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  13.37  storage 0 litres in neous co                | (25 x N) to achieve  Aug (43)  85.05  27m / 3600  102.25  boxes (46)  15.34  within sa (47)           | + 36 a water us  Sep  88.67  0 kWh/mor  103.47  15.52  ame ves   | Oct  92.29  Total = Su  120.59  Total = Su  18.09  Sel | 900<br>Nov<br>95.91<br>m(44) <sub>112</sub> = ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> =       | 99.53<br>= c, 1d)<br>142.94<br>=    |         |            |
| if TF, if TF, innual duce  t water  t water  ergy c  innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innual innua | A > 13.9 A £ 13.9 averag the annual that 125  Jan 99.53  content of 147.6  aneous w 22.14 storage e volum nunity h vise if no storage anufact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | ter usage hot water person per day for ear 92.29 used - calc 133.21 ng at point 19.98 including that water eclared letter to the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color | ge in litre usage by day (all w  Apr ach month  88.67  culated mo  116.14  of use (no  17.42  ag any so ank in dw er (this in                                            | es per da 5% if the d vater use, I  May  Vd,m = fa  85.05  onthly = 4.  111.44  o hot water  16.72  olar or W velling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Vd,av lwelling is not and co  Jun ctor from 81.43  190 x Vd,r 96.16  storage), 14.42  /WHRS nter 110 nstantar                    | erage = designed (d)  Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  13.37  storage 0 litres in neous co                | (25 x N) to achieve  Aug (43)  85.05  27m / 3600  102.25  boxes (46)  15.34  within sa (47)           | + 36 a water us  Sep  88.67  0 kWh/mor  103.47  15.52  ame ves   | Oct  92.29  Total = Su  120.59  Total = Su  18.09  Sel | 90 Nov 95.91 m(44) <sub>112</sub> = ables 1b, 1 131.63 m(45) <sub>112</sub> = 19.74                 | 99.53<br>= c, 1d)<br>142.94<br>=    |         |            |
| if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if TF. if | A > 13.9 A £ 13.9 average the annual that 125 Jan 99.53 content of 147.6 aneous w 22.14 storage e volum nunity he vise if no storage anufact rature fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N = 1 Pop N | ter usage hot water person per day for ear 92.29 used - calc 133.21 ag at point 19.98 including nd no talc hot water eclared lem Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ge in litre usage by day (all w Apr ach month 88.67  culated mo 116.14  of use (no 17.42  ag any so ank in dw er (this in oss facto 2b                                   | es per da 5% if the d vater use, I  May  Vd,m = fa  85.05  onthly = 4.  111.44  o hot water  16.72  olar or W velling, e ncludes i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ay Vd,av lwelling is not and co  Jun ctor from 81.43  190 x Vd,r 96.16  storage), 14.42  /WHRS nter 110 nstantar                    | erage = designed (d)  Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  13.37  storage 0 litres in neous co                | (25 x N) to achieve  Aug (43)  85.05  77m / 3600  102.25  boxes (46)  15.34  within sa (47) ombi boil | + 36 a water us  Sep  88.67  103.47  15.52  ame vess  ers) ente  | Oct  92.29  Total = Su  120.59  Total = Su  18.09  Sel | 90<br>Nov<br>95.91<br>m(44) <sub>112</sub> = ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> = 19.74  | Dec  99.53  c, 1d)  142.94  21.44   |         |            |
| if TF, if TF, nnual duce  t water  t water  ergy c  ergy c  orage commister  herwater:  orage  commister  herwater:  orage  commister  herwater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater:  hermater | A > 13.9 A £ 13.9 average the annual that 125 Jan 99.53 content of 147.6 aneous w 22.14 storage e volum nunity h vise if no storage anufact rature far lost fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | ter usage hot water person per Mar day for ear 92.29 used - calc 133.21 19.98 including and no talc hot water eclared lem Table storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge in litre usage by day (all w Apr ach month 88.67  culated mo 116.14  of use (no 17.42  ag any so nk in dw er (this in oss facto 2b , kWh/ye                           | es per da $5\%$ if the a vater use, I May $Vd,m = fa$ 85.05 onthly = 4. 111.44 o hot water 16.72 olar or Welling, encludes i or is known ear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ay Vd,av<br>Iwelling is<br>not and co<br>Jun<br>81.43<br>190 x Vd,r<br>96.16<br>storage),<br>14.42<br>IWHRS<br>nter 110<br>nstantar | erage = designed (d)  Jul Table 1c x  81.43  89.11  enter 0 in  13.37  storage 0 litres in neous con/day):                     | (25 x N) to achieve  Aug (43)  85.05  27m / 3600  102.25  boxes (46)  15.34  within sa (47)           | + 36 a water us  Sep  88.67  103.47  15.52  ame vess  ers) ente  | Oct  92.29  Total = Su  120.59  Total = Su  18.09  Sel | 900<br>Nov<br>95.91<br>m(44) <sub>112</sub> = ables 1b, 1<br>131.63<br>m(45) <sub>112</sub> = 19.74 | Dec 99.53 = c, 1d) 142.94 = 21.44   |         |            |
| if TF. if TF. innual duce t more  t water  if more  innual duce t more  innual duce t more  innual duce t more  innual duce t more  innual duce t more  innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t more innual duce t | A > 13.9 A £ 13.9 average the annual of that 125  Jan 99.53 content of 147.6 aneous w 22.14 storage e volume of the anufact of the anufact of the anufact of anufact of anufact of anufact of anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of the anufact of | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | ter usage hot water person per Mar day for ear 92.29  used - calc 133.21  19.98  includin and no tal hot water hot water storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared to the storage eclared | ge in litre usage by day (all w  Apr ach month  88.67  culated mo  116.14  of use (no  17.42  ag any so ank in dw er (this in  oss facto 2b , kWh/ye cylinder l          | es per da 5% if the d vater use, I  May  Vd,m = fa  85.05  onthly = 4.  111.44  o hot water  16.72  olar or W velling, e ncludes i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ay Vd,av lwelling is not and co  Jun ctor from 81.43  190 x Vd,r 96.16  storage), 14.42  /WHRS nter 110 nstantar wn (kWh            | erage = designed (d)  Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  13.37  storage 0 litres in neous con/day):  known: | (25 x N) to achieve  Aug (43)  85.05  77m / 3600  102.25  boxes (46)  15.34  within sa (47) ombi boil | + 36 a water us  Sep  88.67  103.47  15.52  ame vess  ers) ente  | Oct  92.29  Total = Su  120.59  Total = Su  18.09  Sel | 90 Nov 95.91 m(44) <sub>112</sub> = ables 1b, 1 131.63 m(45) <sub>112</sub> =                       | .48  Dec  99.53                     |         |            |
| if TF. innual educe t more of wate  1)m= instant fater: corage therw fater: ) If m empe nergy) ) If m of wate comr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A > 13.9 A £ 13.9 average the annual that 125 Jan 99.53 content of 147.6 aneous w 22.14 storage e volum nunity h vise if no storage anufact rature far lost fro anufact ter stora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, N = 1 P, | ter usage hot water person per Mar day for ear 92.29 used - calcular 133.21 19.98 including at point abot water eclared less torage eclared of factor free sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ge in litre usage by day (all w  Apr ach month  88.67  culated mo  116.14  of use (no  17.42  ag any so ink in dw er (this in  oss facto 2b , kWh/ye cylinder l com Tabl | es per da 5% if the d vater use, I  May  Vd,m = fa  85.05  onthly = 4.  111.44  o hot water  16.72  olar or W velling, e ncludes i  or is kno  ear loss fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ay Vd,av lwelling is not and co  Jun ctor from 81.43  190 x Vd,r 96.16  storage), 14.42  /WHRS nter 110 nstantar wn (kWh            | erage = designed (d)  Jul Table 1c x  81.43  m x nm x E  89.11  enter 0 in  13.37  storage 0 litres in neous con/day):  known: | (25 x N) to achieve  Aug (43)  85.05  77m / 3600  102.25  boxes (46)  15.34  within sa (47) ombi boil | + 36 a water us  Sep  88.67  103.47  15.52  ame vess  ers) ente  | Oct  92.29  Total = Su  120.59  Total = Su  18.09  Sel | 90 Nov 95.91 m(44) <sub>112</sub> = ables 1b, 1 131.63 m(45) <sub>112</sub> =                       | Dec 99.53 = c, 1d) 142.94 = 21.44 0 |         |            |

| Energy lost from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ge, kWh/y                                                                                                                                          | ear                                                                                        |                                                                              |                                                                                               | (47) x (51)                                                                        | ) x (52) x (                                                                                       | 53) =                                                               |                                                             | 0                                               |               | (54)                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|---------------|--------------------------------------|
| Enter (50) or (54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |                                                                                            |                                                                              |                                                                                               |                                                                                    |                                                                                                    |                                                                     |                                                             | 0                                               |               | (55)                                 |
| Water storage los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d for each                                                                                                                                         | month                                                                                      |                                                                              |                                                                                               | ((56)m = (                                                                         | 55) × (41)r                                                                                        | n                                                                   |                                                             |                                                 |               |                                      |
| (56)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                  | 0                                                                                          | 0                                                                            | 0                                                                                             | 0                                                                                  | 0                                                                                                  | 0                                                                   | 0                                                           | 0                                               |               | (56)                                 |
| If cylinder contains de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dicated solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | storage, (57)                                                                                                                                      | m = (56)m                                                                                  | x [(50) – (                                                                  | H11)] ÷ (5                                                                                    | 0), else (5                                                                        | 7)m = (56)                                                                                         | m where (                                                           | H11) is fro                                                 | m Append                                        | ix H          |                                      |
| (57)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                  | 0                                                                                          | 0                                                                            | 0                                                                                             | 0                                                                                  | 0                                                                                                  | 0                                                                   | 0                                                           | 0                                               |               | (57)                                 |
| Primary circuit los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s (annual)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | from Table                                                                                                                                         | e 3                                                                                        |                                                                              |                                                                                               |                                                                                    |                                                                                                    |                                                                     |                                                             | 0                                               |               | (58)                                 |
| Primary circuit los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                    |                                                                                            |                                                                              | . ,                                                                                           | , ,                                                                                |                                                                                                    |                                                                     |                                                             |                                                 |               |                                      |
| (modified by fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                  | 1                                                                                          |                                                                              |                                                                                               | <del></del>                                                                        | <del></del>                                                                                        |                                                                     | <del></del>                                                 |                                                 | l             | (=a)                                 |
| (59)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                  | 0                                                                                          | 0                                                                            | 0                                                                                             | 0                                                                                  | 0                                                                                                  | 0                                                                   | 0                                                           | 0                                               |               | (59)                                 |
| Combi loss calcul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ated for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ch month                                                                                                                                           | (61)m =                                                                                    | (60) ÷ 36                                                                    | 65 × (41)                                                                                     | )m                                                                                 |                                                                                                    |                                                                     |                                                             |                                                 |               |                                      |
| (61)m= 50.72 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.15 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 43.73                                                                                                                                            | 43.34                                                                                      | 40.16                                                                        | 41.5                                                                                          | 43.34                                                                              | 43.73                                                                                              | 47.03                                                               | 47.3                                                        | 50.72                                           |               | (61)                                 |
| Total heat require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d for water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | heating c                                                                                                                                          | alculated                                                                                  | for eac                                                                      | h month                                                                                       | (62)m =                                                                            | 0.85 × (                                                                                           | 45)m +                                                              | (46)m +                                                     | (57)m +                                         | (59)m + (61)m |                                      |
| (62)m= 198.32 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.24 180.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 159.87                                                                                                                                           | 154.78                                                                                     | 136.32                                                                       | 130.61                                                                                        | 145.6                                                                              | 147.2                                                                                              | 167.62                                                              | 178.93                                                      | 193.66                                          |               | (62)                                 |
| Solar DHW input calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ulated using A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ppendix G o                                                                                                                                        | r Appendix                                                                                 | H (negati                                                                    | ve quantity                                                                                   | /) (enter '0                                                                       | ' if no sola                                                                                       | r contribut                                                         | ion to wate                                                 | er heating)                                     | •             |                                      |
| (add additional lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es if FGHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS and/or \                                                                                                                                        | WWHRS                                                                                      | applies                                                                      | , see Ap                                                                                      | pendix (                                                                           | 3)                                                                                                 |                                                                     |                                                             |                                                 |               |                                      |
| (63)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                  | 0                                                                                          | 0                                                                            | 0                                                                                             | 0                                                                                  | 0                                                                                                  | 0                                                                   | 0                                                           | 0                                               |               | (63)                                 |
| Output from wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                                                                            |                                                                              |                                                                                               |                                                                                    |                                                                                                    |                                                                     |                                                             |                                                 |               |                                      |
| (64)m= 198.32 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.24 180.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 159.87                                                                                                                                           | 154.78                                                                                     | 136.32                                                                       | 130.61                                                                                        | 145.6                                                                              | 147.2                                                                                              | 167.62                                                              | 178.93                                                      | 193.66                                          |               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                  | •                                                                                          |                                                                              | •                                                                                             | Outp                                                                               | out from wa                                                                                        | ater heate                                                          | r (annual) <sub>1</sub>                                     | 12                                              | 1966.39       | (64)                                 |
| Haat malma francis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 1 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 134/1/                                                                                                                                             |                                                                                            |                                                                              |                                                                                               |                                                                                    |                                                                                                    |                                                                     |                                                             |                                                 |               |                                      |
| Heat gains from v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vater neatii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ig, kvvn/m                                                                                                                                         | onth 0.28                                                                                  | 5 [0.85                                                                      | × (45)m                                                                                       | + (61)m                                                                            | า] + 0.8 x                                                                                         | (46)m                                                               | + (57)m                                                     | + (59)m                                         | ]             |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.96 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>-</del>                                                                                                                                       | onth 0.28                                                                                  | 42.01                                                                        | × (45)m<br>40                                                                                 | + (61)m<br>44.83                                                                   | 1] + 0.8 x<br>45.34                                                                                | 51.85                                                               | + (57)m<br>55.59                                            | + (59)m<br>60.21                                | ]             | (65)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.96 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 49.55                                                                                                                                            | 47.89                                                                                      | 42.01                                                                        | 40                                                                                            | 44.83                                                                              | 45.34                                                                                              | 51.85                                                               | 55.59                                                       | 60.21                                           |               | (65)                                 |
| (65)m= 61.76 5<br>include (57)m i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.96 56.0<br>n calculatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49.55<br>n of (65)m                                                                                                                                | 47.89<br>only if c                                                                         | 42.01                                                                        | 40                                                                                            | 44.83                                                                              | 45.34                                                                                              | 51.85                                                               | 55.59                                                       | 60.21                                           |               | (65)                                 |
| include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m in | 3.96 56.0<br>n calculations (see Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.55<br>n of (65)m<br>s 5 and 5a                                                                                                                  | 47.89<br>only if c                                                                         | 42.01                                                                        | 40                                                                                            | 44.83                                                                              | 45.34                                                                                              | 51.85                                                               | 55.59                                                       | 60.21                                           |               | (65)                                 |
| include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m in | 3.96 56.0<br>n calculations (see Table 5), W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49.55<br>n of (65)m<br>s 5 and 5a<br>/atts                                                                                                         | 47.89<br>only if c                                                                         | 42.01<br>ylinder i                                                           | 40                                                                                            | 44.83<br>dwelling                                                                  | 45.34<br>or hot w                                                                                  | 51.85                                                               | 55.59                                                       | 60.21                                           |               | (65)                                 |
| include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m in | 3.96 56.0<br>n calculations (see Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.55<br>n of (65)m<br>s 5 and 5a<br>/atts<br>r Apr                                                                                                | 47.89<br>only if c                                                                         | 42.01                                                                        | 40<br>s in the o                                                                              | 44.83                                                                              | 45.34                                                                                              | 51.85<br>ater is fr                                                 | 55.59<br>om com                                             | 60.21<br>munity h                               |               | (65)                                 |
| (65)m= 61.76 5<br>include (57)m in<br>5. Internal gains<br>Metabolic gains (<br>Jan<br>(66)m= 118.49 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.96 56.0 s calculation (see Table 5), Where the Market 118.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49                                                                                                   | 47.89 only if c ):  May 118.49                                                             | 42.01 ylinder is Jun 118.49                                                  | 40<br>s in the c<br>Jul<br>118.49                                                             | 44.83<br>dwelling<br>Aug<br>118.49                                                 | 45.34<br>or hot w<br>Sep<br>118.49                                                                 | 51.85 ater is fr                                                    | 55.59<br>om com                                             | 60.21<br>munity h                               |               |                                      |
| include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m in | 3.96 56.0 s calculation (see Table 5), Where Market 118.4 lculated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49.55 n of (65)m 5 and 5a 7 atts r Apr 9 118.49 Appendix                                                                                           | 47.89 conly if c display may 118.49 L, equati                                              | Jun 118.49                                                                   | 40 s in the c  Jul  118.49 r L9a), a                                                          | 44.83 dwelling Aug 118.49 lso see                                                  | 45.34<br>or hot w<br>Sep<br>118.49<br>Table 5                                                      | 51.85 ater is fr Oct 118.49                                         | 55.59<br>om com                                             | 60.21<br>munity h                               |               |                                      |
| (65)m= 61.76 5 include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m i | 3.96 56.0 s calculation (see Table 5), Where Market 118.4 lculated in 6.59 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 0 10.21                                                                                  | 47.89 only if c ): May 118.49 L, equati 7.64                                               | 42.01 ylinder is  Jun 118.49 ion L9 of                                       | Jul<br>118.49<br>r L9a), a                                                                    | Aug 118.49 lso see 9.05                                                            | 45.34<br>or hot w<br>Sep<br>118.49<br>Table 5                                                      | 51.85 ater is fr  Oct 118.49                                        | 55.59<br>om com<br>Nov<br>118.49                            | 60.21<br>munity h                               |               | (66)                                 |
| include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m in | 3.96 56.0 s calculation (see Table 5), Where Market 118.4 lculated in 6.59 13.4 (calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 0 10.21 I in Append                                                                      | 47.89 only if c ): May 118.49 L, equati 7.64 dix L, equ                                    | Jun 118.49 ion L9 of 6.45 uation L                                           | Jul<br>118.49<br>r L9a), a<br>6.97                                                            | Aug 118.49 lso see 9.05 3a), also                                                  | 45.34<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal                                | 51.85 ater is fr  Oct 118.49 15.43 ble 5                            | 55.59<br>om com<br>Nov<br>118.49                            | 60.21<br>munity h                               |               | (66)<br>(67)                         |
| (65)m= 61.76 5 include (57)m in  5. Internal gains Metabolic gains (  Jan  (66)m= 118.49 1  Lighting gains (ca  (67)m= 18.68 1  Appliances gains  (68)m= 209.56 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.96 56.0 s (see Table 5), Where Market 118.4 lculated in 6.59 13.4 (calculated 1.73 206.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 0 10.21 I in Appendix 15 194.59                                                          | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, eq 179.86                             | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L                               | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1:                                               | 44.83 dwelling Aug 118.49 lso see 9.05 3a), also 154.6                             | 45.34<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal<br>160.08                      | 51.85  ater is fr  Oct  118.49  15.43  ble 5  171.75                | 55.59<br>om com<br>Nov<br>118.49                            | 60.21<br>munity h                               |               | (66)                                 |
| include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m include (57)m include (58)m include (57)m include (58)m include (57)m include (58)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m in | 3.96 56.0 calculation (see Table 5), Where Market Market 118.4 lculated in 6.59 13.4 (calculated in 1.73 206.2 lculated in 1.73 206.2 lculated in 1.73 206.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 0 10.21 I in Appendix 5 194.59 Appendix                                                  | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, equati 179.86 L, equat                | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L<br>166.02                     | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a)                          | 44.83 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se                 | 45.34 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table                                 | 51.85  ater is fr  Oct  118.49  15.43  ole 5  171.75  5             | 55.59<br>om com<br>Nov<br>118.49<br>18.01                   | Dec 118.49                                      |               | (66)<br>(67)<br>(68)                 |
| (65)m= 61.76 5 include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m= 118.49 1.7 Lighting gains (ca (67)m= 18.68 1 Appliances gains (68)m= 209.56 2.7 Cooking gains (ca (69)m= 34.85 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.96 56.0 calculation (see Table 5), Where Market 118.4 calculated in 1.73 206.2 calculated in 1.73 34.8 34.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.55 n of (65)m e 5 and 5a  /atts r Apr 9 118.49 Appendix 0 10.21 I in Appen 5 194.59 Appendix 5 34.85                                            | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, eq 179.86                             | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L                               | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1:                                               | 44.83 dwelling Aug 118.49 lso see 9.05 3a), also 154.6                             | 45.34<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal<br>160.08                      | 51.85  ater is fr  Oct  118.49  15.43  ble 5  171.75                | 55.59<br>om com<br>Nov<br>118.49                            | 60.21<br>munity h                               |               | (66)<br>(67)                         |
| (65)m= 61.76 5 include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (57)m include (58)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m i | 3.96 56.0 calculation (see Table 5), Where Market 118.4 calculated in 1.73 206.2 calculated in 1.73 206.2 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 34.8 calculated in 1.85 3 | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 0 10.21 I in Appendix 15 194.59 Appendix 34.85 e 5a)                                     | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85             | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L<br>166.02<br>ion L15<br>34.85 | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1:<br>156.78<br>or L15a)<br>34.85                | 44.83 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85           | 45.34<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal<br>160.08<br>ee Table<br>34.85 | 51.85  ater is fr  Oct  118.49  15.43  ble 5  171.75  5  34.85      | 55.59<br>om com<br>Nov<br>118.49<br>18.01<br>186.47         | Dec 118.49 19.2 200.31                          |               | (66)<br>(67)<br>(68)<br>(69)         |
| (65)m= 61.76 5 include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m i | 3.96 56.0 s (see Table 5), Where Market 118.4 lculated in 6.59 13.4 (calculated in 4.85 34.8 gains (Table 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 0 10.21 I in Appendix 5 194.59 Appendix 5 34.85 e 5a) 3                                  | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85             | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L<br>166.02<br>ion L15<br>34.85 | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a)                          | 44.83 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se                 | 45.34 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table                                 | 51.85  ater is fr  Oct  118.49  15.43  ole 5  171.75  5             | 55.59<br>om com<br>Nov<br>118.49<br>18.01                   | Dec 118.49                                      |               | (66)<br>(67)<br>(68)                 |
| include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m in | 3.96 56.0 s (see Table 5), Where Market 118.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s (calculated in 6.59 13.4 s  | 49.55 n of (65)m s 5 and 5a /atts r Apr 9 118.49 Appendix 9 10.21 I in Appendix 5 194.59 Appendix 6 34.85 e 5a) gative value                       | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equati 34.85            | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L<br>166.02<br>ion L15<br>34.85 | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1:<br>156.78<br>or L15a)<br>34.85                | 44.83 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85           | 45.34<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal<br>160.08<br>ee Table<br>34.85 | 51.85 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85            | 55.59  om com  Nov  118.49  18.01  186.47  34.85            | 60.21 munity h  Dec 118.49  19.2  200.31        |               | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| (65)m= 61.76 5 include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m i | 3.96 56.0 s (see Table 5), Where Market 18.49 118.4 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 3 | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 0 10.21 I in Appendix 5 194.59 Appendix 6 34.85 e 5a) gative value 9 -94.79              | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85             | Jun<br>118.49<br>ion L9 of<br>6.45<br>uation L<br>166.02<br>ion L15<br>34.85 | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1:<br>156.78<br>or L15a)<br>34.85                | 44.83 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85           | 45.34<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal<br>160.08<br>ee Table<br>34.85 | 51.85  ater is fr  Oct  118.49  15.43  ble 5  171.75  5  34.85      | 55.59<br>om com<br>Nov<br>118.49<br>18.01<br>186.47         | Dec 118.49 19.2 200.31                          |               | (66)<br>(67)<br>(68)<br>(69)         |
| (65)m= 61.76 5 include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (57)m include (58)m include (57)m include (58)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m i | 3.96 56.0 s (see Table 5), Where Market 118.4 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s  | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 0 10.21 I in Appendix 5 194.59 Appendix 6 34.85 e 5a) 3 gative valu 9 -94.79 5)          | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  3 es) (Tab | Jun 118.49 ion L9 of 6.45 uation L 166.02 ion L15 34.85  3 le 5) -94.79      | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1<br>156.78<br>or L15a)<br>34.85                 | 44.83 dwelling  Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85           | 45.34 or hot w  Sep 118.49 Table 5 12.15 o see Tall 160.08 ee Table 34.85  3                       | 51.85 ater is fr  Oct 118.49  15.43 ole 5 171.75 5 34.85            | 55.59 om com  Nov  118.49  18.01  186.47  34.85             | 60.21 munity h  Dec 118.49  19.2  200.31  34.85 |               | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| (65)m= 61.76 5 include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (57)m include (58)m include (57)m include (58)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m i | 3.96 56.0 s (see Table 5), Where Market 18.49 118.4 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 34.8 s (calculated in 4.85 3 | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 0 10.21 I in Appendix 5 194.59 Appendix 6 34.85 e 5a) 3 gative valu 9 -94.79 5)          | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equati 34.85            | Jun 118.49 ion L9 of 6.45 uation L 166.02 ion L15 34.85  3 le 5) -94.79      | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1:<br>156.78<br>or L15a)<br>34.85                | 44.83 dwelling Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85  3  -94.79 | 45.34 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85  3  -94.79                | 51.85 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85  3  -94.79 | 55.59  om com  Nov  118.49  18.01  186.47  34.85  3  -94.79 | Dec 118.49 19.2 200.31 34.85 3                  |               | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| (65)m= 61.76 5 include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (57)m include (58)m include (57)m include (58)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m i | 3.96   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56.0   56 | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 9 10.21 I in Appendix 5 194.59 Appendix 6 34.85 e 5a) 3 gative value 9 -94.79 5) 4 68.82 | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  3 es) (Tab | Jun 118.49 ion L9 of 6.45 uation L 166.02 ion L15 34.85  3 le 5) -94.79      | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1:<br>156.78<br>or L15a)<br>34.85<br>3<br>-94.79 | 44.83 dwelling Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85  3  -94.79 | 45.34 or hot w  Sep 118.49 Table 5 12.15 o see Tall 160.08 ee Table 34.85  3                       | 51.85 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85  3  -94.79 | 55.59  om com  Nov  118.49  18.01  186.47  34.85  3  -94.79 | Dec 118.49 19.2 200.31 34.85 3                  |               | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| (65)m= 61.76 5 include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (58)m include (57)m include (58)m include (57)m include (58)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m include (57)m i | 3.96 56.0 s (see Table 5), Where Market 118.4 s (calculated in 6.59 13.4 s (calculated in 4.85 34.8 s (Table 3 3 3 s (Table 3 3 3 s (Table 3 5) s (Table 3 5) s (Table 3 75.3 s (Table 3 75.3 5) s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75.3 s (Table 3 75 | 49.55 n of (65)m e 5 and 5a /atts r Apr 9 118.49 Appendix 9 10.21 I in Appendix 5 194.59 Appendix 6 34.85 e 5a) 3 gative valu 9 -94.79 5) 4 68.82  | 47.89 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  3 es) (Tab | Jun 118.49 ion L9 of 6.45 uation L 166.02 ion L15 34.85  3 le 5) -94.79      | Jul<br>118.49<br>r L9a), a<br>6.97<br>13 or L1:<br>156.78<br>or L15a)<br>34.85                | 44.83 dwelling Aug 118.49 lso see 9.05 3a), also 154.6 ), also se 34.85  3  -94.79 | 45.34 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85  3  -94.79                | 51.85 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85  3  -94.79 | 55.59  om com  Nov  118.49  18.01  186.47  34.85  3  -94.79 | Dec 118.49 19.2 200.31 34.85 3                  |               | (66)<br>(67)<br>(68)<br>(69)<br>(70) |

Stroma FSAP 2012 Version: 1.0.4.16 (SAP 9.92) - http://www.stroma.com

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Fact<br>Table 6d | or | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|--------------------------------------|----|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                  | x  | 5.69       | x | 11.28            | x | 0.63           | x | 0.7            | =        | 19.62        | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | x | 11.28            | x | 0.63           | х | 0.7            | =        | 3            | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | x | 22.97            | x | 0.63           | х | 0.7            | =        | 39.94        | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | x | 22.97            | x | 0.63           | x | 0.7            | ] =      | 6.11         | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | x | 41.38            | x | 0.63           | х | 0.7            | =        | 71.96        | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | x | 41.38            | x | 0.63           | х | 0.7            | =        | 11           | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | x | 67.96            | x | 0.63           | х | 0.7            | =        | 118.17       | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | X | 67.96            | X | 0.63           | x | 0.7            | =        | 18.07        | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | x | 91.35            | x | 0.63           | x | 0.7            | =        | 158.84       | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | x | 91.35            | x | 0.63           | x | 0.7            | <b>=</b> | 24.29        | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | X | 97.38            | x | 0.63           | x | 0.7            | =        | 169.35       | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | x | 97.38            | x | 0.63           | x | 0.7            | =        | 25.89        | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | x | 91.1             | x | 0.63           | x | 0.7            | =        | 158.42       | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | x | 91.1             | x | 0.63           | X | 0.7            | =        | 24.22        | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | X | 72.63            | x | 0.63           | x | 0.7            | =        | 126.29       | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | X | 72.63            | X | 0.63           | X | 0.7            | =        | 19.31        | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | x | 50.42            | x | 0.63           | X | 0.7            | =        | 87.68        | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | x | 50.42            | x | 0.63           | x | 0.7            | =        | 13.41        | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | X | 28.07            | X | 0.63           | X | 0.7            | =        | 48.81        | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | x | 28.07            | x | 0.63           | x | 0.7            | =        | 7.46         | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | x | 14.2             | x | 0.63           | x | 0.7            | =        | 24.69        | (75) |
| Northeast 0.9x 0.77                  | X  | 0.87       | X | 14.2             | X | 0.63           | X | 0.7            | =        | 3.77         | (75) |
| Northeast 0.9x 0.77                  | X  | 5.69       | X | 9.21             | X | 0.63           | X | 0.7            | =        | 16.02        | (75) |
| Northeast <sub>0.9x</sub> 0.77       | X  | 0.87       | x | 9.21             | x | 0.63           | X | 0.7            | =        | 2.45         | (75) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 36.79            | X | 0.63           | X | 0.7            | =        | 33.06        | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 62.67            | X | 0.63           | X | 0.7            | =        | 56.31        | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 85.75            | X | 0.63           | X | 0.7            | =        | 77.05        | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 106.25           | X | 0.63           | X | 0.7            | =        | 95.47        | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 119.01           | X | 0.63           | X | 0.7            | =        | 106.93       | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 118.15           | X | 0.63           | X | 0.7            | =        | 106.16       | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 113.91           | X | 0.63           | X | 0.7            | =        | 102.35       | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 104.39           | X | 0.63           | x | 0.7            | =        | 93.8         | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 92.85            | X | 0.63           | X | 0.7            | =        | 83.43        | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | X | 69.27            | X | 0.63           | X | 0.7            | =        | 62.24        | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | x | 44.07            | x | 0.63           | x | 0.7            | =        | 39.6         | (77) |
| Southeast 0.9x 0.77                  | X  | 1.47       | x | 31.49            | x | 0.63           | x | 0.7            | =        | 28.29        | (77) |
| Southwest <sub>0.9x</sub> 0.77       | X  | 0.93       | x | 36.79            | ] | 0.63           | x | 0.7            | =        | 10.46        | (79) |
| Southwest <sub>0.9x</sub> 0.77       | X  | 1.98       | × | 36.79            | ] | 0.63           | x | 0.7            | =        | 22.26        | (79) |
| Southwest <sub>0.9x</sub> 0.77       | X  | 1.63       | × | 36.79            | ] | 0.63           | X | 0.7            | =        | 18.33        | (79) |

| Southwest <sub>0.9x</sub>   | 0.77 | 1           | 0.04 | 1 .,     | 00.70  | 0.00 | l " | 0.7 | 1 =        | 00.04 | (79)          |
|-----------------------------|------|-------------|------|----------|--------|------|-----|-----|------------|-------|---------------|
| Southwest <sub>0.9x</sub>   | 0.77 | ] X<br>]    | 2.04 | X<br>I   | 36.79  | 0.63 | X   | 0.7 | ]          | 22.94 | =             |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | X<br>I   | 62.67  | 0.63 | X   | 0.7 | ] =<br>1 _ | 17.81 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | ] X<br>] ., | 1.98 | l X<br>l | 62.67  | 0.63 | X   | 0.7 | ] =<br>1 _ | 37.92 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 62.67  | 0.63 | X   | 0.7 | ] =<br>1   | 31.22 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 62.67  | 0.63 | X   | 0.7 | ] =<br>1   | 39.07 | (79)          |
| Southwesto.9x Southwesto.9x | 0.77 | ] X<br>]    | 0.93 | X<br>    | 85.75  | 0.63 | X   | 0.7 | ] =<br>1 _ | 24.37 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | X        | 85.75  | 0.63 | X   | 0.7 | ] =<br>1   | 51.89 | (79)          |
| <u> </u>                    | 0.77 | X           | 1.63 | X        | 85.75  | 0.63 | X   | 0.7 | ] =<br>1   | 42.72 | (79)          |
| Southwesto.9x               | 0.77 | X           | 2.04 | X        | 85.75  | 0.63 | X   | 0.7 | ] =<br>1   | 53.46 | (79)          |
| Southwesto.9x               | 0.77 | X           | 0.93 | X        | 106.25 | 0.63 | X   | 0.7 | ] =<br>1   | 30.2  | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | X        | 106.25 | 0.63 | X   | 0.7 | ] =<br>1   | 64.29 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 106.25 | 0.63 | X   | 0.7 | ] =        | 52.93 | <u> </u> (79) |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 106.25 | 0.63 | X   | 0.7 | =          | 66.24 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | X        | 119.01 | 0.63 | X   | 0.7 | =          | 33.83 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | X        | 119.01 | 0.63 | X   | 0.7 | ] =        | 72.01 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 119.01 | 0.63 | X   | 0.7 | ] <b>=</b> | 59.29 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 119.01 | 0.63 | X   | 0.7 | =          | 74.2  | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | X        | 118.15 | 0.63 | X   | 0.7 | =          | 33.58 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | x        | 118.15 | 0.63 | X   | 0.7 | =          | 71.49 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | x        | 118.15 | 0.63 | X   | 0.7 | =          | 58.86 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 118.15 | 0.63 | X   | 0.7 | =          | 73.66 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | x        | 113.91 | 0.63 | X   | 0.7 | =          | 32.38 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | X        | 113.91 | 0.63 | X   | 0.7 | =          | 68.93 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 113.91 | 0.63 | X   | 0.7 | =          | 56.74 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | x        | 113.91 | 0.63 | X   | 0.7 | <b>=</b>   | 71.02 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | x        | 104.39 | 0.63 | X   | 0.7 | <b>=</b>   | 29.67 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | x        | 104.39 | 0.63 | X   | 0.7 | <b>=</b>   | 63.17 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | X        | 104.39 | 0.63 | X   | 0.7 | =          | 52    | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | X        | 104.39 | 0.63 | X   | 0.7 | =          | 65.08 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 0.93 | x        | 92.85  | 0.63 | X   | 0.7 | =          | 26.39 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 1.98 | x        | 92.85  | 0.63 | x   | 0.7 | =          | 56.19 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.63 | x        | 92.85  | 0.63 | X   | 0.7 | =          | 46.25 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 2.04 | x        | 92.85  | 0.63 | x   | 0.7 | =          | 57.89 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 0.93 | x        | 69.27  | 0.63 | x   | 0.7 | ] =        | 19.69 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | X           | 1.98 | x        | 69.27  | 0.63 | X   | 0.7 | =          | 41.91 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 1.63 | x        | 69.27  | 0.63 | x   | 0.7 | ] =        | 34.51 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 2.04 | x        | 69.27  | 0.63 | x   | 0.7 | ] =        | 43.18 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 0.93 | x        | 44.07  | 0.63 | x   | 0.7 | ] =        | 12.53 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 1.98 | x        | 44.07  | 0.63 | x   | 0.7 | ] =        | 26.67 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 1.63 | x        | 44.07  | 0.63 | x   | 0.7 | ] =        | 21.95 | (79)          |
| Southwest <sub>0.9x</sub>   | 0.77 | x           | 2.04 | x        | 44.07  | 0.63 | x   | 0.7 | ] =        | 27.48 | (79)          |
| _                           |      | -           |      | -        |        |      |     |     | -          |       | _             |

| Southwest <sub>0.9x</sub>                                                                                                                                                                                               | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93                                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.49                                                                                                                                                                                |                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                     | 0.7                                                     | =                                         | 8.95  | (79)                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|-------|----------------------------------------------|
| Southwest <sub>0.9x</sub>                                                                                                                                                                                               | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98                                                                                                                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.49                                                                                                                                                                                | $\overline{1}$                                                | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                     | 0.7                                                     | =                                         | 19.05 | (79)                                         |
| Southwest <sub>0.9x</sub>                                                                                                                                                                                               | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.49                                                                                                                                                                                |                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                     | 0.7                                                     | =                                         | 15.69 | (79)                                         |
| Southwest <sub>0.9x</sub>                                                                                                                                                                                               | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )4                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.49                                                                                                                                                                                |                                                               | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                     | 0.7                                                     | =                                         | 19.63 | (79)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                                                   | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     | =                                         | 7.95  | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                                                                                                                                                                                   | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     | <del>-</del>                              | 16.52 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96                                                                                                                                                                                   | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     | =                                         | 29.36 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150                                                                                                                                                                                  | = x                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     |                                           | 45.88 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 192                                                                                                                                                                                  | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     | =                                         | 58.72 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                  | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     | =                                         | 61.17 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 189                                                                                                                                                                                  | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     | =                                         | 57.8  | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 157                                                                                                                                                                                  | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                     | 0.7                                                     | =                                         | 48.02 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115                                                                                                                                                                                  | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     | =                                         | 35.17 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66                                                                                                                                                                                   | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                     | 0.7                                                     | =                                         | 20.19 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                                                                                                                                                                   | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     | =                                         | 10.09 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                                   | ×                                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                     | 0.7                                                     | =                                         | 6.42  | (82)                                         |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      | _                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                         |                                           |       |                                              |
| Solar gains ir                                                                                                                                                                                                          | n watts, ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for eac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h montl                                                                                                                  | า                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                      | (83)n                                                         | n = Sum(74)m .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (82)m                                                                 |                                                         |                                           |       |                                              |
| (83)m= 137.62                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 361.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 491.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 588.11                                                                                                                   | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00.16 571.86                                                                                                                                                                         | 497                                                           | .34 406.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 277.98                                                                | 166.78                                                  | 116.51                                    | ]     | (83)                                         |
| Total gains –                                                                                                                                                                                                           | internal ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (84)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (73)m                                                                                                                    | + (8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33)m , watts                                                                                                                                                                         |                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | •                                                       |                                           | _     |                                              |
| (84)m= 510.41                                                                                                                                                                                                           | 615.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 718.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 826.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 901.52                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92.52 850.91                                                                                                                                                                         | 782                                                           | 2.8 703.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 596.4                                                                 | 510.02                                                  | 478.49                                    | ]     | (84)                                         |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                         |                                           |       |                                              |
| 7 Mean inte                                                                                                                                                                                                             | ernal tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erature (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | seaso                                                                                                                    | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                    |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                         |                                           | _     |                                              |
| 7. Mean inte                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area from Ta                                                                                                                                                                         | able 9                                                        | . Th1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |                                                         |                                           | 21    | (85)                                         |
| Temperature                                                                                                                                                                                                             | e during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eating p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eriods ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n the liv                                                                                                                | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                      |                                                               | , Th1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |                                                         |                                           | 21    | (85)                                         |
| Temperature Utilisation fa                                                                                                                                                                                              | e during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eating pains for li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eriods ir<br>iving are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n the liv                                                                                                                | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee Table 9a)                                                                                                                                                                         | 1                                                             | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oct                                                                   | Nov                                                     | Dec                                       | 21    | (85)                                         |
| Temperature Utilisation fa                                                                                                                                                                                              | e during he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eating points for the Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eriods ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n the liv                                                                                                                | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      | A                                                             | ug Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oct                                                                   | Nov<br>0.99                                             | Dec<br>1                                  | 21    | (85)                                         |
| Temperature Utilisation fa  Jan  (86)m= 1                                                                                                                                                                               | e during he actor for ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating pains for li<br>Mar<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eriods ir<br>iving are<br>Apr<br>0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n the livea, h1,r<br>May                                                                                                 | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee Table 9a)<br>Jun Jul<br>0.65 0.49                                                                                                                                                 | A 0.8                                                         | ug Sep<br>55 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | +                                                       |                                           | 21    |                                              |
| Temperature Utilisation fa  Jan (86)m= 1  Mean intern                                                                                                                                                                   | e during he dictor for gate Feb 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eating positions for limited Mar 0.98 atture in l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eriods ir<br>iving are<br>Apr<br>0.93<br>iving are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n the livea, h1,r<br>May<br>0.82                                                                                         | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jun Jul<br>0.65 0.49<br>w steps 3 to                                                                                                                                                 | 0.5<br>7 in 1                                                 | ug Sep<br>55 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.96                                                                  | 0.99                                                    | 1                                         | 21    | (86)                                         |
| Temperature Utilisation fa  Jan  (86)m= 1                                                                                                                                                                               | e during he actor for ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating pains for li<br>Mar<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eriods ir<br>iving are<br>Apr<br>0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n the livea, h1,r<br>May                                                                                                 | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee Table 9a)<br>Jun Jul<br>0.65 0.49                                                                                                                                                 | A 0.8                                                         | ug Sep<br>55 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | 0.99                                                    |                                           | 21    |                                              |
| Temperature Utilisation fa  Jan (86)m= 1  Mean intern                                                                                                                                                                   | e during he dictor for gate   Feb   0.99   al tempera   19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eating positions for line Mar 0.98 ature in l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eriods ir<br>iving are<br>Apr<br>0.93<br>iving are<br>20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n the livea, h1,r<br>May<br>0.82<br>ea T1 (t                                                                             | ing<br>n (s<br>follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Table 9a) Jun Jul 0.65 0.49 w steps 3 to 0.95 20.99                                                                                                                               | 7 in 7                                                        | ug Sep 55 0.8  able 9c) 98 20.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.96                                                                  | 0.99                                                    | 1                                         | 21    | (86)                                         |
| Temperature Utilisation fa  Jan (86)m= 1  Mean intern (87)m= 19.6                                                                                                                                                       | e during he court for gate for for gate for for gate for for gate for for gate for for for for for for for for for for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eating positions for line Mar 0.98 ature in l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eriods ir<br>iving are<br>Apr<br>0.93<br>iving are<br>20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n the livea, h1,r<br>May<br>0.82<br>ea T1 (t                                                                             | ing<br>n (s<br>follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Table 9a) Jun Jul 0.65 0.49 w steps 3 to 0.95 20.99                                                                                                                               | 7 in 7                                                        | ug Sep 55 0.8  Table 9c) 98 20.87  9, Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.96                                                                  | 0.99                                                    | 1                                         | 21    | (86)                                         |
| Temperature  Utilisation fa  Jan  (86)m= 1  Mean intern (87)m= 19.6  Temperature                                                                                                                                        | re during he during he during he during he during he 19.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eating points for line Mar 0.98 ature in line 20.11 eating points 19.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eriods ir<br>iving are<br>Apr<br>0.93<br>iving are<br>20.5<br>eriods ir<br>19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest of                                                                       | ing (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y steps 3 to 0.95 20.99 relling from T 9.85 19.85                                                                                                                                    | 7 in 7 20.                                                    | ug Sep 55 0.8  Table 9c) 98 20.87  9, Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.96<br>20.46                                                         | 0.99                                                    | 19.57                                     | 21    | (86)                                         |
| Temperature  Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82                                                                                                                         | re during he during he during he during he during he 19.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eating points for line Mar 0.98 ature in line 20.11 eating points 19.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eriods ir<br>iving are<br>Apr<br>0.93<br>iving are<br>20.5<br>eriods ir<br>19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest of                                                                       | ing (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y steps 3 to 0.95 20.99 relling from T 9.85 19.85                                                                                                                                    | 7 in 7 20.                                                    | ug Sep 55 0.8  Table 9c) 98 20.87  9, Th2 (°C) 86 19.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96<br>20.46                                                         | 0.99                                                    | 19.57                                     | 21    | (86)                                         |
| Temperature  Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation fa  (89)m= 1                                                                                               | re during he during he during he during he during he ductor for gar 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating positive in I 20.11 eating positive 19.83 eight of 19.83 eight of 19.87 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 ei | eriods ir<br>iving are<br>Apr<br>0.93<br>iving are<br>20.5<br>eriods ir<br>19.84<br>est of do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest or 19.84 welling, 0.77                                                   | ing (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jun                                                                                                                                                                                  | 7 in 7 20.  Table 9a)  0.4                                    | ug Sep 55 0.8  Table 9c) 98 20.87  9, Th2 (°C) 86 19.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96<br>20.46<br>19.84<br>0.94                                        | 0.99<br>19.96                                           | 19.57                                     | 21    | (86)<br>(87)<br>(88)                         |
| Temperature  Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation fa                                                                                                         | re during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he dur | eating positive in I 20.11 eating positive 19.83 eight of 19.83 eight of 19.87 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 ei | eriods ir<br>iving are<br>Apr<br>0.93<br>iving are<br>20.5<br>eriods ir<br>19.84<br>rest of do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest or 19.84 welling, 0.77                                                   | follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo  | Jun                                                                                                                                                                                  | 7 in 7 20.  Table 9a)  0.4                                    | ug Sep 0.8  able 9c) 98 20.87  9, Th2 (°C) 86 19.85  12 0.72  to 7 in Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.96<br>20.46<br>19.84<br>0.94                                        | 0.99<br>19.96<br>19.84<br>0.99                          | 19.57                                     |       | (86)<br>(87)<br>(88)                         |
| Temperature  Utilisation far  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation far  (89)m= 1  Mean intern                                                                                | re during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he dur | eating points for 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eriods ir iving are Apr 0.93 iving are 20.5 eriods ir 19.84 rest of de 0.91 the rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest or 19.84 welling, 0.77 of dwel                                           | follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo  | y steps 3 to 0.95 20.99 20.85 19.85 19.85 20.37 T2 (follow s                                                                                                                         | 7 in 1 20.  7 able 9 19.  19.  10.4  19.  10.4                | ug Sep 55 0.8  Table 9c) 98 20.87  9, Th2 (°C) 86 19.85  12 0.72  10 7 in Table 85 19.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96  20.46  19.84  0.94  e 9c) 19.24                                 | 0.99<br>19.96<br>19.84<br>0.99                          | 1<br>19.57<br>19.83<br>1                  | 21    | (86)<br>(87)<br>(88)<br>(89)                 |
| Temperature Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation fa  (89)m= 1  Mean intern  (90)m= 17.98                                                                     | re during he actor for gar 19.8 re during he 19.82 rector for gar 18.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eating positive in 1 20.11 eating positive in 1 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19.83 eight of 19. | eriods ir iving are Apr 0.93 iving are 20.5 eriods ir 19.84 rest of de 0.91 the rest 19.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest or 19.84 welling, 0.77 of dwel 19.65                                     | follo<br>follo<br>follo<br>follo<br>1<br>h2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y steps 3 to 0.95   20.99 elling from T 9.85   19.85 m (see Tabl 0.55   0.37 T2 (follow s 9.82   19.85                                                                               | A 0.9 7 in 1 20.5 7 able 9 19.6 19.6 19.7 19.8 19.9 19.9 19.9 | ug Sep 0.8  Table 9c) 98 20.87  9, Th2 (°C) 86 19.85  12 0.72  10 7 in Table 85 19.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.96  20.46  19.84  0.94  e 9c) 19.24                                 | 0.99<br>19.96<br>19.84<br>0.99                          | 1<br>19.57<br>19.83<br>1                  |       | (86)<br>(87)<br>(88)<br>(89)                 |
| Temperature Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation fa  (89)m= 1  Mean intern  (90)m= 17.98                                                                     | re during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he during he distance he during he distance he during he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he distance he dis | eating positive in I 20.11 eating positive in I 19.83 eature in I 19.83 eature in I 18.72 eature in I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.72 eature (for I 18.7 | eriods in iving are 0.93 iving are 20.5 eriods in 19.84 rest of drought 19.27 rest who where the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the whole in the | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest o 19.84 welling, 0.77 of dwel 19.65                                      | follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  follo  fo | ee Table 9a) Jun Jul 0.65 0.49 w steps 3 to 0.95 20.99 relling from T 9.85 19.85 m (see Tabl 0.55 0.37 T2 (follow s 9.82 19.85                                                       | A 0.9 7 in 7 20. Table 9 19. 1 e 9a) 1 - 1 + (1               | ug Sep 55 0.8  able 9c) 98 20.87  9, Th2 (°C) 86 19.85  42 0.72  4 to 7 in Table 85 19.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.96  20.46  19.84  0.94  e 9c)  19.24  LA = Liv                      | 0.99  19.96  19.84  0.99  18.51  ring area ÷ (4         | 1<br>19.57<br>19.83<br>1<br>17.94<br>4) = |       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91) |
| Temperature Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation fa  (89)m= 1  Mean intern  (90)m= 17.98  Mean intern  (92)m= 18.55                                          | re during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here during here dur | eating positive in 1 20.11 eating positive in 1 19.83 eight ature in 1 18.72 eature in 1 18.72 eature in 1 18.72 eature (for 19.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eriods ir iving are Apr 0.93 iving are 20.5 eriods ir 19.84 rest of de 0.91 the rest 19.27 r the wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest or 19.84 welling, 0.77 of dwel 19.65                                     | follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo  | ee Table 9a) Jun Jul 0.65 0.49 w steps 3 to 0.95 20.99 elling from T 9.85 19.85 m (see Tabl 0.55 0.37 T2 (follow s 9.82 19.85 g) = fLA × T 0.22 20.26                                | A 0.9 7 in 1 20. 7 able 9 19. 1 + (1 20.                      | ug Sep 0.8  Table 9c) 98 20.87  9, Th2 (°C) 86 19.85  12 0.72  10 7 in Tabl 85 19.75  1 - fLA) × T2 25 20.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.96<br>20.46<br>19.84<br>0.94<br>e 9c)<br>19.24<br>LA = Liv          | 0.99  19.96  19.84  0.99  18.51  ring area ÷ (4)        | 1<br>19.57<br>19.83<br>1                  |       | (86)<br>(87)<br>(88)<br>(89)                 |
| Temperature Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation fa  (89)m= 1  Mean intern  (90)m= 17.98  Mean intern  (92)m= 18.55  Apply adjust                            | re during he dictor for gas all temperas seed of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution  | eating positive in I 20.11 eating positive in I 19.83 eature in I 18.72 eature in I 18.72 eature in I 18.72 eature in I 18.72 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I  | eriods ir iving are Apr 0.93 iving are 20.5 eriods ir 19.84 est of dr 0.91 the rest 19.27 r the wh 19.7 internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n the livea, h1,r May 0.82 ea T1 (i 20.8 n rest o 19.84 welling, 0.77 of dwel 19.65                                      | follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo  | See Table 9a   Jun                                                                                                                                                                   | A 0.9 7 in 7 20. Table 9 19. teps 3 19. 1 + (1 20. e 4e,      | ug Sep 55 0.8  Table 9c) 98 20.87  9, Th2 (°C) 86 19.85  12 0.72  15 7 in Table 85 19.75  - fLA) × T2 25 20.15  where approximation in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 0.96  20.46  19.84  0.94  e 9c) 19.24  LA = Liv                       | 0.99  19.96  19.84  0.99  18.51  ring area ÷ (4)        | 1<br>19.57<br>19.83<br>1<br>17.94<br>4) = |       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91) |
| Temperature Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation fa  (89)m= 1  Mean intern  (90)m= 17.98  Mean intern  (92)m= 18.55  Apply adjust  (93)m= 18.55              | re during here actor for gas al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al tempera al t | eating positive in I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and | eriods ir iving are Apr 0.93 iving are 20.5 eriods ir 19.84 rest of de 0.91 the rest 19.27 r the wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest or 19.84 welling, 0.77 of dwel 19.65                                     | follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo follo  | ee Table 9a) Jun Jul 0.65 0.49 w steps 3 to 0.95 20.99 elling from T 9.85 19.85 m (see Tabl 0.55 0.37 T2 (follow s 9.82 19.85 g) = fLA × T 0.22 20.26                                | A 0.9 7 in 1 20. 7 able 9 19. 1 + (1 20.                      | ug Sep 55 0.8  Table 9c) 98 20.87  9, Th2 (°C) 86 19.85  12 0.72  15 7 in Table 85 19.75  - fLA) × T2 25 20.15  where approximation in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 0.96<br>20.46<br>19.84<br>0.94<br>e 9c)<br>19.24<br>LA = Liv          | 0.99  19.96  19.84  0.99  18.51  ring area ÷ (4)        | 1<br>19.57<br>19.83<br>1<br>17.94<br>4) = |       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91) |
| Temperature Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation fa  (89)m= 1  Mean intern  (90)m= 17.98  Mean intern  (92)m= 18.55  Apply adjust  (93)m= 18.55  8. Space he | re during here actor for gas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas al | eating positive in I 20.11 eating positive in I 20.11 eating positive in I 19.83 eature in I 18.72 eature (for 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I 19.21 eature in I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eriods ir iving are Apr 0.93 iving are 20.5 eriods ir 19.84 est of dr 0.91 the rest 19.27 r the wh 19.7 interna 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n the livea, h1,r May 0.82 ea T1 (1 20.8 n rest of 19.84 welling, 0.77 of dwel 19.65 nole dwel 20.06 tempe 20.06         | ing m (s follo 2 f dw h2, c lling 1 ratu 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ee Table 9a) Jun Jul 0.65 0.49  w steps 3 to 0.95 20.99  relling from T 9.85 19.85  m (see Tabl 0.55 0.37  T2 (follow s 9.82 19.85  g) = fLA × T 0.22 20.26  re from Tabl 0.22 20.26 | A 0.9 7 in 7 20. Table 9 19. 1 + (1 20. 1 + (1 20. 1 + (20.   | ug Sep 55 0.8  Table 9c) 98 20.87  9, Th2 (°C) 86 19.85  42 0.72  4 to 7 in Table 85 19.75  — fLA) × T2 25 20.15  where approx 25 20.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96  20.46  19.84  0.94  e 9c) 19.24  LA = Liv  19.67  ppriate 19.67 | 0.99  19.96  19.84  0.99  18.51  ring area ÷ (4)  19.02 | 1<br>19.57<br>19.83<br>1<br>17.94<br>4) = | 0.35  | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91) |
| Temperature Utilisation fa  Jan  (86)m= 1  Mean intern  (87)m= 19.6  Temperature  (88)m= 19.82  Utilisation fa  (89)m= 1  Mean intern  (90)m= 17.98  Mean intern  (92)m= 18.55  Apply adjust  (93)m= 18.55              | re during here actor for gas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas all temperas al | eating positive in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature (for I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I ature in I | eriods ir iving are Apr 0.93 iving are 20.5 eriods ir 19.84 est of d 0.91 the rest 19.27 r the wh 19.7 internal 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n the livea, h1,r May 0.82 ea T1 (i 20.8 n rest or 19.84 welling, 0.77 of dwel 19.65 nole dwe 20.06 tempe 20.06 re obtai | ing m (s follo 2 f dw h2, c lling 1 ratu 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ee Table 9a) Jun Jul 0.65 0.49  w steps 3 to 0.95 20.99  relling from T 9.85 19.85  m (see Tabl 0.55 0.37  T2 (follow s 9.82 19.85  g) = fLA × T 0.22 20.26  re from Tabl 0.22 20.26 | A 0.9 7 in 7 20. Table 9 19. 1 + (1 20. 1 + (1 20. 1 + (20.   | ug Sep 55 0.8  Table 9c) 98 20.87  9, Th2 (°C) 86 19.85  42 0.72  4 to 7 in Table 85 19.75  — fLA) × T2 25 20.15  where approx 25 20.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96  20.46  19.84  0.94  e 9c) 19.24  LA = Liv  19.67  ppriate 19.67 | 0.99  19.96  19.84  0.99  18.51  ring area ÷ (4)  19.02 | 1<br>19.57<br>19.83<br>1<br>17.94<br>4) = | 0.35  | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91) |

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Jan

Feb

| Utilisa                                                    | ation factor                           | r for a                    | ains. hm                     | :          |                    |          |          |              |                                                  |                                                   |                           |            |                            |          |
|------------------------------------------------------------|----------------------------------------|----------------------------|------------------------------|------------|--------------------|----------|----------|--------------|--------------------------------------------------|---------------------------------------------------|---------------------------|------------|----------------------------|----------|
| (94)m=                                                     |                                        | 0.99                       | 0.96                         | 0.91       | 0.78               | 0.58     | 0.41     | 0.47         | 0.74                                             | 0.94                                              | 0.99                      | 1          |                            | (94)     |
| Usefu                                                      | ul gains, hr                           | mGm ,                      | W = (94                      | 1)m x (84  | 4)m                |          |          | l            |                                                  |                                                   | l                         |            |                            |          |
| (95)m=                                                     | 507.15 6                               | 606.16                     | 693.03                       | 748.22     | 701.68             | 520.71   | 349.76   | 365.25       | 520.75                                           | 560.66                                            | 503.42                    | 476.16     |                            | (95)     |
| Mont                                                       | hly averag                             | e exte                     | rnal tem                     | perature   | from Ta            | able 8   |          |              |                                                  |                                                   |                           |            |                            |          |
| (96)m=                                                     | 4.3                                    | 4.9                        | 6.5                          | 8.9        | 11.7               | 14.6     | 16.6     | 16.4         | 14.1                                             | 10.6                                              | 7.1                       | 4.2        |                            | (96)     |
| Heat                                                       | loss rate for                          |                            |                              |            |                    |          |          |              | <del>-                                    </del> | <del>-</del>                                      |                           |            |                            |          |
| (97)m=                                                     |                                        | 386.64                     | 1263.27                      |            | 817.9              | 543.77   | 353.38   | 371.6        | 587.5                                            | 887.43                                            | 1172.53                   | 1415.25    |                            | (97)     |
|                                                            | e heating r                            | <del></del>                |                              |            |                    |          |          | <del> </del> | <del>i `</del>                                   | <del>í                                     </del> | <del> </del>              |            |                            |          |
| (98)m=                                                     | 682.66 5                               | 524.48                     | 424.26                       | 224.22     | 86.47              | 0        | 0        | 0            | 0                                                | 243.12                                            | 481.75                    | 698.68     |                            | ٦,,,,,   |
|                                                            |                                        |                            |                              |            |                    |          |          | Tota         | ıl per year                                      | (kWh/year                                         | r) = Sum(9                | 8)15,912 = | 3365.65                    | (98)     |
| Spac                                                       | e heating r                            | require                    | ment in                      | kWh/m²     | <sup>2</sup> /year |          |          |              |                                                  |                                                   |                           |            | 44.64                      | (99)     |
| 9a. En                                                     | ergy requi                             | iremen                     | ts – Indi                    | vidual h   | eating sy          | ystems i | ncluding | micro-C      | CHP)                                             |                                                   |                           |            |                            |          |
| •                                                          | e heating                              |                            |                              |            |                    |          |          |              |                                                  |                                                   |                           |            |                            | ,        |
| Fract                                                      | ion of spac                            | ce hea                     | t from se                    | econdar    | y/supple           | mentary  | system   |              |                                                  |                                                   |                           |            | 0                          | (201)    |
| Fract                                                      | ion of spac                            | ce hea                     | t from m                     | ain syst   | em(s)              |          |          | (202) = 1    | - (201) <b>=</b>                                 |                                                   |                           |            | 1                          | (202)    |
| Fract                                                      | ion of total                           | l heatir                   | ng from i                    | main sys   | stem 1             |          |          | (204) = (2   | 02) × [1 –                                       | (203)] =                                          |                           |            | 1                          | (204)    |
| Efficie                                                    | ency of ma                             | ain spa                    | ce heati                     | ing syste  | em 1               |          |          |              |                                                  |                                                   |                           | Ī          | 93.4                       | (206)    |
| Efficie                                                    | ency of sec                            | condaı                     | y/supple                     | ementar    | y heating          | g systen | າ, %     |              |                                                  |                                                   |                           | İ          | 0                          | (208)    |
|                                                            | Jan                                    | Feb                        | Mar                          | Apr        | May                | Jun      | Jul      | Aug          | Sep                                              | Oct                                               | Nov                       | Dec        | kWh/yea                    | ar<br>ar |
| Spac                                                       | e heating r                            | require                    | ment (c                      | alculate   | d above)           | )        |          |              | ·                                                | !                                                 | l                         |            | ·                          |          |
|                                                            | 682.66 5                               | 524.48                     | 424.26                       | 224.22     | 86.47              | 0        | 0        | 0            | 0                                                | 243.12                                            | 481.75                    | 698.68     |                            |          |
| (211)m                                                     | n = {[(98)m                            | n x (20                    | 4)] } x 1                    | 00 ÷ (20   | 06)                |          | -        | -            | -                                                | -                                                 | -                         |            |                            | (211)    |
|                                                            | 730.9 5                                | 61.55                      | 454.24                       | 240.06     | 92.58              | 0        | 0        | 0            | 0                                                | 260.3                                             | 515.8                     | 748.05     |                            |          |
|                                                            |                                        |                            |                              |            |                    |          |          | Tota         | ıl (kWh/yea                                      | ar) =Sum(2                                        | 211) <sub>15,1012</sub>   | =          | 3603.48                    | (211)    |
| Spac                                                       | e heating f                            | fuel (se                   | econdar                      | y), kWh/   | month              |          |          |              |                                                  |                                                   |                           | •          |                            | -        |
| = {[(98                                                    | )m x (201)                             | )] } x 1(                  | 00 ÷ (20                     | 8)         |                    |          | •        |              |                                                  |                                                   |                           |            |                            |          |
| (215)m=                                                    | 0                                      | 0                          | 0                            | 0          | 0                  | 0        | 0        | 0            | 0                                                | 0                                                 | 0                         | 0          |                            | _        |
|                                                            |                                        |                            |                              |            |                    |          |          | Tota         | ıl (kWh/yea                                      | ar) =Sum(2                                        | 215) <sub>15,1012</sub>   | <b>=</b>   | 0                          | (215)    |
|                                                            | heating                                |                            |                              |            |                    |          |          |              |                                                  |                                                   |                           |            |                            |          |
| Output                                                     | t from wate                            | er heat<br>173.24          | er (calci                    | ulated a   | oove)<br>154.78    | 136.32   | 130.61   | 145.6        | 147.2                                            | 167.62                                            | 178.93                    | 193.66     |                            |          |
| Efficie                                                    | ncy of wate                            |                            |                              | 139.07     | 134.70             | 130.32   | 130.01   | 143.0        | 147.2                                            | 107.02                                            | 170.93                    | 193.00     | 80.3                       | (216)    |
|                                                            | <del></del>                            | 87.66                      | 87.13                        | 85.9       | 83.65              | 80.3     | 80.3     | 80.3         | 80.3                                             | 85.99                                             | 87.42                     | 88         | 00.3                       | (217)    |
|                                                            | 1 8/01 I S                             |                            | 07.13                        | 05.5       | 00.00              | 00.5     | 00.5     | 00.0         | 00.5                                             | 00.99                                             | 07.42                     | 00         |                            | (=11)    |
| (217)m=                                                    | L                                      |                            | k\N/b/mc                     | nth        |                    |          |          |              |                                                  |                                                   |                           |            |                            |          |
| (217)m=<br>Fuel fo                                         | or water he                            | eating,                    |                              |            |                    |          |          |              |                                                  |                                                   |                           |            |                            |          |
| (217)m=<br>Fuel fo<br>(219)m                               | or water he<br>n = (64)m               | eating,                    |                              |            | 185.03             | 169.76   | 162.65   | 181.31       | 183.32                                           | 194.94                                            | 204.68                    | 220.08     |                            |          |
| (217)m=<br>Fuel fo<br>(219)m                               | or water he                            | eating,                    | ÷ (217)                      | m          | 185.03             | 169.76   | 162.65   |              | 183.32<br>al = Sum(2                             |                                                   | 204.68                    | 220.08     | 2317.95                    | (219)    |
| (217)m=<br>Fuel fo<br>(219)m=<br>(219)m=                   | or water hen = (64)m = 225.59 1        | eating,<br>x 100           | ÷ (217)<br>206.86            | m<br>186.1 |                    | 169.76   | 162.65   |              |                                                  | 19a) <sub>112</sub> =                             | 204.68<br><b>Wh/yea</b> i |            | 2317.95<br><b>kWh/year</b> | (219)    |
| (217)m=<br>Fuel fo<br>(219)m=<br>(219)m=                   | or water he<br>n = (64)m<br>= 225.59 1 | eating,<br>x 100           | ÷ (217)<br>206.86            | m<br>186.1 |                    | 169.76   | 162.65   |              |                                                  | 19a) <sub>112</sub> =                             |                           |            |                            | (219)    |
| (217)m=<br>Fuel for<br>(219)m<br>(219)m=<br>Annua<br>Space | or water hen = (64)m = 225.59 1        | eating,<br>x 100<br>197.62 | ÷ (217)<br>206.86<br>d, main | m<br>186.1 |                    | 169.76   | 162.65   |              |                                                  | 19a) <sub>112</sub> =                             |                           |            | kWh/year                   | (219)    |

| central heating pump:                             |                                 | 30                            | (230c)                          |
|---------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|
| boiler with a fan-assisted flue                   |                                 | 45                            | (230e)                          |
| Total electricity for the above, kWh/year         | sum of (230a                    | a)(230g) =                    | 75 (231)                        |
| Electricity for lighting                          |                                 |                               | 329.88 (232)                    |
| 12a. CO2 emissions – Individual heating system    | ns including micro-CHP          |                               |                                 |
|                                                   | <b>Energy</b><br>kWh/year       | Emission factor<br>kg CO2/kWh | <b>Emissions</b><br>kg CO2/year |
| Space heating (main system 1)                     | (211) x                         | 0.216                         | 778.35 (261)                    |
| Space heating (secondary)                         | (215) x                         | 0.519 =                       | 0 (263)                         |
| Water heating                                     | (219) x                         | 0.216 =                       | 500.68 (264)                    |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                               | 1279.03 (265)                   |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519 =                       | 38.93 (267)                     |
| Electricity for lighting                          | (232) x                         | 0.519 =                       | 171.21 (268)                    |
| Total CO2, kg/year                                | sum                             | of (265)(271) =               | 1489.16 (272)                   |

TER =

(273)

19.75

eight associates

# SAP Worksheets Energy Statement 34A-36 Kilburn High Road

**SAP Worksheets** 

Lean DER Worksheets

|                                            |                                                                             | l lsor F    | Details:      |              |                 |            |           |                       |                |
|--------------------------------------------|-----------------------------------------------------------------------------|-------------|---------------|--------------|-----------------|------------|-----------|-----------------------|----------------|
| Assessor Name:                             | Chris Hocknell                                                              | – <u> </u>  | Strom         | a Num        | ber:            |            | STRO      | 016363                |                |
| <b>Software Name:</b>                      | Stroma FSAP 2012                                                            |             | Softwa        | are Ve       | rsion:          |            | Versio    | n: 1.0.4.16           |                |
|                                            | F                                                                           | Property    | Address       | : Apartm     | ent 1           |            |           |                       |                |
| Address: 1. Overall dwelling dime          | ansions:                                                                    |             |               |              |                 |            |           |                       |                |
| 1. Overall awelling aime                   | , i i i i i i i i i i i i i i i i i i i                                     | Are         | a(m²)         |              | Av. He          | ight(m)    |           | Volume(m <sup>3</sup> | <sup>3</sup> ) |
| Ground floor                               |                                                                             |             |               | (1a) x       |                 | 2.7        | (2a) =    | 135.46                | (3a)           |
| Total floor area TFA = (1                  | a)+(1b)+(1c)+(1d)+(1e)+(1                                                   | n)          | 50.17         | (4)          |                 |            | -         |                       | _              |
| Dwelling volume                            |                                                                             |             |               | (3a)+(3b     | )+(3c)+(3c      | d)+(3e)+   | .(3n) =   | 135.46                | (5)            |
| 2. Ventilation rate:                       |                                                                             |             |               |              |                 |            |           |                       |                |
|                                            | main seconda<br>heating heating                                             | ry          | other         |              | total           |            |           | m³ per hou            | ır             |
| Number of chimneys                         | 0 + 0                                                                       | +           | 0             | = [          | 0               | X 4        | 40 =      | 0                     | (6a)           |
| Number of open flues                       | 0 + 0                                                                       | + [         | 0             | = [          | 0               | x 2        | 20 =      | 0                     | (6b)           |
| Number of intermittent fa                  | ins                                                                         |             |               |              | 0               | <b>x</b> ' | 10 =      | 0                     | (7a)           |
| Number of passive vents                    | 3                                                                           |             |               | Ī            | 0               | <b>x</b> ' | 10 =      | 0                     | (7b)           |
| Number of flueless gas fi                  | ires                                                                        |             |               | Ī            | 0               | X 4        | 40 =      | 0                     | (7c)           |
|                                            |                                                                             |             |               | _            |                 |            | A in a b  | ongoo nor he          |                |
| Infiltration due to chimen                 | fl and fano - (60)±(6b)±(                                                   | 7a)+/7b)+   | (70) =        | _            |                 |            |           | nanges per ho         | _              |
|                                            | ys, flues and fans = (6a)+(6b)+(<br>eeen carried out or is intended, procee |             |               | continue fr  | 0<br>rom (9) to |            | ÷ (5) =   | 0                     | (8)            |
| Number of storeys in the                   |                                                                             | ( //        |               |              |                 | ,          |           | 0                     | (9)            |
| Additional infiltration                    |                                                                             |             |               |              |                 | [(9)       | -1]x0.1 = | 0                     | (10)           |
|                                            | .25 for steel or timber frame or resent, use the value corresponding to     |             |               | •            | ruction         |            |           | 0                     | (11)           |
| deducting areas of openi                   |                                                                             | o ine grea  | iei wali ale  | a (anei      |                 |            |           |                       |                |
| •                                          | floor, enter 0.2 (unsealed) or 0                                            | .1 (seale   | ed), else     | enter 0      |                 |            |           | 0                     | (12)           |
| If no draught lobby, en                    |                                                                             |             |               |              |                 |            |           | 0                     | (13)           |
| Window infiltration                        | s and doors draught stripped                                                |             | 0.25 - [0.2   | 2 x (14) ÷ 1 | 1001 =          |            |           | 0                     | (14)           |
| Infiltration rate                          |                                                                             |             | (8) + (10)    | . ,          | _               | + (15) =   |           | 0                     | (16)           |
|                                            | q50, expressed in cubic metro                                               | es per ho   | our per s     | quare m      | etre of e       | envelope   | area      | 3                     | (17)           |
| If based on air permeabil                  | lity value, then $(18) = [(17) \div 20] +$                                  | (8), otherw | vise (18) = ( | (16)         |                 | ·          |           | 0.15                  | (18)           |
|                                            | es if a pressurisation test has been do                                     | ne or a de  | gree air pe   | rmeability   | is being u      | sed        |           |                       | _              |
| Number of sides sheltere<br>Shelter factor | ed                                                                          |             | (20) = 1 -    | [0 075 x (1  | 19)1 =          |            |           | 1                     | (19)           |
| Infiltration rate incorporate              | ting shelter factor                                                         |             | (21) = (18    | •            | .0/]            |            |           | 0.92                  | (20)           |
| Infiltration rate modified f               | •                                                                           |             | ( ) ( -       | , ( - ,      |                 |            |           | 0.14                  | (21)           |
| Jan Feb                                    | Mar Apr May Jun                                                             | Jul         | Aug           | Sep          | Oct             | Nov        | Dec       |                       |                |
| Monthly average wind sp                    | peed from Table 7                                                           |             |               |              |                 |            |           | •                     |                |
| (22)m= 5.1 5                               | 4.9 4.4 4.3 3.8                                                             | 3.8         | 3.7           | 4            | 4.3             | 4.5        | 4.7       |                       |                |
| Wind Factor (22a)m = (2                    | 2)m ÷ 4                                                                     |             |               |              |                 |            |           |                       |                |
| (22a)m = 1.27  1.25                        | 1.23 1.1 1.08 0.95                                                          | 0.95        | 0.92          | 1            | 1.08            | 1.12       | 1.18      | ]                     |                |
|                                            |                                                                             |             |               |              |                 |            | 1         | J                     |                |

| Adjusted infiltr                                                                                              | ration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (allowi                                                              | ng for sh                             | nelter an  | d wind s                                           | peed) =    | (21a) x                | (22a)m           |                            |                      |                   |                   |               |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|------------|----------------------------------------------------|------------|------------------------|------------------|----------------------------|----------------------|-------------------|-------------------|---------------|
| 0.18                                                                                                          | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.17                                                                 | 0.15                                  | 0.15       | 0.13                                               | 0.13       | 0.13                   | 0.14             | 0.15                       | 0.16                 | 0.16              | ]                 |               |
| Calculate effe                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                    | rate for t                            | he appli   | cable ca                                           | se         | •                      | •                |                            |                      | •                 | <b>,</b>          |               |
| If mechanic  If exhaust air h                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | andiv N. (2                           | 2h) = (22a | a) v Emy (c                                        | auation (  | NEN otho               | nuina (22h       | ) = (220)                  |                      |                   | 0.5               | (238          |
| If balanced wit                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                       |            |                                                    |            |                        |                  | ) = (23a)                  |                      |                   | 0.5               | (23h          |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                    |                                       | _          |                                                    |            |                        |                  | 2h.) (6                    | 20h) [               | 4 (00-)           | 75.65             | (230          |
| a) If balance (24a)m= 0.3                                                                                     | ed mechan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.29                                                                 | 0.27                                  | 0.27       | at recove                                          | 0.25       | HR) (248               | 0.26             | 2b)m + (2<br>0.27          | 0.28 × (3D)          | 1 – (23c)<br>0.28 | ) ÷ 100]<br>1     | (24a          |
| ` '                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                       |            |                                                    | <u> </u>   | ļ.                     | ļ                | ļ ļ                        |                      | 0.20              | J                 | (240          |
| b) If balance<br>(24b)m= 0                                                                                    | ed mechan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o lical ve                                                           | ntilation                             | without    | neat rec                                           | overy (r   | VIV) (240<br>1 0       | o)m = (22<br>  0 | 20)m + (2<br>0   1         | 0                    | 0                 | 1                 | (241          |
| c) If whole h                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                       |            |                                                    |            |                        |                  | 0                          | 0                    |                   | J                 | (24)          |
| •                                                                                                             | m < 0.5 × (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                       | -          | •                                                  |            |                        |                  | 5 × (23b                   | )                    |                   |                   |               |
| (24c)m= 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                    | 0                                     | 0          | 0                                                  | 0          | 0                      | 0                | Ō                          | 0                    | 0                 | ]                 | (240          |
| d) If natural                                                                                                 | ventilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or wh                                                                | ole hous                              | e positiv  | ve input                                           | ventilati  | on from                | oft              |                            |                      |                   | _                 |               |
| if (22b)r                                                                                                     | m = 1, then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | າ (24d)                                                              | m = (22k                              | o)m othe   | erwise (2                                          | 4d)m =     | 0.5 + [(2              | 2b)m² x          | 0.5]                       |                      |                   | _                 |               |
| (24d)m= 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                    | 0                                     | 0          | 0                                                  | 0          | 0                      | 0                | 0                          | 0                    | 0                 |                   | (240          |
| Effective air                                                                                                 | change ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ate - er                                                             | iter (24a                             | ) or (24b  | o) or (24                                          | c) or (24  | d) in bo               | x (25)           |                            |                      |                   | _                 |               |
| (25)m= 0.3                                                                                                    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.29                                                                 | 0.27                                  | 0.27       | 0.25                                               | 0.25       | 0.25                   | 0.26             | 0.27                       | 0.28                 | 0.28              |                   | (25)          |
| 3. Heat losse                                                                                                 | es and hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t loss r                                                             | paramete                              | er:        |                                                    |            |                        |                  |                            |                      |                   |                   |               |
| ELEMENT                                                                                                       | Gross<br>area (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Openin<br>m                           |            | Net Ar<br>A ,r                                     |            | U-val<br>W/m2          |                  | A X U<br>(W/k              | <b>(</b> )           | k-value<br>kJ/m²· |                   | A X k<br>kJ/K |
| Doors                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                       |            | 2                                                  | X          | 1.3                    | =                | 2.6                        |                      |                   |                   | (26)          |
| Windows Type                                                                                                  | e 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                       |            | 9.56                                               | x1         | /[1/( 1.3 )+           | 0.04] =          | 11.81                      |                      |                   |                   | (27)          |
| Windows Type                                                                                                  | e 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                       |            | 4.62                                               | x1         | /[1/( 1.3 )+           | 0.04] =          | 5.71                       |                      |                   |                   | (27           |
| Windows Type                                                                                                  | e 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                       |            | 4.17                                               | x1         | /[1/( 1.3 )+           | 0.04] =          | 5.15                       |                      |                   |                   | (27)          |
| Rooflights Typ                                                                                                | oe 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                       |            | 1.05                                               | x1         | /[1/(1.6) +            | 0.04] =          | 1.68                       | 7                    |                   |                   | (27           |
| Rooflights Typ                                                                                                | oe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                       |            | 1.79                                               | = x1       | /[1/(1.6) +            | 0.04] =          | 2.864                      | Ħ                    |                   |                   | (27)          |
| Walls Type1                                                                                                   | 35.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | 22.52                                 | 2          | 12.96                                              | x          | 0.15                   | ─                | 1.94                       | 7 (                  |                   |                   | (29)          |
| Walls Type2                                                                                                   | 30.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                                                    | 2                                     |            | 28.48                                              | x          | 0.13                   | <b>=</b>         | 3.8                        | <b>=</b>             |                   |                   | (29)          |
| Roof                                                                                                          | 50.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                                                    | 2.84                                  |            | 47.33                                              | =          | 0.1                    | ≓ <u>-</u> i     | 4.73                       | ≓                    |                   | <b>=</b>          | (30)          |
| Total area of e                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | —J<br>m²                                                             |                                       |            | 116.1                                              | _          |                        |                  |                            |                      |                   |                   | \`(31)        |
|                                                                                                               | , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                       |            | 26.97                                              | =          | 0                      |                  | 0                          | — г                  |                   |                   | (32)          |
| Partv wall                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                       |            | _0.07                                              |            |                        |                  |                            |                      |                   |                   | _             |
| •                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                       |            | 50 17                                              | ,          |                        |                  |                            |                      |                   |                   | 1(32)         |
| Party floor                                                                                                   | d roof window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 's, use e                                                            | ffective wil                          | ndow U-va  | 50.17                                              |            | g formula 1            | /[(1/U-valu      | ie)+0.04] as               | L<br>s given in      | paragrapl         |                   | (32)          |
| Party floor<br>for windows and                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                       |            | alue calcul                                        |            | g formula 1            | /[(1/U-valu      | ie)+0.04] as               | L<br>s given in      | paragrapl         |                   | (32)          |
| Party floor  * for windows and  ** include the are  Fabric heat lo                                            | eas on both sid<br>ss, W/K = \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ides of in<br>S (A x                                                 | nternal wall                          |            | alue calcul                                        | ated using | g formula 1<br>(26)(30 | -                | re)+0.04] as               | L<br>s given in      | paragrapl         | h 3.2<br>45.18    |               |
| Party floor  * for windows and ** include the are Fabric heat los Heat capacity                               | eas on both sides, W/K = S<br>Cm = S(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ides of in<br>S (A x<br>x k )                                        | nternal wali<br>U)                    | ls and par | alue calcul<br>titions                             | ated using |                        | ) + (32) =       | .(30) + (32                |                      |                   |                   | (33)          |
| Party wall Party floor * for windows and ** include the are Fabric heat loo Heat capacity Thermal mass        | eas on both sides, W/K = \$<br>Cm = S(A<br>s paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ides of in<br>S (A x<br>x k )<br>er (TMF                             | nternal wall<br>U)<br>P = Cm ÷        | ls and pan | alue calcul<br>titions<br>n kJ/m²K                 | ated using | (26)(30                | ((28)<br>Indica  | .(30) + (32<br>tive Value: | ) + (32a).<br>Medium | (32e) =           | 45.18             | (322          |
| Party floor  * for windows and ** include the are Fabric heat los Heat capacity Thermal mass For design asses | eas on both sides, W/K = \$  Cm = S(A)  s paramete  ssments where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ides of in<br>S (A x<br>x k )<br>er (TMF<br>re the de                | nternal wall U) P = Cm ÷ tails of the | ls and pan | alue calcul<br>titions<br>n kJ/m²K                 | ated using | (26)(30                | ((28)<br>Indica  | .(30) + (32<br>tive Value: | ) + (32a).<br>Medium | (32e) =           | 45.18<br>10845.77 | (33)          |
| Party floor  * for windows and ** include the are Fabric heat loa Heat capacity Thermal mass                  | eas on both sides, W/K = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$\frac{1} Cm = \$\frac{1}{2} Cm = \$\frac{1}{2} Cm = \$1 | ides of in<br>S (A x<br>x k )<br>er (TMF<br>re the det<br>iled calcu | oternal wall U) P = Cm ÷ tails of the | s and pan  | alue calcul<br>titions<br>n kJ/m²K<br>tion are not | ated using | (26)(30                | ((28)<br>Indica  | .(30) + (32<br>tive Value: | ) + (32a).<br>Medium | (32e) =           | 45.18<br>10845.77 | (33)          |

| Total fabric heat loss                                                                                                                    | (33) + (36) =                                            | 50.07 (27)   |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|
| Ventilation heat loss calculated monthly                                                                                                  | $(38) \text{m} = 0.33 \times (25) \text{m} \times (5)$   | 59.37 (37)   |
| Jan Feb Mar Apr May Jun Jul                                                                                                               | Aug Sep Oct Nov Dec                                      |              |
| (38)m= 13.35 13.2 13.04 12.26 12.11 11.33 11.33                                                                                           | 11.18                                                    | (38)         |
| Heat transfer coefficient, W/K                                                                                                            | (39)m = (37) + (38)m                                     |              |
| (39)m= 72.72 72.57 72.41 71.64 71.48 70.71 70.71                                                                                          | 70.55 71.02 71.48 71.79 72.1                             |              |
|                                                                                                                                           | Average = Sum(39) <sub>112</sub> /12=                    | 71.6 (39)    |
| Heat loss parameter (HLP), W/m²K                                                                                                          | (40)m = $(39)$ m ÷ $(4)$                                 |              |
| (40)m= 1.45 1.45 1.44 1.43 1.42 1.41 1.41                                                                                                 | 1.41   1.42   1.42   1.43   1.44                         | (40)         |
| Number of days in month (Table 1a)                                                                                                        | Average = Sum(40) <sub>112</sub> /12=                    | 1.43 (40)    |
| Jan Feb Mar Apr May Jun Jul                                                                                                               | Aug Sep Oct Nov Dec                                      |              |
| (41)m= 31 28 31 30 31 30 31                                                                                                               | 31 30 31 30 31                                           | (41)         |
|                                                                                                                                           |                                                          |              |
| 4. Water heating energy requirement:                                                                                                      | kWh/ye                                                   | ar:          |
| Assumed occupancy, N                                                                                                                      | 17                                                       | (42)         |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9                                                                             | 9)2)] + 0.0013 x (TFA -13.9)                             | (42)         |
| if TFA £ 13.9, N = 1                                                                                                                      | (05 N) + 00                                              |              |
| Annual average hot water usage in litres per day Vd,average = Reduce the annual average hot water usage by 5% if the dwelling is designed | , , ,                                                    | (43)         |
| not more that 125 litres per person per day (all water use, hot and cold)                                                                 |                                                          |              |
| Jan Feb Mar Apr May Jun Jul                                                                                                               | Aug Sep Oct Nov Dec                                      |              |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1c                                                              | (43)                                                     |              |
| (44)m= 81.9 78.93 75.95 72.97 69.99 67.01 67.01                                                                                           | 69.99 72.97 75.95 78.93 81.9                             |              |
| Energy content of hot water used coloulated monthly – 4.100 v Vd m v nm v                                                                 | Total = Sum(44) <sub>112</sub> =                         | 893.51 (44)  |
| Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x                                                               |                                                          |              |
| (45)m= 121.46 106.23 109.62 95.57 91.7 79.13 73.33                                                                                        | 84.14 85.15 99.23 108.32 117.63                          | 1171.53 (45) |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in                                                         | Total = Sum(45) <sub>112</sub> =<br>a boxes (46) to (61) | 1171.55      |
| (46)m= 18.22 15.93 16.44 14.34 13.76 11.87 11                                                                                             | 12.62 12.77 14.89 16.25 17.64                            | (46)         |
| Water storage loss:                                                                                                                       |                                                          |              |
| Storage volume (litres) including any solar or WWHRS storage                                                                              |                                                          | (47)         |
| If community heating and no tank in dwelling, enter 110 litres in                                                                         | ,                                                        |              |
| Otherwise if no stored hot water (this includes instantaneous c Water storage loss:                                                       | ombi boilers) enter 'U' in (47)                          |              |
| a) If manufacturer's declared loss factor is known (kWh/day):                                                                             | 0                                                        | (48)         |
| Temperature factor from Table 2b                                                                                                          | 0                                                        | (49)         |
| Energy lost from water storage, kWh/year                                                                                                  | (48) x (49) = 0                                          | (50)         |
| b) If manufacturer's declared cylinder loss factor is not known:                                                                          |                                                          | , ,          |
| Hot water storage loss factor from Table 2 (kWh/litre/day)                                                                                | 0                                                        | (51)         |
| If community heating see section 4.3  Volume factor from Table 2a                                                                         |                                                          | (52)         |
| Temperature factor from Table 2b                                                                                                          | 0                                                        | (52)<br>(53) |
| Energy lost from water storage, kWh/year                                                                                                  | (47) x (51) x (52) x (53) = 0                            | (54)         |
| Enter (50) or (54) in (55)                                                                                                                | 0                                                        | (55)         |
|                                                                                                                                           |                                                          |              |

| Water      | storage     | loss cal        | culated 1   | for each         | month                                            |                  |             | ((56)m = (          | 55) × (41)   | m           |                         |             |               |      |
|------------|-------------|-----------------|-------------|------------------|--------------------------------------------------|------------------|-------------|---------------------|--------------|-------------|-------------------------|-------------|---------------|------|
| (56)m=     | 0           | 0               | 0           | 0                | 0                                                | 0                | 0           | 0                   | 0            | 0           | 0                       | 0           |               | (56) |
| If cylinde | er contains | dedicate        | d solar sto | rage, (57)       | m = (56)m                                        | x [(50) – (      | [H11)] ÷ (5 | 0), else (5         | 7)m = (56)   | m where (   | H11) is fro             | m Append    | ix H          |      |
| (57)m=     | 0           | 0               | 0           | 0                | 0                                                | 0                | 0           | 0                   | 0            | 0           | 0                       | 0           |               | (57) |
| Primar     | v circuit   | loss (an        | nual) fro   | om Table         | e 3                                              |                  |             |                     |              |             |                         | 0           |               | (58) |
|            | -           | •               | •           |                  |                                                  | 59)m = (         | (58) ÷ 36   | 65 × (41)           | m            |             |                         |             | •             |      |
| (mod       | dified by   | factor fr       | om Tab      | le H5 if t       | here is s                                        | solar wat        | ter heati   | ng and a            | cylinde      | r thermo    | stat)                   |             |               |      |
| (59)m=     | 0           | 0               | 0           | 0                | 0                                                | 0                | 0           | 0                   | 0            | 0           | 0                       | 0           |               | (59) |
| Combi      | loss ca     | lculated        | for each    | month (          | (61)m =                                          | (60) ÷ 36        | 65 × (41    | )m                  |              |             |                         | -           | •             |      |
| (61)m=     | 41.74       | 36.33           | 38.7        | 35.99            | 35.67                                            | 33.05            | 34.15       | 35.67               | 35.99        | 38.7        | 38.92                   | 41.74       |               | (61) |
| Total h    | neat requ   | uired for       | water he    | eating ca        | alculated                                        | for eacl         | h month     | (62)m =             | 0.85 ×       | (45)m +     | (46)m +                 | (57)m +     | (59)m + (61)m |      |
| (62)m=     | 163.2       | 142.56          | 148.32      | 131.56           | 127.37                                           | 112.18           | 107.48      | 119.81              | 121.13       | 137.94      | 147.24                  | 159.37      |               | (62) |
| Solar Di   | HW input of | calculated      | using App   | endix G or       | · Appendix                                       | ι<br>κ Η (negati | ve quantity | /) (enter '0        | ' if no sola | r contribut | ion to wate             | er heating) |               |      |
| (add a     | dditiona    | l lines if      | FGHRS       | and/or \         | WWHRS                                            | applies          | , see Ap    | pendix (            | <b>3</b> )   |             |                         |             |               |      |
| (63)m=     | 0           | 0               | 0           | 0                | 0                                                | 0                | 0           | 0                   | 0            | 0           | 0                       | 0           |               | (63) |
| Output     | t from w    | ater hea        | ter         |                  | •                                                | •                | •           | •                   | •            | •           |                         | •           | •             |      |
| (64)m=     | 163.2       | 142.56          | 148.32      | 131.56           | 127.37                                           | 112.18           | 107.48      | 119.81              | 121.13       | 137.94      | 147.24                  | 159.37      |               |      |
|            |             |                 |             | ļ.               |                                                  | !                | !           | Outp                | out from w   | ater heate  | r (annual) <sub>1</sub> | 112         | 1618.16       | (64) |
| Heat g     | ains fro    | m water         | heating,    | kWh/m            | onth 0.2                                         | 5 ′ [0.85        | × (45)m     | ı + (61)m           | า] + 0.8 ว   | د [(46)m    | + (57)m                 | + (59)m     | 1             | _    |
| (65)m=     | 50.82       | 44.4            | 46.12       | 40.77            | 39.41                                            | 34.57            | 32.92       | 36.89               | 37.31        | 42.67       | 45.75                   | 49.55       | 1             | (65) |
| inclu      | ude (57)    | m in cald       | culation (  | of (65)m         | only if c                                        | vlinder i        | s in the ເ  | dwellina            | or hot w     | ater is fr  | om com                  | munity h    | ı<br>ıeating  |      |
|            | . , ,       | ains (see       |             | . ,              | -                                                | ,                |             | 5                   |              |             |                         | ,           | 3             |      |
|            | Ĭ           | ·               |             |                  | <i>)</i> •                                       |                  |             |                     |              |             |                         |             |               |      |
| Metab      | Jan         | s (Table<br>Feb | Mar         | Apr              | May                                              | Jun              | Jul         | Aug                 | Sep          | Oct         | Nov                     | Dec         |               |      |
| (66)m=     | 84.76       | 84.76           | 84.76       | 84.76            | 84.76                                            | 84.76            | 84.76       | 84.76               | 84.76        | 84.76       | 84.76                   | 84.76       |               | (66) |
| ` '        |             |                 |             | <u> </u>         |                                                  | ion L9 o         | <u> </u>    | <u> </u>            | <u> </u>     | 010         | 010                     | 010         |               | (/   |
| (67)m=     | 13.17       | 11.69           | 9.51        | 7.2              | 5.38                                             | 4.54             | 4.91        | 6.38                | 8.57         | 10.88       | 12.69                   | 13.53       | l             | (67) |
|            |             |                 |             | <u> </u>         | l                                                | <u> </u>         | L           | l                   |              | <u> </u>    | 12.03                   | 13.33       |               | (01) |
|            |             | <u> </u>        | 145.35      | 137.13           | 126.75                                           | uation L         | 13 OF L1    | 3a), aisc<br>108.95 |              |             | 101 11                  | 141.16      | 1             | (68) |
| (68)m=     | 147.68      | 149.21          |             | <u> </u>         | <u> </u>                                         |                  | ļ.          | <u> </u>            | 112.81       | 121.03      | 131.41                  | 141.16      |               | (00) |
|            | <del></del> | <u> </u>        |             | ppendix<br>31.48 | <del> </del>                                     | tion L15         | ·           |                     |              |             | 24.40                   | T 24 40     | 1             | (69) |
| (69)m=     | 31.48       | 31.48           | 31.48       |                  | 31.48                                            | 31.48            | 31.48       | 31.48               | 31.48        | 31.48       | 31.48                   | 31.48       |               | (09) |
| •          |             | ns gains        | <u> </u>    | <del> </del>     |                                                  | <u> </u>         | Ι ,         |                     |              |             |                         |             | 1             | (70) |
| (70)m=     | 3           | 3               | 3           | 3                | 3                                                | 3                | 3           | 3                   | 3            | 3           | 3                       | 3           |               | (70) |
|            |             | aporatio        |             |                  | <del>-                                    </del> | <del></del>      |             |                     |              |             |                         |             | Ī             | (74) |
| (71)m=     | -67.8       | -67.8           | -67.8       | -67.8            | -67.8                                            | -67.8            | -67.8       | -67.8               | -67.8        | -67.8       | -67.8                   | -67.8       |               | (71) |
|            |             | gains (T        |             |                  |                                                  |                  |             |                     |              |             |                         |             | Ī             |      |
| (72)m=     | 68.31       | 66.08           | 62          | 56.63            | 52.97                                            | 48.02            | 44.25       | 49.59               | 51.82        | 57.35       | 63.54                   | 66.59       |               | (72) |
| Total i    |             | gains =         |             |                  |                                                  | (66)             | )m + (67)m  | n + (68)m -         | + (69)m +    | (70)m + (7  | 1)m + (72)              | )m          | •             |      |
|            | 1 000 5-    |                 | l           | l a-a aa         | 1 000 50                                         | 1 000 00         | 1           | l                   | 1            | I           |                         | 1           | i             | (70) |
| (73)m=     | 280.57      | 278.41          | 268.28      | 252.38           | 236.52                                           | 220.98           | 211.06      | 216.34              | 224.62       | 240.68      | 259.06                  | 272.71      |               | (73) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Factor<br>Table 6d |   | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|----------------------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                    | X | 9.56       | x | 11.28            | x | 0.55           | x | 0.7            | =        | 28.78        | (75) |
| Northeast 0.9x 0.77                    | X | 4.62       | x | 11.28            | x | 0.55           | x | 0.7            | =        | 13.91        | (75) |
| Northeast 0.9x 0.77                    | X | 9.56       | x | 22.97            | x | 0.55           | x | 0.7            | ] =      | 58.58        | (75) |
| Northeast 0.9x 0.77                    | X | 4.62       | x | 22.97            | x | 0.55           | x | 0.7            | ] =      | 28.31        | (75) |
| Northeast 0.9x 0.77                    | X | 9.56       | x | 41.38            | x | 0.55           | x | 0.7            | =        | 105.54       | (75) |
| Northeast 0.9x 0.77                    | X | 4.62       | x | 41.38            | x | 0.55           | x | 0.7            | ] =      | 51.01        | (75) |
| Northeast 0.9x 0.77                    | X | 9.56       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 173.33       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 4.62       | x | 67.96            | X | 0.55           | x | 0.7            | ] =      | 83.77        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 9.56       | x | 91.35            | x | 0.55           | x | 0.7            | ] =      | 232.99       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 4.62       | X | 91.35            | X | 0.55           | x | 0.7            | =        | 112.6        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 9.56       | x | 97.38            | x | 0.55           | X | 0.7            | ] =      | 248.39       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 4.62       | x | 97.38            | x | 0.55           | x | 0.7            | ] =      | 120.04       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 9.56       | x | 91.1             | X | 0.55           | x | 0.7            | ] =      | 232.37       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 4.62       | X | 91.1             | X | 0.55           | X | 0.7            | ] =      | 112.29       | (75) |
| Northeast 0.9x 0.77                    | X | 9.56       | x | 72.63            | x | 0.55           | x | 0.7            | =        | 185.25       | (75) |
| Northeast 0.9x 0.77                    | X | 4.62       | x | 72.63            | x | 0.55           | x | 0.7            | =        | 89.52        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 9.56       | X | 50.42            | x | 0.55           | x | 0.7            | ] =      | 128.61       | (75) |
| Northeast 0.9x 0.77                    | X | 4.62       | x | 50.42            | x | 0.55           | x | 0.7            | =        | 62.15        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 9.56       | x | 28.07            | x | 0.55           | x | 0.7            | =        | 71.59        | (75) |
| Northeast 0.9x 0.77                    | X | 4.62       | x | 28.07            | x | 0.55           | x | 0.7            | =        | 34.6         | (75) |
| Northeast 0.9x 0.77                    | X | 9.56       | x | 14.2             | x | 0.55           | x | 0.7            | ] =      | 36.21        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 4.62       | x | 14.2             | x | 0.55           | x | 0.7            | =        | 17.5         | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 9.56       | x | 9.21             | x | 0.55           | x | 0.7            | ] =      | 23.5         | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 4.62       | X | 9.21             | X | 0.55           | x | 0.7            | =        | 11.36        | (75) |
| Northwest 0.9x 0.77                    | X | 4.17       | X | 11.28            | X | 0.55           | X | 0.7            | =        | 25.11        | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | x | 22.97            | x | 0.55           | x | 0.7            | ] =      | 51.1         | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | x | 41.38            | x | 0.55           | x | 0.7            | ] =      | 92.07        | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | x | 67.96            | x | 0.55           | x | 0.7            | <b>=</b> | 151.21       | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | x | 91.35            | x | 0.55           | x | 0.7            | =        | 203.26       | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | x | 97.38            | x | 0.55           | x | 0.7            | <b>=</b> | 216.7        | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | x | 91.1             | x | 0.55           | x | 0.7            | <b>=</b> | 202.71       | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | x | 72.63            | x | 0.55           | x | 0.7            | ] =      | 161.61       | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | X | 50.42            | X | 0.55           | X | 0.7            | =        | 112.19       | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | X | 28.07            | X | 0.55           | X | 0.7            | =        | 62.45        | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | x | 14.2             | x | 0.55           | x | 0.7            | ] =      | 31.59        | (81) |
| Northwest 0.9x 0.77                    | X | 4.17       | x | 9.21             | x | 0.55           | x | 0.7            | ] =      | 20.5         | (81) |
| Rooflights 0.9x 1                      | x | 1.05       | x | 26               | x | 0.55           | x | 0.8            | ] =      | 10.81        | (82) |
| Rooflights 0.9x 1                      | x | 1.79       | x | 26               | x | 0.55           | x | 0.8            | ] =      | 18.43        | (82) |
| Rooflights 0.9x 1                      | X | 1.05       | x | 54               | × | 0.55           | х | 0.8            | =        | 22.45        | (82) |

| Rooflights 0.9x | 1             | x         | 1.7       | 9        | X             | 54             | X      | 0.55         | x      | 0.8           | =      | 38.28  | (82) |
|-----------------|---------------|-----------|-----------|----------|---------------|----------------|--------|--------------|--------|---------------|--------|--------|------|
| Rooflights 0.9x | 1             | x         | 1.0       | 5        | X             | 96             | X      | 0.55         | x      | 0.8           |        | 39.92  | (82) |
| Rooflights 0.9x | 1             | x         | 1.7       | 9        | X             | 96             | X      | 0.55         | х      | 0.8           | =      | 68.05  | (82) |
| Rooflights 0.9x | 1             | x         | 1.0       | 5        | X             | 150            | X      | 0.55         | x      | 0.8           | =      | 62.37  | (82) |
| Rooflights 0.9x | 1             | x         | 1.7       | 9        | X             | 150            | X      | 0.55         | x      | 0.8           |        | 106.33 | (82) |
| Rooflights 0.9x | 1             | x         | 1.0       | 5        | X             | 192            | X      | 0.55         | x      | 0.8           | =      | 79.83  | (82) |
| Rooflights 0.9x | 1             | X         | 1.7       | 9        | X             | 192            | X      | 0.55         | X      | 0.8           | =      | 136.1  | (82) |
| Rooflights 0.9x | 1             | x         | 1.0       | 5        | X             | 200            | X      | 0.55         | x      | 0.8           | =      | 83.16  | (82) |
| Rooflights 0.9x | 1             | x         | 1.7       | 9        | X             | 200            | X      | 0.55         | x      | 0.8           | =      | 141.77 | (82) |
| Rooflights 0.9x | 1             | X         | 1.0       | 5        | X             | 189            | X      | 0.55         | x      | 0.8           | =      | 78.59  | (82) |
| Rooflights 0.9x | 1             | X         | 1.7       | 9        | X             | 189            | X      | 0.55         | x      | 0.8           | =      | 133.97 | (82) |
| Rooflights 0.9x | 1             | X         | 1.0       | 5        | X             | 157            | X      | 0.55         | X      | 0.8           | =      | 65.28  | (82) |
| Rooflights 0.9x | 1             | X         | 1.7       | 9        | X             | 157            | X      | 0.55         | X      | 0.8           | =      | 111.29 | (82) |
| Rooflights 0.9x | 1             | X         | 1.0       | 5        | X             | 115            | X      | 0.55         | X      | 0.8           | =      | 47.82  | (82) |
| Rooflights 0.9x | 1             | X         | 1.7       | 9        | X             | 115            | X      | 0.55         | X      | 0.8           | =      | 81.52  | (82) |
| Rooflights 0.9x | 1             | X         | 1.0       | 5        | X             | 66             | X      | 0.55         | X      | 0.8           | =      | 27.44  | (82) |
| Rooflights 0.9x | 1             | X         | 1.7       | 9        | X             | 66             | X      | 0.55         | X      | 0.8           | =      | 46.78  | (82) |
| Rooflights 0.9x | 1             | X         | 1.0       | 5        | X             | 33             | X      | 0.55         | X      | 0.8           | =      | 13.72  | (82) |
| Rooflights 0.9x | 1             | X         | 1.7       | 9        | X             | 33             | X      | 0.55         | X      | 0.8           | =      | 23.39  | (82) |
| Rooflights 0.9x | 1             | X         | 1.0       | 5        | X             | 21             | X      | 0.55         | X      | 0.8           | =      | 8.73   | (82) |
| Rooflights 0.9x | 1             | X         | 1.7       | 9        | X             | 21             | X      | 0.55         | X      | 0.8           | =      | 14.89  | (82) |
|                 |               |           |           |          |               |                |        |              |        |               |        |        |      |
| Solar gains ir  | watts, calc   | culated   | for each  |          | $\overline{}$ |                | (83)m  | n = Sum(74)m | (82)m  |               | 1      | 1      |      |
| (83)m= 97.03    |               | 356.59    | 577.01    | 764.78   |               | 10.06 759.93   | 612    | .94 432.28   | 242.8  | 7 122.41      | 78.98  |        | (83) |
| Total gains –   |               |           | <u>`</u>  |          | <del>-</del>  | <u> </u>       |        |              |        |               |        | 1      |      |
| (84)m= 377.61   | 477.13        | 624.87    | 829.39    | 1001.3   | 10            | 31.04 970.99   | 829    | .29 656.9    | 483.5  | 381.48        | 351.69 |        | (84) |
| 7. Mean inte    | ernal tempe   | rature (  | heating   | seasor   | າ)            |                |        |              |        |               |        |        |      |
| Temperatur      | e during hea  | ating pe  | eriods in | the liv  | ing           | area from Tal  | ble 9  | , Th1 (°C)   |        |               |        | 21     | (85) |
| Utilisation fa  | ctor for gain | ns for li | ving are  | a, h1,n  | n (s          | ee Table 9a)   |        |              |        |               | ,      | 1      |      |
| Jan             | Feb           | Mar       | Apr       | May      |               | Jun Jul        | A      | ug Sep       | Oct    | Nov           | Dec    |        |      |
| (86)m= 0.99     | 0.99          | 0.95      | 0.83      | 0.62     | (             | 0.43 0.32      | 0.3    | 0.68         | 0.94   | 0.99          | 1      |        | (86) |
| Mean intern     | al temperat   | ure in li | iving are | ea T1 (f | ollo          | w steps 3 to 7 | 7 in T | able 9c)     |        |               |        | _      |      |
| (87)m= 19.51    | 19.76         | 20.19     | 20.68     | 20.92    | 2             | 0.99 21        | 20.    | 99 20.92     | 20.48  | 19.9          | 19.47  |        | (87) |
| Temperatur      | e during hea  | ating pe  | eriods in | rest of  | fdw           | elling from Ta | able 9 | 9, Th2 (°C)  |        |               |        |        |      |
| (88)m= 19.73    | 19.73         | 19.73     | 19.74     | 19.74    | 1             | 9.76 19.76     | 19.    | 76 19.75     | 19.74  | 19.74         | 19.73  |        | (88) |
| Utilisation fa  | ctor for gai  | ns for re | est of dy | welling, | h2,           | m (see Table   | 9a)    |              | -      |               | -      |        |      |
| (89)m= 0.99     | 0.98          | 0.94      | 0.78      | 0.55     | $\overline{}$ | 0.35 0.23      | 0.2    | 28 0.58      | 0.91   | 0.99          | 0.99   |        | (89) |
| Mean intern     | al temperat   | ure in t  | he rest   | of dwel  | lina          | T2 (follow ste | eps 3  | to 7 in Tah  | le 9c) | •             | •      | •      |      |
| (90)m= 17.78    | <del></del>   | 18.76     | 19.41     | 19.68    | Ť             | 9.75 19.76     | 19.    |              | 19.19  | 18.35         | 17.73  | ]      | (90) |
| . ,             |               |           |           |          |               |                |        |              | l .    | /ing area ÷ ( |        | 0.47   | (91) |
|                 |               | ,,        |           |          |               | \              | ,,     | (1.A.) TO    |        |               |        |        |      |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18.6 1       | 8.91      | 19.44    | 20.01     | 20.27     | 20.33     | 20.34                                             | 20.34       | 20.28                                            | 19.8       | 19.08       | 18.55                  |         | (92)  |
|---------------------|-----------|----------|-----------|-----------|-----------|---------------------------------------------------|-------------|--------------------------------------------------|------------|-------------|------------------------|---------|-------|
| Apply adjustmer     | it to the | e mean   | internal  | tempera   | ature fro | m Table                                           | 4e, whe     | ere appro                                        | priate     | !           |                        |         |       |
| (93)m= 18.45 1      | 8.76      | 19.29    | 19.86     | 20.12     | 20.18     | 20.19                                             | 20.19       | 20.13                                            | 19.65      | 18.93       | 18.4                   |         | (93)  |
| 8. Space heating    | g requir  | rement   |           |           |           |                                                   |             |                                                  |            |             |                        |         |       |
| Set Ti to the mea   |           |          |           |           | ed at ste | ep 11 of                                          | Table 9l    | b, so tha                                        | t Ti,m=(   | 76)m an     | d re-calc              | ulate   |       |
| Jan                 | Feb       | Mar      | Apr       | May       | Jun       | Jul                                               | Aug         | Sep                                              | Oct        | Nov         | Dec                    |         |       |
| Utilisation factor  | for gai   | ns, hm   | :         |           |           |                                                   |             |                                                  |            |             |                        |         |       |
| (94)m= 0.99 (       | .98       | 0.93     | 0.79      | 0.57      | 0.38      | 0.26                                              | 0.32        | 0.61                                             | 0.91       | 0.98        | 0.99                   |         | (94)  |
| Useful gains, hn    | nGm , V   | N = (94  | l)m x (84 | 1)m       |           |                                                   |             |                                                  |            |             |                        |         |       |
| (95)m= 374.02 46    | 55.96     | 580.26   | 652.19    | 572.06    | 390.84    | 253.43                                            | 266.1       | 401.2                                            | 438.26     | 374.29      | 349.15                 |         | (95)  |
| Monthly average     | extern    | nal tem  | perature  | from Ta   | able 8    |                                                   |             |                                                  |            |             |                        |         |       |
| (96)m= 4.3          | 4.9       | 6.5      | 8.9       | 11.7      | 14.6      | 16.6                                              | 16.4        | 14.1                                             | 10.6       | 7.1         | 4.2                    |         | (96)  |
| Heat loss rate for  |           |          |           |           |           | <del>- `                                   </del> |             | <del>-                                    </del> |            | 1           |                        |         |       |
| ` ′                 |           | 925.83   | 785       | 601.68    | 394.85    | 254.03                                            | 267.51      | 427.91                                           | 646.84     | 849.47      | 1023.95                |         | (97)  |
| Space heating re    |           |          |           |           |           |                                                   |             | <del>`</del>                                     | <u>`</u>   | r –         |                        |         |       |
| (98)m= 487.37 36    | 32.77     | 257.1    | 95.62     | 22.04     | 0         | 0                                                 | 0           | 0                                                | 155.18     | 342.13      | 502.05                 |         | _     |
|                     |           |          |           |           |           |                                                   | Tota        | l per year                                       | (kWh/year  | r) = Sum(9  | 8) <sub>15,912</sub> = | 2224.27 | (98)  |
| Space heating re    | equiren   | nent in  | kWh/m²    | /year     |           |                                                   |             |                                                  |            |             |                        | 44.33   | (99)  |
| 9a. Energy requir   | ements    | s – Indi | vidual h  | eating sy | ystems i  | ncluding                                          | micro-C     | CHP)                                             |            |             |                        |         |       |
| Space heating:      |           |          |           |           |           |                                                   |             | , i                                              |            |             |                        |         |       |
| Fraction of spac    | e heat t  | from se  | econdary  | y/supple  | mentary   | system                                            |             |                                                  |            |             |                        | 0       | (201) |
| Fraction of spac    | e heat t  | from m   | ain syst  | em(s)     |           |                                                   | (202) = 1 - | <b>- (201) =</b>                                 |            |             | İ                      | 1       | (202) |
| Fraction of total   | heating   | g from r | main sys  | stem 1    |           |                                                   | (204) = (2  | 02) × [1 –                                       | (203)] =   |             |                        | 1       | (204) |
| Efficiency of ma    | n spac    | e heati  | ng syste  | em 1      |           |                                                   |             |                                                  |            |             | İ                      | 90.3    | (206) |
| Efficiency of sec   | ondary    | /supple  | ementar   | y heating | g system  | າ, %                                              |             |                                                  |            |             |                        | 0       | (208) |
| Jan                 | Feb       | Mar      | Apr       | May       | Jun       | Jul                                               | Aug         | Sep                                              | Oct        | Nov         | Dec                    | kWh/ye  | ar    |
| Space heating re    | equiren   | nent (ca | alculated | d above)  | )         |                                                   |             | •                                                |            | •           |                        |         |       |
| 487.37 36           | 32.77     | 257.1    | 95.62     | 22.04     | 0         | 0                                                 | 0           | 0                                                | 155.18     | 342.13      | 502.05                 |         |       |
| (211)m = {[(98)m    | x (204)   | )] } x 1 | 00 ÷ (20  | 6)        | -         |                                                   |             | -                                                |            | -           | -                      |         | (211) |
| 539.72 40           | 1.74      | 284.72   | 105.89    | 24.4      | 0         | 0                                                 | 0           | 0                                                | 171.85     | 378.89      | 555.98                 |         |       |
|                     | •         |          |           |           |           |                                                   | Tota        | l (kWh/yea                                       | ır) =Sum(2 | 211),5,1012 | =                      | 2463.2  | (211) |
| Space heating for   | uel (sec  | condary  | y), kWh/  | month     |           |                                                   |             |                                                  |            |             |                        |         | _     |
| = {[(98)m x (201)]  | } x 100   | 0 ÷ (208 | 8)        |           |           |                                                   |             |                                                  |            |             |                        |         |       |
| (215)m= 0           | 0         | 0        | 0         | 0         | 0         | 0                                                 | 0           | 0                                                | 0          | 0           | 0                      |         |       |
| -                   | •         | ·        |           |           |           |                                                   | Tota        | l (kWh/yea                                       | r) =Sum(2  | 215),5,1012 | =                      | 0       | (215) |
| Water heating       |           |          |           |           |           |                                                   |             |                                                  |            |             | '                      |         | _     |
| Output from wate    | r heate   | r (calcu | ulated a  | oove)     |           |                                                   |             |                                                  |            |             |                        |         |       |
| 163.2 14            | 2.56      | 148.32   | 131.56    | 127.37    | 112.18    | 107.48                                            | 119.81      | 121.13                                           | 137.94     | 147.24      | 159.37                 |         |       |
| Efficiency of water | r heate   | er       |           |           |           |                                                   |             |                                                  |            | _           |                        | 81      | (216) |
| (217)m= 87.77 8     | 7.47      | 86.66    | 84.67     | 82.25     | 81        | 81                                                | 81          | 81                                               | 85.67      | 87.28       | 87.87                  |         | (217) |
|                     |           |          |           |           |           |                                                   |             |                                                  |            |             |                        |         | ` ′   |
| Fuel for water hea  | •         |          |           |           |           |                                                   |             |                                                  |            | ı           |                        |         | , ,   |
| (219)m = (64)m      | x 100 ÷   | ÷ (217)ı | m         | 454.00    | 400.40    | 400.00                                            | 447.00      | 440.55                                           | 404.04     | 400.00      |                        |         | ` '   |
| (219)m = (64)m      | x 100 ÷   |          |           | 154.86    | 138.49    | 132.69                                            | 147.92      | 149.55                                           | 161.01     | 168.69      | 181.37                 | 1910.02 | (219) |

| Annual totals Space heating fuel used, main system 1                                                              |                                                                                | kWh/year                        | ı         | <b>kWh/year</b><br>2463.2                               | ĺ                                         |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|-----------|---------------------------------------------------------|-------------------------------------------|
|                                                                                                                   |                                                                                |                                 |           |                                                         |                                           |
| Water heating fuel used                                                                                           |                                                                                |                                 |           | 1910.02                                                 |                                           |
| Electricity for pumps, fans and electric keep-hot                                                                 |                                                                                |                                 |           |                                                         |                                           |
| mechanical ventilation - balanced, extract or pos                                                                 | itive input from outside                                                       |                                 | 109.48    |                                                         | (230a)                                    |
| central heating pump:                                                                                             |                                                                                |                                 | 30        |                                                         | (230c)                                    |
| boiler with a fan-assisted flue                                                                                   |                                                                                |                                 | 45        |                                                         | (230e)                                    |
| Total electricity for the above, kWh/year                                                                         | sum of (2                                                                      | 30a)(230g) =                    |           | 184.48                                                  | (231)                                     |
| Electricity for lighting                                                                                          |                                                                                |                                 |           | 232.5                                                   | (232)                                     |
| 12a. CO2 emissions – Individual heating systems                                                                   | s including micro-CHP                                                          |                                 |           |                                                         |                                           |
|                                                                                                                   |                                                                                |                                 |           |                                                         |                                           |
|                                                                                                                   | Energy                                                                         | Emission fact                   | or        | Emissions                                               |                                           |
|                                                                                                                   | <b>Energy</b><br>kWh/year                                                      | Emission factors<br>kg CO2/kWh  | or        | Emissions<br>kg CO2/yea                                 | ſ                                         |
| Space heating (main system 1)                                                                                     | ••                                                                             |                                 | or<br>=   |                                                         | (261)                                     |
| Space heating (main system 1) Space heating (secondary)                                                           | kWh/year                                                                       | kg CO2/kWh                      | •         | kg CO2/yea                                              |                                           |
|                                                                                                                   | kWh/year                                                                       | kg CO2/kWh                      | =         | kg CO2/year                                             | (261)                                     |
| Space heating (secondary)                                                                                         | kWh/year<br>(211) x<br>(215) x                                                 | 0.216<br>0.519<br>0.216         | =         | kg CO2/year                                             | (261)<br>(263)                            |
| Space heating (secondary) Water heating                                                                           | kWh/year<br>(211) x<br>(215) x<br>(219) x                                      | 0.216<br>0.519<br>0.216         | =         | kg CO2/year<br>532.05<br>0<br>412.57                    | (261)<br>(263)<br>(264)                   |
| Space heating (secondary) Water heating Space and water heating                                                   | kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264)                 | kg CO2/kWh  0.216  0.519  0.216 | = = =     | 532.05<br>0<br>412.57<br>944.62                         | (261)<br>(263)<br>(264)<br>(265)          |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot | kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) (231) x (232) x | kg CO2/kWh  0.216  0.519  0.216 | = = = = = | kg CO2/year<br>532.05<br>0<br>412.57<br>944.62<br>95.75 | (261)<br>(263)<br>(264)<br>(265)<br>(267) |

El rating (section 14)

(274)

| Stroma Number: STRO016363   Software Name: Stroma FSAP 2012   Software Version: Version: 1.0.4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Software Name:         Stroma FSAP 2012         Software Version:         Version: 1.0.4.16           Property Address: Apartment 2           Address:           1. Overall dwelling dimensions:           Area(m²)         Av. Height(m)         Volume(m³)           Ground floor         59.25         (1a)         Volume(m³)         (3a)           Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)         59.25         (4)           Dwelling volume         (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 159.98         (5)           2. Ventilation rate:           Mumber of chimneys         O |
| Address:  1. Overall dwelling dimensions:  Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Overall dwelling dimensions:  Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ground floor  Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)  Dwelling volume  (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 159.98 (5)  2. Ventilation rate:  main heating heating heating  Number of chimneys  0 + 0 + 0 = 0 x 40 = 0 (6a)  Number of open flues  0 x 10 = 0 (7a)  Number of passive vents                                                                                                                                                                                                                                                                                               |
| Dwelling volume $ (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 159.98                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2. Ventilation rate:    main heating heating   secondary heating   heating     Number of chimneys   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2. Ventilation rate:           main heating         secondary heating         other         total         m³ per hour           Number of chimneys         0         +         0         +         0         =         0         × 40 =         0         (6a)           Number of open flues         0         +         0         +         0         =         0         (6b)           Number of intermittent fans         0         × 10 =         0         (7a)           Number of passive vents         0         × 10 =         0         (7b)                                           |
| Mumber of chimneys         0         +         0         +         0         +         0         =         0         x 40         =         0         (6a)           Number of open flues         0         +         0         +         0         =         0         x 20         =         0         (6b)           Number of intermittent fans         0         x 10         =         0         (7a)           Number of passive vents         0         x 10         =         0         (7b)                                                                                              |
| Number of chimneys       0       +       0       +       0       +       0       +       0       +       0       +       0       +       0       +       0       -       0       (6a)         Number of open flues       0       +       0       +       0       0       (6b)         Number of intermittent fans       0       0       0       0       (7a)         Number of passive vents       0       0       0       0       0                                                                                                                                                               |
| Number of intermittent fans $ \begin{array}{cccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Number of passive vents $ 0                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Trainise of passive value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of flueless gas fires $0 \times 40 = 0 $ (7c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Air changes per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ $\div (5) = 0$ (8)  If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)                                                                                                                                                                                                                                                                                                                                                                               |
| Number of storeys in the dwelling (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Additional infiltration $[(9)-1] \times 0.1 = 0 $ (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction  o (11)  if both types of wall are present, use the value corresponding to the greater wall area (after                                                                                                                                                                                                                                                                                                                                                                                                   |
| deducting areas of openings); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| If no draught lobby, enter 0.05, else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Percentage of windows and doors draught stripped $0.25 - [0.2 \times (14) \div 100] = 0 \tag{14}$ Window infiltration $0.25 - [0.2 \times (14) \div 100] = 0 \tag{15}$                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vindow infiltration $0.25 - [0.2 \times (14) + 100] = 0$ (15)  Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.15 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Number of sides sheltered $3$ (19) Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.78$ (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.12 \times (21)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Infiltration rate modified for monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Monthly average wind speed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 0.15                                                                                  | ation rat                          | 0.14                  | 0.13              | 0.12      | 0.11           | 0.11              | 0.11                                             | 0.12           | 0.12                                             | 0.13             | 0.14               |                 |               |
|---------------------------------------------------------------------------------------|------------------------------------|-----------------------|-------------------|-----------|----------------|-------------------|--------------------------------------------------|----------------|--------------------------------------------------|------------------|--------------------|-----------------|---------------|
| Calculate effe                                                                        |                                    | _                     | rate for t        | he appli  | cable ca       | ise               |                                                  | <u> </u>       |                                                  | <u> </u>         | !                  | _               |               |
| If mechanica                                                                          |                                    |                       |                   |           |                |                   |                                                  |                |                                                  |                  |                    | 0.5             | (2            |
| If exhaust air h                                                                      |                                    |                       |                   |           |                |                   |                                                  |                | o) = (23a)                                       |                  |                    | 0.5             | (2            |
| If balanced with                                                                      |                                    | -                     | •                 | _         |                |                   |                                                  |                |                                                  |                  |                    | 75.65           | (2            |
| a) If balance                                                                         |                                    |                       | 1                 |           |                | <del>- ` ` </del> | <del>-                                    </del> | <del>í `</del> | <del>-                                    </del> | <del></del>      | <del>- ` ` '</del> | ) ÷ 100]        |               |
| 24a)m= 0.27                                                                           | 0.27                               | 0.26                  | 0.25              | 0.25      | 0.23           | 0.23              | 0.23                                             | 0.24           | 0.25                                             | 0.25             | 0.26               |                 | (2            |
| b) If balance                                                                         |                                    |                       | 1                 | 1         | 1              | <del> </del>      | <del>,                                    </del> | <del>í `</del> | <del> </del>                                     |                  | ı                  | 7               |               |
| 24b)m= 0                                                                              | 0                                  | 0                     | 0                 | 0         | 0              | 0                 | 0                                                | 0              | 0                                                | 0                | 0                  |                 | (2            |
| c) If whole h                                                                         | n < 0.5 ×                          |                       |                   | •         | •              |                   |                                                  |                | .5 × (23b                                        | ))               |                    | _               |               |
| 24c)m= 0                                                                              | 0                                  | 0                     | 0                 | 0         | 0              | 0                 | 0                                                | 0              | 0                                                | 0                | 0                  |                 | (2            |
| d) If natural<br>if (22b)r                                                            | ventilation                        |                       |                   | •         | •              |                   |                                                  |                | 0.5]                                             |                  |                    | _               |               |
| 24d)m= 0                                                                              | 0                                  | 0                     | 0                 | 0         | 0              | 0                 | 0                                                | 0              | 0                                                | 0                | 0                  |                 | (2            |
| Effective air                                                                         | change                             | rate - er             | nter (24 <i>a</i> | ) or (24l | b) or (24      | c) or (24         | ld) in bo                                        | x (25)         |                                                  |                  |                    |                 |               |
| 25)m= 0.27                                                                            | 0.27                               | 0.26                  | 0.25              | 0.25      | 0.23           | 0.23              | 0.23                                             | 0.24           | 0.25                                             | 0.25             | 0.26               |                 | (2            |
| 3. Heat losse                                                                         | s and he                           | eat loss              | paramet           | er:       |                |                   |                                                  |                |                                                  |                  |                    |                 |               |
| LEMENT                                                                                | Gros<br>area                       |                       | Openin            |           | Net Ar<br>A ,r |                   | U-val<br>W/m2                                    |                | A X U<br>(W/I                                    | <b>〈</b> )       | k-value<br>kJ/m²·  |                 | A X k<br>kJ/K |
| oors                                                                                  |                                    |                       |                   |           | 2              | x                 | 1.3                                              | =              | 2.6                                              |                  |                    |                 | (2            |
| Vindows Type                                                                          | e 1                                |                       |                   |           | 8.26           | <u></u>           | /[1/( 1.3 )+                                     | 0.04] =        | 10.21                                            | $\equiv$         |                    |                 | (2            |
| Vindows Type                                                                          | <del>2</del> 2                     |                       |                   |           | 4.21           | <u></u>           | /[1/( 1.3 )+                                     | 0.04] =        | 5.2                                              |                  |                    |                 | (2            |
| Vindows Type                                                                          | e 3                                |                       |                   |           | 3.21           | <u></u>           | /[1/( 1.3 )+                                     | 0.04] =        | 3.97                                             |                  |                    |                 | (2            |
| Vindows Type                                                                          | e 4                                |                       |                   |           | 4.37           | x1                | /[1/( 1.3 )+                                     | 0.04] =        | 5.4                                              |                  |                    |                 | (2            |
| Rooflights                                                                            |                                    |                       |                   |           | 1.61           | x1                | /[1/(1.6) +                                      | 0.04] =        | 2.576                                            | =                |                    |                 | (2            |
| Valls Type1                                                                           | 38.9                               | )5                    | 20.0              | 5         | 18.9           | X                 | 0.15                                             | ─ = i          | 2.84                                             |                  |                    |                 | (2            |
| Valls Type2                                                                           | 45.4                               | 17                    | 2                 |           | 43.47          | 7 X               | 0.13                                             | <del>-</del>   | 5.81                                             | F i              |                    |                 | (2            |
| Roof                                                                                  | 59.2                               | 25                    | 1.61              |           | 57.64          | 1 x               | 0.1                                              | = :            | 5.76                                             | F i              |                    | <b>=</b> =      | (3            |
| otal area of e                                                                        |                                    |                       |                   |           | 143.6          | =                 |                                                  |                |                                                  |                  |                    |                 | ``<br>(3      |
| Party wall                                                                            |                                    | ,                     |                   |           | 25.95          | _                 | 0                                                |                | 0                                                | [                |                    |                 | (3            |
| -                                                                                     |                                    |                       |                   |           | 59.25          | _                 |                                                  |                |                                                  |                  |                    |                 | (3            |
| anv noor                                                                              | l roof wind                        | ows. use e            | effective w       | indow U-v |                |                   | a formula 1                                      | 1/[(1/U-valu   | ue)+0.041 a                                      | l<br>as aiven in | paragrapi          |                 | (`            |
| •                                                                                     |                                    |                       |                   |           |                |                   | ,                                                | 2(             | , ,                                              | <b>J</b>         | 7                  |                 |               |
| for windows and                                                                       | as on both                         |                       |                   |           |                |                   | (26)(30                                          | ) + (32) =     |                                                  |                  |                    | 44.2            | (3            |
| for windows and<br>include the area                                                   |                                    | = S (A x              | U)                |           |                |                   |                                                  |                |                                                  |                  |                    |                 |               |
| for windows and<br>include the area<br>abric heat los                                 | ss, W/K =                          | ,                     | U)                |           |                |                   |                                                  | ((28).         | (30) + (32                                       | 2) + (32a).      | (32e) =            | 15258.06        | (3            |
| earty floor for windows and include the area abric heat los leat capacity hermal mass | ss, W/K =<br>Cm = S(               | (A x k )              | ŕ                 | ÷ TFA) iı | n kJ/m²K       | ,                 |                                                  | ., ,           | (30) + (32<br>itive Value                        | , , ,            | (32e) =            | 15258.06<br>250 | ===           |
| for windows and<br>include the area<br>abric heat los<br>leat capacity                | ss, W/K = Cm = S( parame sments wh | (A x k )<br>eter (TMF | P = Cm -          | ,         |                |                   | recisely the                                     | Indica         | itive Value                                      | Medium           | , ,                |                 | (3            |

| Total affork neat loss calculated monthly  Volume 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total fabric heat loss                     |                   |            |            |              | (33) ±     | (36) -      |                        | ı                     | 50.77   | 7(27) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|------------|------------|--------------|------------|-------------|------------------------|-----------------------|---------|-------|
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | onthly            |            |            |              | ` '        | ,           | 25)m x (5)             |                       | 58.77   | (37)  |
| (38) Heat transfer coefficient, W/K  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (39)me (37) + (38)m  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (4)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (40)me (38)me (40)  (41)me (38)me (40)  (42) me (38)me (40)  (41)me (38)me (40)  (42) me (38)me (40)  (42) me (38)me (40)  (43) me (40)me (40)me (40)me (40)me (40)  (41)me (40)me (40)me (40)me (40)me (40)me (40)  (42) me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40)me (40 |                                            | <del>í i</del>    | Jun        | .lul       | Aug          |            |             | , , ,                  | Dec                   |         |       |
| (39)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                   |            |            | Ť            | -          |             |                        |                       |         | (38)  |
| (39)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heat transfer coefficient. W/K             | 1                 |            | <u> </u>   | <u> </u>     | (39)m      | = (37) + (3 | 88)m                   |                       |         |       |
| Heat loss parameter (HLP), W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 71.94 71.79       | 71.02      | 71.02      | 70.87        |            |             |                        | 72.4                  |         |       |
| (40)ms   123   123   123   121   121   12   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                   |            | !          |              | ,          | Average =   | Sum(39) <sub>1.</sub>  | .12 /12=              | 71.91   | (39)  |
| Average   Sum(40) z   12   1.21   (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                   |            |            |              | · ,        |             |                        |                       | l       |       |
| Number of days in month (Table 1a)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (40)m= 1.23 1.23 1.23                      | 1.21 1.21         | 1.2        | 1.2        | 1.2          |            |             |                        |                       | 4.04    | 7(40) |
| 4. Water heating energy requirement:  **Reduce the annual average hot water usage in litres per day Vd. average = (25 x N) + 36 **Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per per day Vd. average = (25 x N) + 36 **Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per per per day III and III and III are speed to achieve a water use target or not more that 125 litres per per per day III and III and III are speed to achieve a water use target or not more that 125 litres per per per day III and III are speed to achieve a water use target or not more that 125 litres per per per day III are speed to achieve a water use target or not more that 125 litres per per day III are speed to achieve a water use target or not more that 125 litres per per day III are speed to achieve a water use target or not more that 125 litres per per day III are speed to achieve a water use target or not more that 125 litres per per day III are speed to achieve a water use target or not more that 125 litres per day III are speed to achieve a water use target or not more that 125 litres per day III are speed to achieve a water use target or not more that 125 litres per day III are speed to achieve a water use target or not more that 125 litres per day III are speed to achieve a water use target or not speed to achieve a water use target or not speed to achieve a water use target or not speed to achieve a water use target or not speed to achieve a water use target or not be target or litres per day III and III are speed or litres per day III and III are speed or litres per day III and III are speed or litres per day III and III are speed or litres per day III are speed or litres per day III are speed or litres per day III are speed or litres per day III are speed or litres per day III are speed or litres per day III are speed or litres per day III are speed or litres per | Number of days in month (Table             | 1a)               |            |            |              | ,          | Average =   | Sum(40) <sub>1.</sub>  | . <sub>.12</sub> /12= | 1.21    | (40)  |
| ### A. Water heating energy requirement:  ### Assumed occupancy, N  If TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  If TFA£ 13.9, N = 1  Annual average hot water usage in litres per day Vd_average = (25 x N) + 36  ### Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  ### Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  ### Hot water usage in litres per day for each month Vd.m = factor from Table To x (43)  ### (44)m= 88.83 85.6 82.37 79.14 75.91 72.68 72.68 75.91 79.14 82.37 85.6 88.83  ### Total = Sum(44) = 989.1 44)  ### Energy content of hot water used - calculated monthily = 4.190 x Vd.m x nm x DTm /3600 kWh/month (see Tables 1b, 1c, 1d)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage) water 0 in boxes (46) to (61)  ### Instantaneous water heating at point of use (no hot water storage) water 0 in bo    | Jan Feb Mar                                | Apr May           | Jun        | Jul        | Aug          | Sep        | Oct         | Nov                    | Dec                   |         |       |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m= 88.83 85.6 82.37 79.14 75.91 72.68 72.68 75.91 79.14 82.37 85.6 88.83  Total = Sum(44)= 969.1 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd.m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= [131.74 115.22 118.9 103.66 99.46 85.83 79.53 91.26 92.35 107.63 117.49 127.58 127.64 (45)  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= [19.76 17.28 17.83 15.55 14.92 12.87 11.93 13.69 13.85 16.14 17.62 19.14 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  frommunity heating see section 4.3  Volume factor from Table 2b 0 (52)  Temperature factor from Table 2b 0 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 0 (54)                                                                                                                                                                                                                       | (41)m= 31 28 31                            | 30 31             | 30         | 31         | 31           | 30         | 31          | 30                     | 31                    |         | (41)  |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m= 88.83 85.6 82.37 79.14 75.91 72.68 72.68 75.91 79.14 82.37 85.6 88.83  Total = Sum(44)= 969.1 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd.m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= [131.74 115.22 118.9 103.66 99.46 85.83 79.53 91.26 92.35 107.63 117.49 127.58 127.64 (45)  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= [19.76 17.28 17.83 15.55 14.92 12.87 11.93 13.69 13.85 16.14 17.62 19.14 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  frommunity heating see section 4.3  Volume factor from Table 2b 0 (52)  Temperature factor from Table 2b 0 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 0 (54)                                                                                                                                                                                                                       |                                            |                   |            |            |              |            |             |                        |                       |         |       |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m= 8.8.3 85.6 82.37 79.14 75.91 72.68 72.68 75.91 79.14 82.37 85.6 88.83  Total = Sum(44)= 969.1 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd.m × nm × DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 131.74 115.22 118.9 103.66 99.46 85.83 79.53 91.26 92.35 107.63 117.49 127.58  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 19.76 17.28 17.83 15.55 14.92 12.87 11.93 13.69 13.85 16.14 17.62 19.14  (46)m= 19.76 17.28 17.83 16.55 14.92 12.87 11.93 13.69 13.85 16.14 17.62 19.14  (47) Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (50)  Energy lost from water storage, kWh/year (48) x (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)  Temperature factor from Table 2b 0 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 0 (54)                                                                                                                                                                          | 4. Water heating energy requirer           | ment:             |            |            |              |            |             |                        | kWh/ye                | ear:    |       |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Reduce the annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Reduce the annual average hot water usage in litres per day Vd.average = (25 x N) + 36  Reduce the annual average hot water usage in litres per day (all water usage is designed to achieve a water use target or not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd.m = factor from Table 1c x (43)  (44)m= 8.83 85.8 82.37 79.14 75.91 72.68 72.68 75.91 79.14 82.37 85.6 88.83  Total = Sum(44) = 969.1 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd.m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 131.74 115.22 118.9 103.66 99.46 85.83 79.53 91.26 92.35 107.63 117.49 127.58  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 19.76 17.28 17.83 15.55 14.92 12.87 11.93 13.69 13.85 16.14 17.62 19.14  (46)Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (50)  Energy lost from water storage, kWh/year (48) x (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  Frommunity heating see section 4.3  Volume factor from Table 2a 0 (52)  Temperature factor from Table 2b 0 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 0 (54)                                                         | Assumed ecoupanov N                        |                   |            |            |              |            |             |                        |                       |         | (40)  |
| If TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | - exp(-0.0003     | 49 x (TF   | FA -13.9   | )2)] + 0.0   | 013 x (    | ΓFA -13.    |                        | 96                    |         | (42)  |
| Reduce the annual average hot water usage by 5% if the divelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | if TFA £ 13.9, N = 1                       |                   |            |            | , . <u>-</u> | ·          |             |                        |                       |         |       |
| Note   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·      | •                 |            | _          | ` ,          |            | o taraat a  |                        | .76                   |         | (43)  |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m= 88.83 85.6 82.37 79.14 75.91 72.68 72.68 75.91 79.14 82.37 85.6 88.83  Total = Sum(44)1e = 969.1 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 131.74 115.22 118.9 103.66 99.46 85.83 79.53 91.26 92.35 107.63 117.49 127.58  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 19.76 17.28 17.83 15.55 14.92 12.87 11.93 13.69 13.85 16.14 17.62 19.14 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Energy lost from water storage, kWh/year (48) x (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)  Temperature factor from Table 2b 0 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 0 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                          | • •               | -          | -          | io acriieve  | a water us | e larget or |                        |                       |         |       |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m= 88.83 85.6 82.37 79.14 75.91 72.68 72.68 75.91 79.14 82.37 85.6 88.83  Total = Sum(44)1e = 969.1 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 131.74 115.22 118.9 103.66 99.46 85.83 79.53 91.26 92.35 107.63 117.49 127.58  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 19.76 17.28 17.83 15.55 14.92 12.87 11.93 13.69 13.85 16.14 17.62 19.14 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Energy lost from water storage, kWh/year (48) x (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)  Temperature factor from Table 2b 0 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 0 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jan Feb Mar                                | Apr May           | Jun        | Jul        | Aug          | Sen        | Oct         | Nov                    | Dec                   |         |       |
| Total = Sum(44)p =   969.1   (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                   |            | l .        |              | СОР        | 001         | . 101                  | 200                   |         |       |
| Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (44)m= 88.83 85.6 82.37 7                  | 79.14 75.91       | 72.68      | 72.68      | 75.91        | 79.14      | 82.37       | 85.6                   | 88.83                 |         |       |
| (45)m= 131.74 115.22 118.9 103.66 99.46 85.83 79.53 91.26 92.35 107.63 117.49 127.58  Total = Sum(45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                   |            |            |              |            |             | ` '                    |                       | 969.1   | (44)  |
| Total = Sum(45) <sub>12</sub> = 1270.64   (45)     If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)     (46)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Energy content of hot water used - calcula | ated monthly = 4. | 190 x Vd,r | n x nm x E | OTm / 3600   | kWh/mor    | th (see Ta  | bles 1b, 1             | c, 1d)                |         |       |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 19.76 17.28 17.83 15.55 14.92 12.87 11.93 13.69 13.85 16.14 17.62 19.14  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)  Temperature factor from Table 2b 0 (53)  Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = 0 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (45)m= 131.74 115.22 118.9 10              | 03.66 99.46       | 85.83      | 79.53      | 91.26        |            |             |                        |                       |         | _     |
| (46)m=       19.76       17.28       17.83       15.55       14.92       12.87       11.93       13.69       13.85       16.14       17.62       19.14         Water storage loss:         Storage volume (litres) including any solar or WWHRS storage within same vessel       0       (47)         If community heating and no tank in dwelling, enter 110 litres in (47)         Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)         Water storage loss:         a) If manufacturer's declared loss factor is known (kWh/day):       0       (48)         Temperature factor from Table 2b       0       (49)         Energy lost from water storage, kWh/year       (48) × (49) =       0       (50)         b) If manufacturer's declared cylinder loss factor is not known:         Hot water storage loss factor from Table 2 (kWh/litre/day)       0       (51)         If community heating see section 4.3         Volume factor from Table 2a       0       (52)         Temperature factor from Table 2b       0       (53)         Energy lost from water storage, kWh/year       (47) × (51) × (52) × (53) =       0       (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | If instantaneous water heating at point of | use (no hot water | storage).  | enter 0 in | boxes (46)   |            | Γotal = Sur | m(45) <sub>112</sub> = | :                     | 1270.64 | (45)  |
| Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (48) × (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  o (51)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) = 0  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                   |            |            |              |            | 16 14       | 17 62                  | 19 14                 |         | (46)  |
| If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  f community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) = 0  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | 11.02             | 12.07      | 11.00      | 10.00        | 10.00      | 10.11       | 11.02                  | 10.11                 |         | ( - / |
| Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  o (51)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) = 0  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Storage volume (litres) including a        | any solar or W    | /WHRS      | storage    | within sa    | me ves     | sel         |                        | )                     |         | (47)  |
| Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  0  (48)  (49)  (49)  (50)  (51)  (51)  (52)  (52)  (53)  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  0  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | If community heating and no tank           | in dwelling, e    | nter 110   | litres in  | (47)         |            |             |                        |                       |         |       |
| a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) =  0  (48)  (49)  0  (50)  (51)  (51)  (52)  (53)  Energy lost from water storage, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                          | this includes in  | nstantar   | neous co   | mbi boil     | ers) ente  | er '0' in ( | 47)                    |                       |         |       |
| Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) = 0  (50)  (51)  (51)  (52)  (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                          | e factor is know  | wn (k\N/k  | a/dayı):   |              |            |             |                        |                       |         | (40)  |
| Energy lost from water storage, kWh/year (48) x (49) = 0 (50) b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) If community heating see section 4.3 Volume factor from Table 2a 0 (52) Temperature factor from Table 2b 0 (53) Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) = 0$ (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                          |                   | vvii (Kvvi | i/uay).    |              |            |             |                        |                       |         |       |
| b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (47) × (51) × (52) × (53) = 0  (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                          |                   |            |            | (48) v (40)  | _          |             |                        |                       |         |       |
| Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/year $ 0 $ (51) $ 0 $ (52) $ 0 $ (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | •                 | or is not  |            | (40) X (49)  | _          |             |                        | J                     |         | (50)  |
| Volume factor from Table 2a $0$ (52) Temperature factor from Table 2b $0$ (53) Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) = 0$ (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                          |                   |            |            |              |            |             |                        | )                     |         | (51)  |
| Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 4.3               |            |            |              |            |             |                        |                       |         |       |
| Energy lost from water storage, kWh/year $ (47) \times (51) \times (52) \times (53) = 0 $ (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            | _                 |            |            |              |            |             |                        |                       |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                   |            |            |              | <b></b>    | >           |                        | )                     |         | . ,   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••                                         | vvn/year          |            |            | (47) x (51)  | x (52) x ( | 53) =       | -                      |                       |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                   |            |            |              |            |             |                        | J                     |         | (55)  |

| Water                                                                                                          | storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                        | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                                                                             | ((56)m = (                                                                        | 55) × (41)                                                    | m                                                |                                           |                                     |               |                                      |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------|---------------|--------------------------------------|
| (56)m=                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                  | 0                                                                           | 0                                                                                 | 0                                                             | 0                                                | 0                                         | 0                                   |               | (56)                                 |
| If cylinde                                                                                                     | er contains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dedicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)ı                                                                                     | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                                        | H11)] ÷ (5                                                                  | 0), else (5                                                                       | 7)m = (56)                                                    | m where (                                        | H11) is fro                               | m Append                            | ix H          |                                      |
| (57)m=                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                  | 0                                                                           | 0                                                                                 | 0                                                             | 0                                                | 0                                         | 0                                   |               | (57)                                 |
| Primar                                                                                                         | y circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | loss (an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m Table                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                                                                             |                                                                                   |                                                               |                                                  |                                           | 0                                   |               | (58)                                 |
|                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59)m = (                                                                                           | (58) ÷ 36                                                                   | 65 × (41)                                                                         | m                                                             |                                                  |                                           |                                     |               |                                      |
| (mod                                                                                                           | dified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | factor fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                      | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                                          | er heatir                                                                   | ng and a                                                                          | cylinde                                                       | r thermo                                         | stat)                                     |                                     |               |                                      |
| (59)m=                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                  | 0                                                                           | 0                                                                                 | 0                                                             | 0                                                | 0                                         | 0                                   |               | (59)                                 |
| Combi                                                                                                          | loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                         | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                                          | 65 × (41)                                                                   | )m                                                                                |                                                               |                                                  |                                           |                                     |               |                                      |
| (61)m=                                                                                                         | 45.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.03                                                                                           | 38.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.84                                                                                              | 37.04                                                                       | 38.68                                                                             | 39.03                                                         | 41.98                                            | 42.22                                     | 45.27                               |               | (61)                                 |
| Total h                                                                                                        | eat requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uired for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                       | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for eac                                                                                            | h month                                                                     | (62)m =                                                                           | 0.85 ×                                                        | (45)m +                                          | (46)m +                                   | (57)m +                             | (59)m + (61)m |                                      |
| (62)m=                                                                                                         | 177.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 160.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 142.69                                                                                          | 138.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.67                                                                                             | 116.57                                                                      | 129.95                                                                            | 131.38                                                        | 149.61                                           | 159.7                                     | 172.85                              |               | (62)                                 |
| Solar Dh                                                                                                       | -IW input o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                                      | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                                          | ve quantity                                                                 | /) (enter '0                                                                      | ' if no sola                                                  | r contribut                                      | ion to wate                               | er heating)                         |               |                                      |
| (add a                                                                                                         | dditiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lines if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or V                                                                                        | <b>VWHRS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | applies                                                                                            | , see Ap                                                                    | pendix (                                                                          | 3)                                                            |                                                  |                                           |                                     |               |                                      |
| (63)m=                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                  | 0                                                                           | 0                                                                                 | 0                                                             | 0                                                | 0                                         | 0                                   |               | (63)                                 |
| Output                                                                                                         | from wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ater hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                  | _                                                                           | -                                                                                 | -                                                             |                                                  | -                                         | -                                   |               |                                      |
| (64)m=                                                                                                         | 177.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 160.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 142.69                                                                                          | 138.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.67                                                                                             | 116.57                                                                      | 129.95                                                                            | 131.38                                                        | 149.61                                           | 159.7                                     | 172.85                              |               |                                      |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                             | Outp                                                                              | out from w                                                    | ater heate                                       | r (annual) <sub>1</sub>                   | 12                                  | 1755.06       | (64)                                 |
| Heat g                                                                                                         | ains froi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/mo                                                                                          | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                                          | × (45)m                                                                     | + (61)m                                                                           | n] + 0.8 x                                                    | x [(46)m                                         | + (57)m                                   | + (59)m                             | ]             | _                                    |
| (65)m=                                                                                                         | 55.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                             |                                                                                   |                                                               | ,                                                |                                           |                                     | -             |                                      |
| . ,                                                                                                            | 00.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.22                                                                                           | 42.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.5                                                                                               | 35.7                                                                        | 40.02                                                                             | 40.46                                                         | 46.28                                            | 49.62                                     | 53.74                               |               | (65)                                 |
| , ,                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                           |                                                                             | <u> </u>                                                                          | <u> </u>                                                      | ļ                                                |                                           | 53.74<br>munity h                   | eating        | (65)                                 |
| inclu                                                                                                          | ıde (57)ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n in calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of (65)m                                                                                        | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                           |                                                                             | <u> </u>                                                                          | <u> </u>                                                      | ļ                                                |                                           | <u> </u>                            | eating        | (65)                                 |
| inclu<br>5. Int                                                                                                | ide (57)i<br>ternal ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m in calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of the Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                           |                                                                             | <u> </u>                                                                          | <u> </u>                                                      | ļ                                                |                                           | <u> </u>                            | eating        | (65)                                 |
| inclu<br>5. Int                                                                                                | ide (57)i<br>ernal ga<br>olic gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m in calc<br>iins (see<br>s (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                                          | s in the d                                                                  | dwelling                                                                          | or hot w                                                      | rater is fr                                      | om com                                    | munity h                            | eating        | (65)                                 |
| inclu<br>5. Int                                                                                                | ide (57)i<br>ternal ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m in calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of the Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                           |                                                                             | <u> </u>                                                                          | <u> </u>                                                      | ļ                                                |                                           | <u> </u>                            | eating        | (65)                                 |
| 5. Int<br>Metabo                                                                                               | ernal gaolic gain Jan 98.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n in calc<br>ins (see<br>s (Table<br>Feb<br>98.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Table 5<br>5), Wat<br>Mar<br>98.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m<br>5 and 5a<br>ts<br>Apr<br>98.02                                                      | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | ylinder is<br>Jun<br>98.02                                                                         | Jul<br>98.02                                                                | Aug<br>98.02                                                                      | or hot w                                                      | vater is fr                                      | om com                                    | munity h                            | eating        |                                      |
| inclu 5. Int Metabo (66)m= Lightin                                                                             | ernal ga<br>olic gain<br>Jan<br>98.02<br>g gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m in calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Example 5 to 2 to 2 to 2 to 2 to 2 to 2 to 2 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m and 5a ts Apr 98.02 ppendix                                                            | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | Jun<br>98.02                                                                                       | Jul<br>98.02<br>r L9a), a                                                   | Aug<br>98.02                                                                      | Sep<br>98.02                                                  | Oct 98.02                                        | Nov<br>98.02                              | Dec 98.02                           | eating        | (66)                                 |
| inclu 5. Int Metabo (66)m= Lightin (67)m=                                                                      | ernal garolic gain Jan 98.02 g gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m in calcular ins (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 5  5), Wat  Mar  98.02  ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m and 5a ts Apr 98.02 ppendix 8.34                                                       | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | Jun<br>98.02<br>ion L9 o                                                                           | Jul<br>98.02<br>r L9a), a                                                   | Aug<br>98.02<br>Iso see                                                           | Sep 98.02 Table 5 9.92                                        | Oct 98.02                                        | om com                                    | munity h                            | eating        |                                      |
| inclu 5. Int Metabo (66)m= Lightin (67)m= Appliar                                                              | de (57)i<br>ernal ga<br>olic gain<br>Jan<br>98.02<br>g gains<br>15.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m in calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Example 5 to 2 to 2 to 2 to 2 to 2 to 2 to 2 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Append                                              | May 98.02 L, equat 6.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L                                                      | Jul<br>98.02<br>r L9a), a<br>5.69                                           | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also                                      | Sep 98.02 Table 5 9.92 see Ta                                 | Oct 98.02                                        | Nov 98.02                                 | Dec 98.02                           | eating        | (66)<br>(67)                         |
| inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m=                                                       | polic gain Jan 98.02 g gains 15.25 nces gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m in calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Ev | of (65)m 5 and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83                                     | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L                                                      | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1                               | Aug<br>98.02<br>lso see<br>7.39<br>3a), also                                      | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta                     | Oct 98.02 12.6 ble 5 140.19                      | Nov<br>98.02                              | Dec 98.02                           | eating        | (66)                                 |
| inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m=                                                       | polic gain Jan 98.02 g gains 15.25 nces gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m in calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of Ev | of (65)m 5 and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83                                     | only if constraints only if constraints only if constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraints on the constraint on the constraints on the constraint on the constraints of the constraints on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint on the constraint | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L                                                      | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1                               | Aug<br>98.02<br>lso see<br>7.39<br>3a), also                                      | Sep<br>98.02<br>Table 5<br>9.92<br>see Ta                     | Oct 98.02 12.6 ble 5 140.19                      | Nov 98.02                                 | Dec 98.02                           | eating        | (66)<br>(67)                         |
| inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookir (69)m=                                         | g gains 15.25 nces gain 171.05 ng gains 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m in calcular (calcular 172.83) (calcular 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ted in Apulated in 168.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8                          | May 98.02 L, equat 6.23 dix L, eq 146.81 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15                                 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1:<br>127.97<br>or L15a)        | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                            | Sep 98.02 Table 5 9.92 See Ta 130.66                          | Oct 98.02 12.6 ble 5 140.19                      | Nov<br>98.02<br>14.7                      | Dec 98.02                           | eating        | (66)<br>(67)<br>(68)                 |
| inclu 5. Inf Metabo (66)m= Lightin (67)m= Applian (68)m= Cookir (69)m= Pumps                                   | g gains 15.25 nces gain 171.05 ng gains 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m in calcular (calcular 172.83) (calcular 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e Table 5<br>e 5), Wat<br>Mar<br>98.02<br>ted in Ap<br>11.02<br>ulated in<br>168.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8                        | May 98.02 L, equat 6.23 dix L, eq 146.81 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15                                 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1:<br>127.97<br>or L15a)        | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | Sep 98.02 Table 5 9.92 see Ta 130.66 ee Table 32.8            | Oct 98.02 12.6 ble 5 140.19                      | Nov<br>98.02<br>14.7<br>152.21            | Dec 98.02 15.67 163.5               | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookir (69)m= Pumps (70)m=                            | g gains 171.05 172.8 173.8 174.05 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175 | m in calcular (calcular 172.83) (calcular 32.8) as gains 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 3                  | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8                         | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                            | Sep 98.02 Table 5 9.92 See Ta 130.66                          | Oct 98.02  12.6 ble 5 140.19 2.5 32.8            | Nov<br>98.02<br>14.7                      | Dec 98.02                           | eating        | (66)<br>(67)<br>(68)                 |
| inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookir (69)m= Pumps (70)m=                            | g gains 171.05 172.8 173.8 174.05 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175.25 175 | m in calcular (calcular 172.83) (calcular 32.8) as gains 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8                        | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8                         | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | Sep 98.02 Table 5 9.92 see Ta 130.66 ee Table 32.8            | Oct 98.02  12.6 ble 5 140.19 2.5 32.8            | Nov<br>98.02<br>14.7<br>152.21            | Dec 98.02 15.67 163.5               | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| inclu 5. Inf Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m=              | g gains 15.25 nces gai 171.05 ng gains 32.8 s and far 3 s e.g. ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m in calces (Table Feb 98.02) (calculated 13.54) ms (calculated 32.8) ms gains 3 aporatio -78.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ted in Ap 168.35 ted in Ap 168.35 ted in Ap 168.35 ted in Ap 32.8 (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8 5a) 3 tive value         | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8                         | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | Sep 98.02 Table 5 9.92 See Ta 130.66 ee Table 32.8            | Oct 98.02  12.6 ble 5 140.19 2.5 32.8            | Nov 98.02 14.7 152.21 32.8                | Dec 98.02 15.67 163.5               | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| inclu 5. Inf Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m=              | g gains 15.25 nces gai 171.05 ng gains 32.8 s and far 3 s e.g. ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m in calces (Table Feb 98.02) (calcular 13.54) ms (calcular 32.8) ms gains 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ted in Ap 168.35 ted in Ap 168.35 ted in Ap 168.35 ted in Ap 32.8 (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Append 158.83 ppendix 32.8 5a) 3 tive value         | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8                         | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | Sep 98.02 Table 5 9.92 See Ta 130.66 ee Table 32.8            | Oct 98.02  12.6 ble 5 140.19 2.5 32.8            | Nov 98.02 14.7 152.21 32.8                | Dec 98.02 15.67 163.5               | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m= | g gains 15.25 nces gain 171.05 ng gains 32.8 and far s e.g. ev -78.41 heating 74.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m in calces (Table Feb 98.02) (calculated 13.54) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) (calculated 32.8) | ted in Ap 168.35 ted in Ap 168.35 ted in Ap 168.35 ted in Ap 32.8 (Table 5 3 on (negation of the context) above 178.41 Table 5) 67.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 3 tive valu -78.41 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8<br>3<br>le 5)<br>-78.41 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8<br>3 | Sep 98.02 Table 5 9.92 See Ta 130.66 ee Table 32.8  3  -78.41 | Oct 98.02  12.6 ble 5 140.19 2.5 32.8            | Nov 98.02 14.7 152.21 32.8 3 -78.41 68.91 | Dec 98.02 15.67 163.5 32.8 3 -78.41 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m= | g gains 15.25 nces gain 171.05 ng gains 32.8 and far s e.g. ev -78.41 heating 74.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m in calces (Table Feb 98.02) (calcular 13.54) ns (calcular 32.8) ns gains 3 aporatio -78.41 gains (Table 71.67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ted in Ap 168.35 ted in Ap 168.35 ted in Ap 168.35 ted in Ap 32.8 (Table 5 3 on (negation of the context) above 178.41 Table 5) 67.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of (65)m s and 5a ts Apr 98.02 ppendix 8.34 Appendix 158.83 ppendix 32.8 5a) 3 tive valu -78.41 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun<br>98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8<br>3<br>le 5)<br>-78.41 | Jul<br>98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8 | Aug<br>98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8<br>3 | Sep 98.02 Table 5 9.92 See Ta 130.66 ee Table 32.8  3  -78.41 | Oct 98.02  12.6 ble 5 140.19 2 5 32.8  3  -78.41 | Nov 98.02 14.7 152.21 32.8 3 -78.41 68.91 | Dec 98.02 15.67 163.5 32.8 3 -78.41 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Fact<br>Table 6d | tor | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|--------------------------------------|-----|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast <sub>0.9x</sub> 0.77       | x   | 4.21       | x | 11.28            | x | 0.55           | x | 0.7            | =        | 12.67        | (75) |
| Northeast <sub>0.9x</sub> 0.77       | ×   | 4.21       | x | 22.97            | x | 0.55           | x | 0.7            | =        | 25.8         | (75) |
| Northeast 0.9x 0.77                  | ×   | 4.21       | x | 41.38            | x | 0.55           | x | 0.7            | ] =      | 46.48        | (75) |
| Northeast 0.9x 0.77                  | ×   | 4.21       | x | 67.96            | x | 0.55           | x | 0.7            | ] =      | 76.33        | (75) |
| Northeast 0.9x 0.77                  | ×   | 4.21       | x | 91.35            | x | 0.55           | x | 0.7            | =        | 102.6        | (75) |
| Northeast 0.9x 0.77                  | ×   | 4.21       | x | 97.38            | x | 0.55           | x | 0.7            | ] =      | 109.39       | (75) |
| Northeast <sub>0.9x</sub> 0.77       | ×   | 4.21       | x | 91.1             | x | 0.55           | x | 0.7            | ] =      | 102.33       | (75) |
| Northeast 0.9x 0.77                  | ×   | 4.21       | x | 72.63            | x | 0.55           | x | 0.7            | <b>=</b> | 81.58        | (75) |
| Northeast <sub>0.9x</sub> 0.77       | ×   | 4.21       | x | 50.42            | x | 0.55           | x | 0.7            | ] =      | 56.63        | (75) |
| Northeast 0.9x 0.77                  | ×   | 4.21       | x | 28.07            | x | 0.55           | x | 0.7            | <b>=</b> | 31.53        | (75) |
| Northeast <sub>0.9x</sub> 0.77       | x   | 4.21       | x | 14.2             | x | 0.55           | x | 0.7            | <b>=</b> | 15.95        | (75) |
| Northeast 0.9x 0.77                  | ×   | 4.21       | x | 9.21             | x | 0.55           | x | 0.7            | ] =      | 10.35        | (75) |
| Northwest 0.9x 0.77                  | ×   | 8.26       | x | 11.28            | x | 0.55           | x | 0.7            | <b>=</b> | 24.87        | (81) |
| Northwest 0.9x 0.77                  | x   | 3.21       | x | 11.28            | x | 0.55           | x | 0.7            | <b>=</b> | 9.66         | (81) |
| Northwest 0.9x 0.77                  | ×   | 4.37       | x | 11.28            | x | 0.55           | x | 0.7            | <b>=</b> | 13.16        | (81) |
| Northwest 0.9x 0.77                  | x   | 8.26       | x | 22.97            | x | 0.55           | x | 0.7            | <b>=</b> | 50.61        | (81) |
| Northwest 0.9x 0.77                  | x   | 3.21       | x | 22.97            | x | 0.55           | x | 0.7            | <b>=</b> | 19.67        | (81) |
| Northwest 0.9x 0.77                  | x   | 4.37       | x | 22.97            | x | 0.55           | x | 0.7            | <b>=</b> | 26.78        | (81) |
| Northwest 0.9x 0.77                  | ×   | 8.26       | x | 41.38            | x | 0.55           | X | 0.7            | <b>=</b> | 91.19        | (81) |
| Northwest 0.9x 0.77                  | ×   | 3.21       | x | 41.38            | x | 0.55           | x | 0.7            | ] =      | 35.44        | (81) |
| Northwest 0.9x 0.77                  | ×   | 4.37       | x | 41.38            | x | 0.55           | x | 0.7            | ] =      | 48.25        | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 67.96            | x | 0.55           | x | 0.7            | <b>=</b> | 149.76       | (81) |
| Northwest 0.9x 0.77                  | ×   | 3.21       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 58.2         | (81) |
| Northwest 0.9x 0.77                  | x   | 4.37       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 79.23        | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 91.35            | x | 0.55           | X | 0.7            | =        | 201.31       | (81) |
| Northwest 0.9x 0.77                  | ×   | 3.21       | x | 91.35            | X | 0.55           | X | 0.7            | =        | 78.23        | (81) |
| Northwest 0.9x 0.77                  | ×   | 4.37       | x | 91.35            | x | 0.55           | x | 0.7            | =        | 106.5        | (81) |
| Northwest 0.9x 0.77                  | ×   | 8.26       | X | 97.38            | X | 0.55           | X | 0.7            | =        | 214.62       | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 97.38            | X | 0.55           | X | 0.7            | =        | 83.4         | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | X | 97.38            | X | 0.55           | X | 0.7            | =        | 113.54       | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | X | 91.1             | X | 0.55           | X | 0.7            | =        | 200.77       | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 91.1             | x | 0.55           | X | 0.7            | <b>=</b> | 78.02        | (81) |
| Northwest 0.9x 0.77                  | ×   | 4.37       | X | 91.1             | X | 0.55           | X | 0.7            | =        | 106.22       | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 72.63            | X | 0.55           | X | 0.7            | =        | 160.06       | (81) |
| Northwest 0.9x 0.77                  | ×   | 3.21       | x | 72.63            | x | 0.55           | x | 0.7            | =        | 62.2         | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | x | 72.63            | x | 0.55           | x | 0.7            | =        | 84.68        | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 50.42            | x | 0.55           | x | 0.7            | =        | 111.12       | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 50.42            | x | 0.55           | x | 0.7            | ] =      | 43.18        | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | × | 50.42            | X | 0.55           | X | 0.7            | =        | 58.79        | (81) |

| Northwest     | 0.9x        | .77           | X      | 8.2       | 26        | x                                            | 2       | 8.07      | x      | 0.55               | )       | · [        | 0.7           |     | =   | 61.85  | (81) |
|---------------|-------------|---------------|--------|-----------|-----------|----------------------------------------------|---------|-----------|--------|--------------------|---------|------------|---------------|-----|-----|--------|------|
| Northwest     | 0.9x        | .77           | X      | 3.2       | 21        | x                                            | 2       | 8.07      | х      | 0.55               | ,       | <u> </u>   | 0.7           |     | =   | 24.04  | (81) |
| Northwest     | 0.9x        | .77           | X      | 4.3       | 37        | x                                            | 2       | 8.07      | х      | 0.55               | )       | <u> </u>   | 0.7           |     | =   | 32.72  | (81) |
| Northwest     | 0.9x        | .77           | X      | 8.2       | 26        | x                                            | 1       | 14.2      | x      | 0.55               | )       | <u> </u>   | 0.7           |     | =   | 31.29  | (81) |
| Northwest     | 0.9x        | .77           | X      | 3.2       | 21        | x                                            | 1       | 14.2      | х      | 0.55               | ,       | 〈 [        | 0.7           |     | =   | 12.16  | (81) |
| Northwest     | 0.9x        | .77           | X      | 4.3       | 37        | x                                            | 1       | 14.2      | х      | 0.55               | )       | <u> </u>   | 0.7           |     | =   | 16.55  | (81) |
| Northwest     | 0.9x        | .77           | X      | 8.2       | 26        | x                                            | 9       | 9.21      | х      | 0.55               | ,       | , [        | 0.7           |     | =   | 20.31  | (81) |
| Northwest     | 0.9x        | .77           | X      | 3.2       | 21        | x                                            | 9       | 9.21      | x      | 0.55               | ,       | 〈 [        | 0.7           |     | =   | 7.89   | (81) |
| Northwest     | 0.9x        | .77           | X      | 4.3       | 37        | x                                            | 9       | 9.21      | x      | 0.55               | )       | <u> </u>   | 0.7           |     | =   | 10.74  | (81) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 61        | x                                            |         | 26        | X      | 0.55               | ,       | ٠ [        | 0.8           |     | =   | 16.58  | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 61        | X                                            |         | 54        | X      | 0.55               | )       | ٠ [        | 0.8           |     | =   | 34.43  | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 61        | X                                            |         | 96        | x      | 0.55               | )       | <b>·</b> [ | 0.8           |     | =   | 61.21  | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 61        | X                                            |         | 150       | x      | 0.55               | )       | ٠ [        | 0.8           |     | =   | 95.63  | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 61        | X                                            |         | 192       | x      | 0.55               | )       | <b>·</b> [ | 0.8           |     | =   | 122.41 | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 61        | X                                            | 2       | 200       | x      | 0.55               | )       | <b>·</b> [ | 0.8           |     | =   | 127.51 | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 51        | X                                            |         | 189       | x      | 0.55               | )       | <b>·</b> [ | 0.8           |     | =   | 120.5  | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 61        | X                                            |         | 157       | x      | 0.55               | )       | <b>·</b> [ | 0.8           |     | =   | 100.1  | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 51        | X                                            |         | 115       | x      | 0.55               | )       | · [        | 0.8           |     | =   | 73.32  | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 51        | x                                            |         | 66        | x      | 0.55               | )       | · [        | 0.8           |     | =   | 42.08  | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 51        | x                                            |         | 33        | x      | 0.55               | )       | · [        | 0.8           |     | =   | 21.04  | (82) |
| Rooflights    | 0.9x        | 1             | X      | 1.6       | 61        | x                                            |         | 21        | X      | 0.55               | )       | <b>·</b> [ | 0.8           |     | =   | 13.39  | (82) |
|               |             |               |        |           |           |                                              |         |           |        |                    |         |            |               |     |     |        |      |
| Solar gair    | s in watts  | , calcu       | lated  | for eacl  | h mont    | h_                                           |         |           | (83)m  | = Sum(74)          | m(82)   | m          | _             |     |     | •      |      |
| ` '           | 5.93 157.   |               | 2.56   | 459.16    | 611.06    |                                              | 48.46   | 607.84    | 488    | .61 343.0          | 4 192   | .22        | 96.98         | 62. | 68  |        | (83) |
| Total gain    | i           |               | solar  | (84)m =   | = (73)m   | <del>-</del>                                 |         | , watts   |        |                    |         |            | ,             |     |     | ı      |      |
| (84)m= 39     | 2.73 470.   | 73 58         | 4.57   | 743.16    | 876.96    | 8                                            | 96.73   | 844.89    | 731    | .38 595.2          | 3 462   | .62        | 388.21        | 369 | .49 |        | (84) |
| 7. Mean       | internal te | mpera         | ture ( | (heating  | seaso     | n)                                           |         |           |        |                    |         |            |               |     |     |        |      |
| Tempera       | iture durin | g heat        | ing pe | eriods ir | n the liv | /ing                                         | area f  | rom Tab   | ole 9  | Th1 (°C)           |         |            |               |     |     | 21     | (85) |
| Utilisatio    | n factor fo | r gains       | for li | iving are | ea, h1,r  | n (s                                         | ее Та   | ble 9a)   |        |                    | _       |            | _             |     |     | 1      | _    |
| _ \           | lan Fe      | b N           | Лar    | Apr       | May       | <u>/                                    </u> | Jun     | Jul       | Α      | ug Se <sub>l</sub> | p O     | ct         | Nov           | D   | ес  |        |      |
| (86)m=        | 1 0.99      | 0.            | .97    | 0.89      | 0.7       |                                              | 0.5     | 0.37      | 0.4    | 4 0.74             | 0.0     | 96         | 0.99          | 1   |     |        | (86) |
| Mean int      | ernal tem   | eratur        | e in I | iving are | ea T1 (   | follo                                        | w ste   | ps 3 to 7 | ' in T | able 9c)           |         |            |               |     |     |        |      |
| (87)m= 1      | 9.71 19.9   | 20            | ).24   | 20.67     | 20.92     | 2                                            | 20.99   | 21        | 20.    | 99 20.92           | 2 20.   | 53         | 20.03         | 19. | 67  |        | (87) |
| Tempera       | ture durin  | g heat        | ing pe | eriods ir | rest o    | f dw                                         | elling/ | from Ta   | ble 9  | 9, Th2 (°C         | ;)      |            |               |     |     |        |      |
| (88)m= 1      | 9.89 19.9   | ) 19          | 9.9    | 19.91     | 19.91     | 1                                            | 19.92   | 19.92     | 19.    | 92 19.92           | 2 19.   | 91         | 19.91         | 19  | .9  |        | (88) |
| Utilisatio    | n factor fo | r gains       | for r  | est of d  | wellina   | . h2                                         | .m (se  | e Table   | 9a)    | •                  | •       |            | •             |     |     | •      |      |
| (89)m=        | 1 0.99      | <del>-</del>  | .96    | 0.85      | 0.64      | $\neg$                                       | 0.42    | 0.28      | 0.3    | 0.66               | 0.9     | 94         | 0.99          | 1   |     |        | (89) |
| —<br>Mean int | ernal tem   | eratur        | e in t | he rest   | of dwe    | llina                                        | T2 (f   | ollow ste | ns 3   | to 7 in Ta         | able 9c | )          |               |     |     | I      |      |
|               | 3.18 18.4   | $\overline{}$ | 3.96   | 19.55     | 19.84     | Ť                                            | 12 (10  | 19.92     | 19.    |                    |         | _          | 18.67         | 18. | 14  |        | (90) |
| ` /           |             |               | !      | -         |           |                                              |         |           |        |                    |         |            | ing area ÷ (4 | L   |     | 0.47   | (91) |
|               |             |               |        |           |           |                                              |         |           |        |                    |         |            |               |     | ı   |        |      |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18.9                  | 19.13       | 19.56      | 20.07     | 20.34     | 20.42     | 20.42          | 20.42               | 20.36            | 19.91                 | 19.31                         | 18.86         |         | (92)         |
|------------------------------|-------------|------------|-----------|-----------|-----------|----------------|---------------------|------------------|-----------------------|-------------------------------|---------------|---------|--------------|
| Apply adjustr                | nent to t   | he mean    | interna   | temper    | ature fro | m Table        | 4e, whe             | ere appro        | priate                |                               |               |         |              |
| (93)m= 18.75                 | 18.98       | 19.41      | 19.92     | 20.19     | 20.27     | 20.27          | 20.27               | 20.21            | 19.76                 | 19.16                         | 18.71         |         | (93)         |
| 8. Space hea                 | ting requ   | uirement   |           |           |           |                |                     |                  |                       |                               |               |         |              |
| Set Ti to the                |             |            | •         |           | ed at ste | ep 11 of       | Table 9l            | b, so tha        | t Ti,m=(              | 76)m an                       | d re-calc     | ulate   |              |
| the utilisation              | 1           |            | using Ta  | ble 9a    |           |                |                     |                  | 1                     |                               |               |         |              |
| Jan                          | Feb         | Mar        | Apr       | May       | Jun       | Jul            | Aug                 | Sep              | Oct                   | Nov                           | Dec           |         |              |
| Utilisation fac              |             | r          | 1         |           |           |                |                     |                  | i                     | 1                             |               |         |              |
| (94)m= 0.99                  | 0.99        | 0.96       | 0.85      | 0.65      | 0.44      | 0.31           | 0.37                | 0.68             | 0.94                  | 0.99                          | 1             |         | (94)         |
| Useful gains,                | i e         | · ·        | <u> </u>  |           |           |                |                     |                  |                       | 1                             |               |         |              |
| (95)m= 390.48                | 464.44      | 559.95     | 634.38    | 573.03    | 397.82    | 260.34         | 273.02              | 404.87           | 433.75                | 383.71                        | 367.88        |         | (95)         |
| Monthly aver                 | <del></del> |            |           |           |           |                |                     |                  | <u> </u>              |                               |               |         |              |
| (96)m= 4.3                   | 4.9         | 6.5        | 8.9       | 11.7      | 14.6      | 16.6           | 16.4                | 14.1             | 10.6                  | 7.1                           | 4.2           |         | (96)         |
| Heat loss rate               |             |            | <u>.</u>  |           |           | <del>-``</del> | <del>- ` ´ ´ </del> | <u> </u>         | ī —                   |                               |               |         |              |
| ` '                          | 1026.14     | 938.49     | 792.88    | 609.64    | 402.37    | 260.93         | 274.47              | 435.52           | 657.83                | 869.4                         | 1050.42       |         | (97)         |
| Space heatin                 | ř           |            |           |           |           | th = 0.02      |                     | <del>i `</del>   | ŕ                     | <del></del>                   |               |         |              |
| (98)m= 494.29                | 377.46      | 281.63     | 114.12    | 27.24     | 0         | 0              | 0                   | 0                | 166.72                | 349.7                         | 507.81        |         | _            |
|                              |             |            |           |           |           |                | Tota                | ıl per year      | (kWh/yea              | r) = Sum(9                    | 8)15,912 =    | 2318.96 | (98)         |
| Space heating                | g require   | ement in   | kWh/m²    | /year     |           |                |                     |                  |                       |                               |               | 39.14   | (99)         |
| 9a. Energy red               | nuiremer    | nts – Indi | vidual h  | eating sy | vstems i  | ncludina       | micro-C             | CHP)             |                       |                               |               |         |              |
| Space heating                |             |            |           |           | ,         |                |                     | , ,              |                       |                               |               |         |              |
| Fraction of sp               | •           | at from s  | econdar   | y/supple  | mentary   | system         |                     |                  |                       |                               |               | 0       | (201)        |
| Fraction of sp               | pace hea    | at from m  | nain svst | em(s)     |           |                | (202) = 1           | - (201) <b>=</b> |                       |                               |               | 1       | (202)        |
| Fraction of to               |             |            | -         | • •       |           |                | ` '                 | 02) × [1 –       | (203)] =              |                               | [             |         | (204)        |
|                              |             | •          | •         |           |           |                | (204) (2            | 02) 11           | (200)]                |                               | [             | 1       | ╡` `         |
| Efficiency of                | maın spa    | ace heat   | ing syste | em 1      |           |                |                     |                  |                       |                               | ļ             | 90.3    | (206)        |
| Efficiency of                | seconda     | ry/suppl   | ementar   | y heating | g systen  | າ, %           |                     |                  |                       |                               |               | 0       | (208)        |
| Jan                          | Feb         | Mar        | Apr       | May       | Jun       | Jul            | Aug                 | Sep              | Oct                   | Nov                           | Dec           | kWh/ye  | ear          |
| Space heating                | g require   | ement (c   | alculate  | d above)  | )         | •              | •                   |                  | •                     | •                             | <u> </u>      |         |              |
| 494.29                       | 377.46      | 281.63     | 114.12    | 27.24     | 0         | 0              | 0                   | 0                | 166.72                | 349.7                         | 507.81        |         |              |
| (211)m = {[(98               | 3)m x (20   | (4)] } x 1 | 00 ÷ (20  | 06)       |           | •              | •                   |                  |                       |                               |               |         | (211)        |
| 547.38                       | 418.01      | 311.89     | 126.38    | 30.17     | 0         | 0              | 0                   | 0                | 184.62                | 387.26                        | 562.36        |         |              |
|                              |             |            |           |           |           |                | Tota                | ıl (kWh/yea      | ar) =Sum(2            | 211) <sub>15,1012</sub>       | =             | 2568.06 | (211)        |
| Space heating                | a fuel (s   | econdar    | v) kWh/   | month     |           |                |                     |                  |                       |                               | L             |         |              |
| $= \{[(98)m \times (200)]\}$ | •           |            | • •       |           |           |                |                     |                  |                       |                               |               |         |              |
| (215)m= 0                    | 0           | 0          | 0         | 0         | 0         | 0              | 0                   | 0                | 0                     | 0                             | 0             |         |              |
|                              | !           | l          |           |           |           | l              | Tota                | ıl (kWh/yea      | ı<br>ar) =Sum(2       | 1<br>215) <sub>1 510 12</sub> | <u>-</u><br>= | 0       | (215)        |
| Water heating                | 7           |            |           |           |           |                |                     |                  |                       | ,                             | L             | -       | <b>_</b>     |
| Output from w                |             | ter (calc  | ulated a  | hove)     |           |                |                     |                  |                       |                               |               |         |              |
| 177.01                       | 154.62      | 160.87     | 142.69    | 138.15    | 121.67    | 116.57         | 129.95              | 131.38           | 149.61                | 159.7                         | 172.85        |         |              |
| Efficiency of w              | ater hea    | iter       |           |           |           | I              | I                   | I                | I                     | 1                             | '             | 81      | (216)        |
| (217)m= 87.65                | 87.38       | 86.68      | 84.88     | 82.4      | 81        | 81             | 81                  | 81               | 85.65                 | 87.16                         | 87.74         |         | (217)        |
| Fuel for water               | l           |            |           |           | L         |                |                     |                  | 1                     | L                             |               |         | ` '          |
| (219)m = $(64)$              | •           |            |           |           |           |                |                     |                  |                       |                               |               |         |              |
| (219)m= 201.96               |             | 185.59     | 168.09    | 167.66    | 150.21    | 143.91         | 160.43              | 162.2            | 174.67                | 183.22                        | 197           |         |              |
|                              | •           |            |           |           |           | •              | Tota                | ıl = Sum(2       | 19a) <sub>112</sub> = | •                             | •             | 2071.89 | (219)        |
|                              |             |            |           |           |           |                |                     |                  |                       |                               | L             |         | <b>」</b> ` ' |

| Annual totals                                                                                                     |                                                                                | kWh/year                            | Г                        | kWh/year                                                | 1                                              |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|--------------------------|---------------------------------------------------------|------------------------------------------------|
| Space heating fuel used, main system 1                                                                            |                                                                                |                                     | Ļ                        | 2568.06                                                 | ]                                              |
| Water heating fuel used                                                                                           |                                                                                |                                     | L                        | 2071.89                                                 |                                                |
| Electricity for pumps, fans and electric keep-hot                                                                 |                                                                                |                                     |                          |                                                         |                                                |
| mechanical ventilation - balanced, extract or pos                                                                 | tive input from outside                                                        |                                     | 129.3                    |                                                         | (230a)                                         |
| central heating pump:                                                                                             |                                                                                |                                     | 30                       |                                                         | (230c)                                         |
| boiler with a fan-assisted flue                                                                                   |                                                                                |                                     | 45                       |                                                         | (230e)                                         |
| Total electricity for the above, kWh/year                                                                         | sum of (2                                                                      | 30a)(230g) =                        |                          | 204.3                                                   | (231)                                          |
| Electricity for lighting                                                                                          |                                                                                |                                     |                          | 269.31                                                  | (232)                                          |
| 12a. CO2 emissions – Individual heating systems                                                                   | s including micro-CHP                                                          |                                     |                          |                                                         |                                                |
|                                                                                                                   |                                                                                |                                     |                          |                                                         |                                                |
|                                                                                                                   | Energy                                                                         | Emission facto                      | or                       | Emissions                                               |                                                |
|                                                                                                                   | <b>Energy</b><br>kWh/year                                                      | <b>Emission facto</b><br>kg CO2/kWh | or                       | Emissions<br>kg CO2/yea                                 | r                                              |
| Space heating (main system 1)                                                                                     | ••                                                                             | kg CO2/kWh                          | or<br>= [                |                                                         | r<br>](261)                                    |
| Space heating (main system 1) Space heating (secondary)                                                           | kWh/year                                                                       | kg CO2/kWh                          | _                        | kg CO2/yea                                              | -                                              |
|                                                                                                                   | kWh/year                                                                       | kg CO2/kWh  0.216  0.519            | = [                      | kg CO2/yea                                              | (261)                                          |
| Space heating (secondary)                                                                                         | kWh/year<br>(211) x<br>(215) x                                                 | 0.216<br>0.519<br>0.216             | = [<br>= [               | kg CO2/yea                                              | (261)                                          |
| Space heating (secondary) Water heating                                                                           | kWh/year (211) x (215) x (219) x                                               | kg CO2/kWh  0.216  0.519  0.216     | = [<br>= [               | kg CO2/yea<br>554.7<br>0<br>447.53                      | (261)<br>(263)<br>(264)                        |
| Space heating (secondary) Water heating Space and water heating                                                   | kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264)                 | kg CO2/kWh  0.216  0.519  0.216     | = [<br>= [<br>= [        | kg CO2/yea<br>554.7<br>0<br>447.53<br>1002.23           | (261)<br>(263)<br>(264)<br>(265)               |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot | kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) (231) x (232) x | kg CO2/kWh  0.216  0.519  0.216     | = [<br>= [<br>= [<br>= [ | kg CO2/yea<br>554.7<br>0<br>447.53<br>1002.23<br>106.03 | ](261)<br>](263)<br>](264)<br>](265)<br>](267) |

El rating (section 14)

(274)

|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | User [       | Details:     |              |            |          |           |              |          |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|------------|----------|-----------|--------------|----------|
| Assessor Name:                                              | Chris Hocknell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Strom        | a Num        | ber:       |          | STRO      | 016363       |          |
| Software Name:                                              | Stroma FSAP 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Softwa       | -            |            |          |           | n: 1.0.4.16  |          |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Property     | Address      | : Apartm     | ent 3      |          |           |              |          |
| Address :                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |            |          |           |              |          |
| 1. Overall dwelling dime                                    | ensions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |              |              |            |          |           |              |          |
| Ground floor                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | a(m²)        | (40) v       |            | ight(m)  | 7(20) -   | Volume(m³)   | _        |
|                                                             | N. (41 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 |              |              | (1a) x       |            | 2.7      | (2a) =    | 196.69       | (3a)     |
|                                                             | a)+(1b)+(1c)+(1d)+(1e)+(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1n)          | 72.85        | (4)          |            |          |           |              | _        |
| Dwelling volume                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | (3a)+(3b     | )+(3c)+(3c | d)+(3e)+ | (3n) =    | 196.69       | (5)      |
| 2. Ventilation rate:                                        | main accord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | a Alba y     |              | total      |          |           | ma3 may bay  |          |
|                                                             | main second<br>heating heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | other        |              | total      |          |           | m³ per hou   | <u> </u> |
| Number of chimneys                                          | 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +            | 0            | _ = [        | 0          | X        | 40 =      | 0            | (6a)     |
| Number of open flues                                        | 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +            | 0            | ] = [        | 0          | X :      | 20 =      | 0            | (6b)     |
| Number of intermittent fa                                   | ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |              | 0          | X        | 10 =      | 0            | (7a)     |
| Number of passive vents                                     | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |              | Ī            | 0          | x '      | 10 =      | 0            | (7b)     |
| Number of flueless gas fi                                   | ires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              | Ī            | 0          | x -      | 40 =      | 0            | (7c)     |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | <u> </u>     |            |          |           |              |          |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |            |          | Air ch    | anges per ho | ur       |
|                                                             | ys, flues and fans = (6a)+(6b)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              | 0          |          | ÷ (5) =   | 0            | (8)      |
| If a pressurisation test has be<br>Number of storeys in the | peen carried out or is intended, proc<br>he dwelling (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eed to (17), | otherwise (  | continue fr  | om (9) to  | (16)     |           | 0            | (9)      |
| Additional infiltration                                     | ne aweiling (113)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |              |            | [(9)     | -1]x0.1 = | 0            | (10)     |
|                                                             | .25 for steel or timber frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or 0.35 fo   | r masoni     | ry constr    | uction     | L(°)     | •         | 0            | (11)     |
|                                                             | resent, use the value corresponding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to the grea  | ter wall are | a (after     |            |          |           |              |          |
| deducting areas of openii                                   | <sub>ngs); if equal user 0.35</sub><br>floor, enter 0.2 (unsealed) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1 (seale   | ed) else     | enter 0      |            |          |           | 0            | (12)     |
| If no draught lobby, en                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1 (00an    | ou), 0.00    | Officer o    |            |          |           | 0            | (13)     |
| •                                                           | s and doors draught stripped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              |              |            |          |           | 0            | (14)     |
| Window infiltration                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 0.25 - [0.2  | 2 x (14) ÷ 1 | 00] =      |          |           | 0            | (15)     |
| Infiltration rate                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (8) + (10)   | + (11) + (1  | 12) + (13) | + (15) = |           | 0            | (16)     |
| •                                                           | q50, expressed in cubic met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •            | •            | •            | etre of e  | envelope | area      | 3            | (17)     |
| ·                                                           | lity value, then $(18) = [(17) \div 20]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |              |              |            |          |           | 0.15         | (18)     |
| Number of sides sheltere                                    | es if a pressurisation test has been o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | one or a de  | gree air pe  | rmeability   | is being u | sed      |           | 3            | (19)     |
| Shelter factor                                              | ,u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | (20) = 1 -   | [0.075 x (   | 19)] =     |          |           | 0.78         | (20)     |
| Infiltration rate incorporate                               | ting shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | (21) = (18   | ) x (20) =   |            |          |           | 0.12         | (21)     |
| Infiltration rate modified f                                | or monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |              |            |          |           |              | _        |
| Jan Feb                                                     | Mar Apr May Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul          | Aug          | Sep          | Oct        | Nov      | Dec       |              |          |
| Monthly average wind sp                                     | peed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |              |            |          |           |              |          |
| (22)m= 5.1 5                                                | 4.9 4.4 4.3 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8          | 3.7          | 4            | 4.3        | 4.5      | 4.7       |              |          |
| Wind Factor (22a)m = (2.                                    | 2)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |              |              |            |          |           |              |          |
|                                                             | 1.23 1.1 1.08 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.95         | 0.92         | 1            | 1.08       | 1.12     | 1.18      |              |          |
| ,                                                           | 1 1111 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1            | <u> </u>     |            |          | 1         | I            |          |

| Adjusted infiltr                                                                                                                           | ration rate (a                                                                                      | allowi                                     | ng for sh                             | nelter an                              | nd wind s                                        | peed) =           | (21a) x                                          | (22a)m                                       |                                                  |                      |                                                   |                   |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------------|-------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|----------------------|---------------------------------------------------|-------------------|------------------------------|
| 0.15                                                                                                                                       |                                                                                                     | 0.14                                       | 0.13                                  | 0.12                                   | 0.11                                             | 0.11              | 0.11                                             | 0.12                                         | 0.12                                             | 0.13                 | 0.14                                              |                   |                              |
| Calculate effe                                                                                                                             |                                                                                                     | -                                          | ate for t                             | he appli                               | cable ca                                         | se                | •                                                | •                                            |                                                  |                      | •                                                 | •                 | _                            |
|                                                                                                                                            | al ventilation                                                                                      |                                            | l' N (0                               |                                        | (                                                | •                 | NEV (1                                           | . (00)                                       | \ (00 \                                          |                      |                                                   | 0.5               | (23a                         |
|                                                                                                                                            | neat pump usin                                                                                      |                                            |                                       |                                        |                                                  |                   |                                                  |                                              | o) = (23a)                                       |                      |                                                   | 0.5               | (23b                         |
|                                                                                                                                            | h heat recover                                                                                      | -                                          | -                                     | _                                      |                                                  |                   |                                                  |                                              |                                                  |                      |                                                   | 75.65             | (230                         |
| a) If balance                                                                                                                              | <del></del>                                                                                         |                                            |                                       | <b>.</b>                               | 1                                                | <del>- ` ` </del> | <del>-                                    </del> | <del>í `</del>                               | <del>r `</del>                                   |                      | <del>- `                                   </del> | i ÷ 100]<br>I     | (0.4                         |
| (24a)m= 0.27                                                                                                                               |                                                                                                     | 0.26                                       | 0.25                                  | 0.25                                   | 0.23                                             | 0.23              | 0.23                                             | 0.24                                         | 0.25                                             | 0.25                 | 0.26                                              |                   | (24a                         |
| b) If balance                                                                                                                              |                                                                                                     |                                            | 1                                     | ı                                      | 1                                                | <del>, , `</del>  | <del>,                                    </del> | <del>, ` `</del>                             | <del>,                                    </del> |                      | T                                                 | 1                 |                              |
| (24b)m= 0                                                                                                                                  | 0                                                                                                   | 0                                          | 0                                     | 0                                      | 0                                                | 0                 | 0                                                | 0                                            | 0                                                | 0                    | 0                                                 |                   | (24)                         |
| c) If whole h<br>if (22b)r                                                                                                                 | nouse extrac<br>m < 0.5 × (2                                                                        |                                            |                                       | -                                      | •                                                |                   |                                                  |                                              | .5 × (23b                                        | )                    |                                                   |                   |                              |
| (24c)m= 0                                                                                                                                  | 0                                                                                                   | 0                                          | 0                                     | 0                                      | 0                                                | 0                 | 0                                                | 0                                            | 0                                                | 0                    | 0                                                 |                   | (240                         |
| d) If natural<br>if (22b)r                                                                                                                 | ventilation of m = 1, then                                                                          |                                            |                                       | •                                      | •                                                |                   |                                                  |                                              | 0.5]                                             |                      |                                                   |                   |                              |
| (24d)m= 0                                                                                                                                  | 0                                                                                                   | 0                                          | 0                                     | 0                                      | 0                                                | 0                 | 0                                                | 0                                            | 0                                                | 0                    | 0                                                 |                   | (240                         |
| Effective air                                                                                                                              | r change rat                                                                                        | e - en                                     | iter (24a                             | ) or (24h                              | o) or (24                                        | c) or (24         | ld) in bo                                        | x (25)                                       |                                                  |                      | •                                                 |                   |                              |
| (25)m= 0.27                                                                                                                                | 0.27                                                                                                | 0.26                                       | 0.25                                  | 0.25                                   | 0.23                                             | 0.23              | 0.23                                             | 0.24                                         | 0.25                                             | 0.25                 | 0.26                                              |                   | (25)                         |
| 3. Heat losse                                                                                                                              | es and heat                                                                                         | loss p                                     | paramete                              | er:                                    | •                                                |                   | •                                                | •                                            |                                                  |                      | •                                                 |                   |                              |
| ELEMENT                                                                                                                                    | Gross<br>area (m                                                                                    | <sup>2</sup> )                             | Openin<br>m                           |                                        | Net Ar<br>A ,r                                   |                   | U-val<br>W/m2                                    |                                              | A X U<br>(W/h                                    | <b>(</b> )           | k-value<br>kJ/m²·l                                |                   | A X k<br>:J/K                |
| Doors                                                                                                                                      |                                                                                                     |                                            |                                       |                                        | 2                                                | X                 | 1.3                                              | = [                                          | 2.6                                              |                      |                                                   |                   | (26)                         |
| Windows Type                                                                                                                               | e 1                                                                                                 |                                            |                                       |                                        | 7.1                                              | x1                | /[1/( 1.3 )+                                     | 0.04] =                                      | 8.77                                             |                      |                                                   |                   | (27)                         |
| Windows Type                                                                                                                               | e 2                                                                                                 |                                            |                                       |                                        | 9.86                                             | x1                | /[1/( 1.3 )+                                     | 0.04] =                                      | 12.18                                            | $\equiv$             |                                                   |                   | (27)                         |
| Windows Type                                                                                                                               | e 3                                                                                                 |                                            |                                       |                                        | 7.48                                             | x1                | /[1/( 1.3 )+                                     | 0.04] =                                      | 9.24                                             | Ħ                    |                                                   |                   | (27)                         |
| Windows Type                                                                                                                               | e 4                                                                                                 |                                            |                                       |                                        | 1.53                                             | = x1              | /[1/( 1.3 )+                                     | 0.04] =                                      | 1.89                                             | Ħ                    |                                                   |                   | (27)                         |
| Rooflights                                                                                                                                 |                                                                                                     |                                            |                                       |                                        | 1.14                                             | <b>=</b> x1       | /[1/(1.6) +                                      | 0.04] =                                      | 1.824                                            | =                    |                                                   |                   | (27)                         |
| Walls Type1                                                                                                                                | 40.58                                                                                               | 7                                          | 25.97                                 | 7                                      | 14.61                                            | _                 | 0.15                                             | — - i                                        | 2.19                                             | Ħ r                  |                                                   | <b>–</b>          | (29)                         |
| Walls Type2                                                                                                                                | 56.98                                                                                               | ╡                                          | 2                                     | =                                      | 54.98                                            | =                 | 0.13                                             | ╡┇                                           | 7.34                                             | <b>-</b>             |                                                   | ╡┝                | (29)                         |
| Roof                                                                                                                                       | 72.85                                                                                               | ╡                                          | 1.14                                  | =                                      | 71.71                                            | =                 | 0.1                                              | ╡┇                                           | 7.17                                             | 북 ¦                  |                                                   | ╡                 | (30)                         |
| Total area of e                                                                                                                            |                                                                                                     |                                            | 1.14                                  |                                        |                                                  | =                 | 0.1                                              |                                              | 7.17                                             |                      |                                                   |                   | (31)                         |
|                                                                                                                                            |                                                                                                     |                                            |                                       |                                        | 170.4                                            | _                 |                                                  | — _ i                                        | 0                                                |                      |                                                   | <b>–</b>          | ``                           |
|                                                                                                                                            | ,                                                                                                   |                                            |                                       |                                        | 22.0                                             |                   |                                                  |                                              |                                                  |                      |                                                   |                   | (32)                         |
| Party wall                                                                                                                                 | ,                                                                                                   |                                            |                                       |                                        | 23.2                                             | =                 | 0                                                | = [                                          | 0                                                |                      |                                                   |                   | /00                          |
| Party wall<br>Party floor                                                                                                                  |                                                                                                     | W00 0                                      | ffactive wi                           | ndow II w                              | 72.85                                            | 5                 |                                                  |                                              |                                                  |                      | naragrank                                         |                   | (32                          |
| Party wall<br>Party floor<br>* for windows and                                                                                             | d roof windows                                                                                      |                                            |                                       |                                        | 72.85                                            | 5                 |                                                  |                                              |                                                  | s given in           | paragraph                                         | 3.2               | (32                          |
| Party wall Party floor * for windows and ** include the are                                                                                | d roof windows<br>eas on both side                                                                  | es of in                                   | nternal wall                          |                                        | 72.85                                            | 5                 |                                                  |                                              |                                                  | s given in           | paragraph                                         | 53.11             |                              |
| Party wall Party floor * for windows and ** include the are Fabric heat los                                                                | d roof windows<br>as on both side<br>SS, W/K = S                                                    | es of in                                   | nternal wall                          |                                        | 72.85                                            | 5                 | g formula 1                                      | /[(1/U-valu<br>) + (32) =                    |                                                  |                      |                                                   |                   | (33)                         |
| Party wall Party floor * for windows and ** include the are Fabric heat los Heat capacity                                                  | d roof windows<br>as on both side<br>ss, W/K = S<br>Cm = S(A x                                      | es of in<br>(A x<br>(k)                    | iternal wali<br>U)                    | ls and pari                            | 72.85<br>alue calcul<br>titions                  | ated using        | g formula 1                                      | ) + (32) =<br>((28)                          | ue)+0.04] a                                      | ) + (32a).           |                                                   | 53.11             | (33)                         |
| Party wall Party floor * for windows and ** include the are. Fabric heat los Heat capacity Thermal mass For design asses                   | d roof windows<br>as on both side<br>ss, W/K = S<br>Cm = S(A x<br>s parameter<br>asments where      | es of in<br>(A x<br>(k)<br>(TMP<br>the det | ternal wall U) P = Cm ÷ tails of the  | ls and pari<br>÷ TFA) ir               | 72.85 alue calcul titions                        | 5<br>lated using  | g formula 1<br>(26)(30                           | /[(1/U-valu<br>) + (32) =<br>((28)<br>Indica | (30) + (32<br>tive Value:                        | ) + (32a).<br>Medium | (32e) =                                           | 53.11<br>17245.49 | (33)                         |
| Party wall Party floor * for windows and ** include the are. Fabric heat los Heat capacity Thermal mass For design asses can be used inste | d roof windows has on both side ss, W/K = S Cm = S(A x s parameter hisments where head of a detaile | es of in (A x (k) (TMF the det             | eternal wall U) P = Cm ÷ tails of the | ls and pan<br>→ TFA) ir<br>→ construct | 72.85 alue calcul titions  n kJ/m²K tion are not | lated using       | g formula 1<br>(26)(30                           | /[(1/U-valu<br>) + (32) =<br>((28)<br>Indica | (30) + (32<br>tive Value:                        | ) + (32a).<br>Medium | (32e) =                                           | 53.11<br>17245.49 | (32a<br>(33)<br>(34)<br>(35) |

| Total fabric he                | at loss                 |              |                      |                |            |            |              | (33) +     | (36) =        |                                       | Γ            | 00.40   | (37)     |
|--------------------------------|-------------------------|--------------|----------------------|----------------|------------|------------|--------------|------------|---------------|---------------------------------------|--------------|---------|----------|
| Ventilation hea                |                         | alculated    | h monthl             | v              |            |            |              | ` '        |               | 25)m x (5)                            |              | 69.42   | (37)     |
| Jan                            | Feb                     | Mar          | Apr                  | May            | Jun        | Jul        | Aug          | Sep        | Oct           | Nov                                   | Dec          |         |          |
| (38)m= 17.52                   | 17.33                   | 17.15        | 16.2                 | 16.01          | 15.07      | 15.07      | 14.88        | 15.45      | 16.01         | 16.39                                 | 16.77        |         | (38)     |
| Heat transfer of               | <u> </u>                |              |                      |                |            |            | 1            |            | = (37) + (37) | <u> </u>                              |              |         | , ,      |
| (39)m= 86.94                   | 86.76                   | 86.57        | 85.62                | 85.43          | 84.49      | 84.49      | 84.3         | 84.87      | 85.43         | 85.81                                 | 86.19        |         |          |
|                                | <u> </u>                | <u> </u>     |                      | <u> </u>       |            | <u> </u>   |              |            |               | Sum(39) <sub>1</sub> .                | 12 /12=      | 85.58   | (39)     |
| Heat loss para                 | meter (H                | HLP), W      | /m²K                 |                |            |            |              | (40)m      | = (39)m ÷     | (4)                                   |              |         |          |
| (40)m= 1.19                    | 1.19                    | 1.19         | 1.18                 | 1.17           | 1.16       | 1.16       | 1.16         | 1.16       | 1.17          | 1.18                                  | 1.18         |         | _        |
| Number of day                  | /s in mo                | nth (Tab     | le 1a)               |                |            |            |              | ,          | Average =     | Sum(40) <sub>1</sub>                  | 12 /12=      | 1.17    | (40)     |
| Jan                            | Feb                     | Mar          | Apr                  | May            | Jun        | Jul        | Aug          | Sep        | Oct           | Nov                                   | Dec          |         |          |
| (41)m= 31                      | 28                      | 31           | 30                   | 31             | 30         | 31         | 31           | 30         | 31            | 30                                    | 31           |         | (41)     |
|                                |                         |              |                      |                |            |            |              |            |               |                                       |              |         |          |
| 4. Water hea                   | ting ene                | rav reau     | irement <sup>.</sup> |                |            |            |              |            |               |                                       | kWh/ye       | ear.    |          |
| i. Water floa                  | ang ono                 | igy roqu     |                      |                |            |            |              |            |               |                                       | itt viii y c | our.    |          |
| Assumed occu                   |                         |              | F4                   | / 0 0000       | 140 (TI    | - 400      | \0\1 · 0 (   | 2040 /     | FFA 40        |                                       | 31           |         | (42)     |
| if TFA > 13.9<br>if TFA £ 13.9 |                         | + 1.76 X     | ([1 - exp            | 0.0003         | 349 X (11  | -A -13.9   | )2)] + 0.0   | JU13 X (   | IFA -13.      | .9)                                   |              |         |          |
| Annual average                 | ,                       | ater usag    | ge in litre          | es per da      | ay Vd,av   | erage =    | (25 x N)     | + 36       |               | 89                                    | .14          |         | (43)     |
| Reduce the annua               | _                       |              |                      |                | _          | _          | to achieve   | a water us | se target o   |                                       |              |         | ` '      |
| not more that 125              | litres per <sub>l</sub> | person pei   | r day (all и<br>•    | ater use, l    | not and co | ld)<br>•   |              |            |               |                                       |              |         |          |
| Jan                            | Feb                     | Mar          | Apr                  | May            | Jun        | Jul        | Aug          | Sep        | Oct           | Nov                                   | Dec          |         |          |
| Hot water usage i              | n litres pei            | r day for ea | ach month            | Vd,m = fa      | ctor from  |            | (43)         |            |               |                                       |              |         |          |
| (44)m= 98.05                   | 94.49                   | 90.92        | 87.36                | 83.79          | 80.23      | 80.23      | 83.79        | 87.36      | 90.92         | 94.49                                 | 98.05        |         | <b>-</b> |
| Energy content of              | hot water               | used - cal   | lculated me          | onthly $= 4$ . | 190 x Vd,r | m x nm x L | OTm / 3600   |            |               | m(44) <sub>112</sub> =<br>ables 1b, 1 | L            | 1069.69 | (44)     |
| (45)m= 145.41                  | 127.18                  | 131.24       | 114.42               | 109.78         | 94.74      | 87.79      | 100.74       | 101.94     | 118.8         | 129.68                                | 140.82       |         |          |
|                                | <u> </u>                | <u> </u>     | <u> </u>             | <u> </u>       | <u> </u>   | !          |              | -          | Γotal = Su    | I<br>m(45) <sub>112</sub> =           | -            | 1402.53 | (45)     |
| If instantaneous w             | ater heati              | ng at point  | t of use (no         | o hot water    | storage),  | enter 0 in | boxes (46)   |            |               |                                       | L            |         |          |
| (46)m= 21.81                   | 19.08                   | 19.69        | 17.16                | 16.47          | 14.21      | 13.17      | 15.11        | 15.29      | 17.82         | 19.45                                 | 21.12        |         | (46)     |
| Water storage                  |                         |              | -                    |                |            |            |              |            |               |                                       |              |         |          |
| Storage volum                  | • •                     |              |                      |                |            | _          |              | ame ves    | sel           |                                       | 0            |         | (47)     |
| If community h                 | _                       |              |                      | _              |            |            | . ,          |            | (0) ! (       | 47)                                   |              |         |          |
| Otherwise if no Water storage  |                         | not wate     | er (tnis ir          | ıcıuaes ı      | nstantar   | neous co   | ilod Idmo    | ers) ente  | er o in (     | 47)                                   |              |         |          |
| a) If manufact                 |                         | eclared I    | oss fact             | or is kno      | wn (kWł    | n/day):    |              |            |               |                                       | 0            |         | (48)     |
| Temperature f                  |                         |              |                      |                | (          | , ,.       |              |            |               |                                       | 0            |         | (49)     |
| Energy lost fro                |                         |              |                      | ear            |            |            | (48) x (49)  | · =        |               |                                       | 0            |         | (50)     |
| b) If manufact                 |                         | -            | -                    |                | or is not  | known:     | (10) 11 (10) |            |               |                                       | <u> </u>     |         | (00)     |
| Hot water stor                 |                         |              | -                    |                |            |            |              |            |               |                                       | 0            |         | (51)     |
| If community h                 | •                       |              | on 4.3               |                |            |            |              |            |               |                                       |              |         |          |
| Volume factor                  |                         |              |                      |                |            |            |              |            |               |                                       | 0            |         | (52)     |
| Temperature f                  |                         |              |                      |                |            |            |              |            |               |                                       | 0            |         | (53)     |
| Energy lost fro                |                         | _            | e, kWh/y             | ear            |            |            | (47) x (51)  | x (52) x ( | 53) =         |                                       | 0            |         | (54)     |
| Enter (50) or                  | (54) in (5              | 5)           |                      |                |            |            |              |            |               |                                       | 0            |         | (55)     |
|                                |                         |              |                      |                |            |            |              |            |               |                                       |              |         |          |

| Water Storage                                                                                                                                                                                              | loss cal                                                                                                              | culated f                                                                                                                      | or each                                                                                                               | month                                                                             |                                                                                                      |                                                                               | ((56)m = (                                                                          | 55) × (41)ı                                                                      | m                                                       |                                                         |                                 |               |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------|---------------|--------------------------------------|
| (56)m= 0                                                                                                                                                                                                   | 0                                                                                                                     | 0                                                                                                                              | 0                                                                                                                     | 0                                                                                 | 0                                                                                                    | 0                                                                             | 0                                                                                   | 0                                                                                | 0                                                       | 0                                                       | 0                               |               | (56)                                 |
| If cylinder contain                                                                                                                                                                                        | s dedicate                                                                                                            | d solar sto                                                                                                                    | rage, (57)ı                                                                                                           | n = (56)m                                                                         | x [(50) – (                                                                                          | H11)] ÷ (5                                                                    | 0), else (5                                                                         | 7)m = (56)                                                                       | m where (                                               | H11) is fro                                             | m Append                        | ix H          |                                      |
| (57)m= 0                                                                                                                                                                                                   | 0                                                                                                                     | 0                                                                                                                              | 0                                                                                                                     | 0                                                                                 | 0                                                                                                    | 0                                                                             | 0                                                                                   | 0                                                                                | 0                                                       | 0                                                       | 0                               |               | (57)                                 |
| Primary circuit                                                                                                                                                                                            | t loss (ar                                                                                                            | nual) fro                                                                                                                      | m Table                                                                                                               | 3                                                                                 |                                                                                                      |                                                                               |                                                                                     |                                                                                  |                                                         |                                                         | 0                               |               | (58)                                 |
| Primary circuit                                                                                                                                                                                            | t loss cal                                                                                                            | culated t                                                                                                                      | for each                                                                                                              | month (                                                                           | 59)m = (                                                                                             | (58) ÷ 36                                                                     | 65 × (41)                                                                           | m                                                                                |                                                         |                                                         |                                 | •             |                                      |
| (modified by                                                                                                                                                                                               | y factor fi                                                                                                           | rom Tab                                                                                                                        | le H5 if t                                                                                                            | here is s                                                                         | solar wat                                                                                            | ter heatii                                                                    | ng and a                                                                            | cylinde                                                                          | r thermo                                                | stat)                                                   |                                 |               |                                      |
| (59)m= 0                                                                                                                                                                                                   | 0                                                                                                                     | 0                                                                                                                              | 0                                                                                                                     | 0                                                                                 | 0                                                                                                    | 0                                                                             | 0                                                                                   | 0                                                                                | 0                                                       | 0                                                       | 0                               |               | (59)                                 |
| Combi loss ca                                                                                                                                                                                              | lculated                                                                                                              | for each                                                                                                                       | month (                                                                                                               | 61)m =                                                                            | (60) ÷ 36                                                                                            | 65 × (41                                                                      | )m                                                                                  |                                                                                  |                                                         |                                                         |                                 |               |                                      |
| (61)m= 49.97                                                                                                                                                                                               | 43.49                                                                                                                 | 46.33                                                                                                                          | 43.08                                                                                                                 | 42.7                                                                              | 39.56                                                                                                | 40.88                                                                         | 42.7                                                                                | 43.08                                                                            | 46.33                                                   | 46.6                                                    | 49.97                           |               | (61)                                 |
| Total heat req                                                                                                                                                                                             | uired for                                                                                                             | water he                                                                                                                       | eating ca                                                                                                             | alculated                                                                         | for eac                                                                                              | h month                                                                       | (62)m =                                                                             | 0.85 × (                                                                         | (45)m +                                                 | (46)m +                                                 | (57)m +                         | (59)m + (61)m |                                      |
| (62)m= 195.38                                                                                                                                                                                              | 170.67                                                                                                                | 177.57                                                                                                                         | 157.5                                                                                                                 | 152.48                                                                            | 134.3                                                                                                | 128.67                                                                        | 143.44                                                                              | 145.02                                                                           | 165.13                                                  | 176.28                                                  | 190.79                          |               | (62)                                 |
| Solar DHW input                                                                                                                                                                                            | calculated                                                                                                            | using App                                                                                                                      | endix G or                                                                                                            | Appendix                                                                          | H (negati                                                                                            | ve quantity                                                                   | /) (enter '0                                                                        | ' if no sola                                                                     | r contribut                                             | ion to wate                                             | er heating)                     | 1             |                                      |
| (add additiona                                                                                                                                                                                             | al lines if                                                                                                           | FGHRS                                                                                                                          | and/or V                                                                                                              | VWHRS                                                                             | applies                                                                                              | , see Ap                                                                      | pendix (                                                                            | 3)                                                                               |                                                         |                                                         |                                 |               |                                      |
| (63)m= 0                                                                                                                                                                                                   | 0                                                                                                                     | 0                                                                                                                              | 0                                                                                                                     | 0                                                                                 | 0                                                                                                    | 0                                                                             | 0                                                                                   | 0                                                                                | 0                                                       | 0                                                       | 0                               |               | (63)                                 |
| Output from w                                                                                                                                                                                              | ater hea                                                                                                              | ter                                                                                                                            |                                                                                                                       |                                                                                   |                                                                                                      |                                                                               |                                                                                     |                                                                                  |                                                         |                                                         |                                 | •             |                                      |
| (64)m= 195.38                                                                                                                                                                                              | 170.67                                                                                                                | 177.57                                                                                                                         | 157.5                                                                                                                 | 152.48                                                                            | 134.3                                                                                                | 128.67                                                                        | 143.44                                                                              | 145.02                                                                           | 165.13                                                  | 176.28                                                  | 190.79                          |               |                                      |
|                                                                                                                                                                                                            |                                                                                                                       |                                                                                                                                |                                                                                                                       |                                                                                   |                                                                                                      |                                                                               | Outp                                                                                | out from wa                                                                      | ater heate                                              | r (annual) <sub>1</sub>                                 | 12                              | 1937.22       | (64)                                 |
| Heat gains fro                                                                                                                                                                                             | m water                                                                                                               | heating,                                                                                                                       | kWh/mo                                                                                                                | onth 0.2                                                                          | 5 ′ [0.85                                                                                            | × (45)m                                                                       | + (61)m                                                                             | n] + 0.8 x                                                                       | ((46)m                                                  | + (57)m                                                 | + (59)m                         | ]             | _                                    |
| (65)m= 60.84                                                                                                                                                                                               | 53.16                                                                                                                 | 55.22                                                                                                                          | 48.81                                                                                                                 | 47.18                                                                             | 41.39                                                                                                | 39.41                                                                         | 44.17                                                                               | 44.66                                                                            | 51.08                                                   | 54.77                                                   | 59.32                           |               | (65)                                 |
| include (57)                                                                                                                                                                                               | m in cal                                                                                                              | culation o                                                                                                                     | of (65)m                                                                                                              |                                                                                   | ·                                                                                                    | <u> </u>                                                                      |                                                                                     |                                                                                  |                                                         |                                                         |                                 | l             |                                      |
| ` '                                                                                                                                                                                                        |                                                                                                                       |                                                                                                                                | ווו(כט) וכ                                                                                                            | only if c                                                                         | ylınder i                                                                                            | s in the o                                                                    | dwelling                                                                            | or hot w                                                                         | ater is fr                                              | om com                                                  | munity h                        | eating        |                                      |
| 5. Internal g                                                                                                                                                                                              | ains (see                                                                                                             |                                                                                                                                | ` '                                                                                                                   | -                                                                                 | ylinder i                                                                                            | s in the o                                                                    | dwelling                                                                            | or hot w                                                                         | ater is fr                                              | om com                                                  | munity h                        | eating        |                                      |
| 5. Internal game                                                                                                                                                                                           | ·                                                                                                                     | e Table 5                                                                                                                      | and 5a                                                                                                                | -                                                                                 | ylinder i                                                                                            | s in the o                                                                    | dwelling                                                                            | or hot w                                                                         | ater is fr                                              | om com                                                  | munity h                        | eating        |                                      |
| 5. Internal gair  Metabolic gair  Jan                                                                                                                                                                      | ·                                                                                                                     | e Table 5                                                                                                                      | and 5a                                                                                                                | -                                                                                 | Jun                                                                                                  | s in the o                                                                    | dwelling                                                                            |                                                                                  | ater is fr                                              | om com                                                  | munity h                        | eating        |                                      |
| Metabolic gair                                                                                                                                                                                             | ns (Table                                                                                                             | Table 5                                                                                                                        | and 5a                                                                                                                | ):                                                                                |                                                                                                      | ı                                                                             |                                                                                     | Sep                                                                              |                                                         |                                                         | ı                               | eating        | (66)                                 |
| Metabolic gair  Jan  (66)m= 115.66                                                                                                                                                                         | rs (Table<br>Feb                                                                                                      | 2 5), Wat<br>Mar<br>115.66                                                                                                     | and 5a<br>ts<br>Apr<br>115.66                                                                                         | May                                                                               | Jun<br>115.66                                                                                        | Jul<br>115.66                                                                 | Aug<br>115.66                                                                       | Sep<br>115.66                                                                    | Oct                                                     | Nov                                                     | Dec                             | eating        | (66)                                 |
| Metabolic gair                                                                                                                                                                                             | rs (Table<br>Feb                                                                                                      | 2 5), Wat<br>Mar<br>115.66                                                                                                     | and 5a<br>ts<br>Apr<br>115.66                                                                                         | May                                                                               | Jun<br>115.66                                                                                        | Jul<br>115.66                                                                 | Aug<br>115.66                                                                       | Sep<br>115.66                                                                    | Oct                                                     | Nov                                                     | Dec                             | eating        | (66)                                 |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17                                                                                                                                           | reb<br>Feb<br>115.66<br>(calcula                                                                                      | 2 Table 5<br>2 5), Wat<br>Mar<br>115.66<br>ted in Ap                                                                           | ts Apr 115.66 ppendix 9.94                                                                                            | May<br>115.66<br>L, equati                                                        | Jun<br>115.66<br>ion L9 oi<br>6.27                                                                   | Jul<br>115.66<br>r L9a), a<br>6.78                                            | Aug<br>115.66<br>Iso see                                                            | Sep<br>115.66<br>Table 5                                                         | Oct<br>115.66                                           | Nov<br>115.66                                           | Dec 115.66                      | eating        | , ,                                  |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains                                                                                                                                                         | res (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>tins (calc                                                        | 2 Table 5<br>2 5), Wat<br>Mar<br>115.66<br>ted in Ap                                                                           | ts Apr 115.66 ppendix 9.94                                                                                            | May<br>115.66<br>L, equati                                                        | Jun<br>115.66<br>ion L9 o                                                                            | Jul<br>115.66<br>r L9a), a<br>6.78                                            | Aug<br>115.66<br>Iso see                                                            | Sep<br>115.66<br>Table 5                                                         | Oct<br>115.66                                           | Nov<br>115.66                                           | Dec 115.66                      | eating        | , ,                                  |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86                                                                                                             | res (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>tins (calcula<br>205.97                                           | E Table 5 E 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64                                                                | Apr<br>115.66<br>ppendix<br>9.94<br>Appendix<br>189.29                                                                | May 115.66  L, equati 7.43  dix L, equati 174.97                                  | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L<br>161.5                                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51                      | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                       | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72                            | Oct<br>115.66<br>15.01<br>ble 5<br>167.07               | Nov<br>115.66<br>17.52                                  | Dec 115.66                      | eating        | (67)                                 |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains (67)m= 18.17  Appliances ga                                                                                                                             | res (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>tins (calcula<br>205.97                                           | E Table 5 E 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64                                                                | Apr<br>115.66<br>ppendix<br>9.94<br>Appendix<br>189.29                                                                | May 115.66  L, equati 7.43  dix L, equati 174.97                                  | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L<br>161.5                                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51                      | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                       | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72                            | Oct<br>115.66<br>15.01<br>ble 5<br>167.07               | Nov<br>115.66<br>17.52                                  | Dec 115.66                      | eating        | (67)                                 |
| Metabolic gairs  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57                                                                               | reb<br>115.66<br>(calcula<br>16.14<br>tins (calcula<br>205.97<br>s (calcula<br>34.57                                  | Mar 115.66 ted in Ap 13.13 ulated in 200.64 tted in A 34.57                                                                    | ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57                                                                | May 115.66  L, equati 7.43  dix L, equati 174.97  L, equat                        | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L<br>161.5                                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a           | Aug<br>115.66<br>Iso see 8.81<br>3a), also<br>150.39                                | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table               | Oct<br>115.66<br>15.01<br>ble 5<br>167.07               | Nov<br>115.66<br>17.52                                  | Dec 115.66 18.68 194.86         | eating        | (67)<br>(68)                         |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains                                                                                              | reb<br>115.66<br>(calcula<br>16.14<br>tins (calcula<br>205.97<br>s (calcula<br>34.57                                  | Mar 115.66 ted in Ap 13.13 ulated in 200.64 tted in A 34.57                                                                    | ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57                                                                | May 115.66  L, equati 7.43  dix L, equati 174.97  L, equat                        | Jun<br>115.66<br>ion L9 o<br>6.27<br>uation L<br>161.5                                               | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a           | Aug<br>115.66<br>Iso see 8.81<br>3a), also<br>150.39                                | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table               | Oct<br>115.66<br>15.01<br>ble 5<br>167.07               | Nov<br>115.66<br>17.52                                  | Dec 115.66 18.68 194.86         | eating        | (67)<br>(68)                         |
| Metabolic gairs  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 3                                                       | res (Table Feb 115.66 (calcula 16.14 lins (calcula 205.97 s (calcula 34.57 ns gains                                   | 200.64 ted in Ap 200.64 ted in Ap 200.64 ted in Ap 34.57 (Table 5                                                              | Apr<br>115.66<br>ppendix<br>9.94<br>Appendix<br>189.29<br>ppendix<br>34.57                                            | May<br>115.66<br>L, equati<br>7.43<br>dix L, equat<br>174.97<br>L, equat<br>34.57 | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>tion L15<br>34.57                         | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57      | Oct<br>115.66<br>15.01<br>ble 5<br>167.07<br>5<br>34.57 | Nov<br>115.66<br>17.52<br>181.4                         | Dec 115.66 18.68 194.86 34.57   | eating        | (67)<br>(68)<br>(69)                 |
| Metabolic gain  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa                                                                  | res (Table Feb 115.66 (calcula 16.14 lins (calcula 205.97 s (calcula 34.57 ns gains                                   | 200.64 ted in Ap 200.64 ted in Ap 200.64 ted in Ap 34.57 (Table 5                                                              | Apr<br>115.66<br>ppendix<br>9.94<br>Appendix<br>189.29<br>ppendix<br>34.57                                            | May<br>115.66<br>L, equati<br>7.43<br>dix L, equat<br>174.97<br>L, equat<br>34.57 | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>tion L15<br>34.57                         | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57      | Oct<br>115.66<br>15.01<br>ble 5<br>167.07<br>5<br>34.57 | Nov<br>115.66<br>17.52<br>181.4                         | Dec 115.66 18.68 194.86 34.57   | eating        | (67)<br>(68)<br>(69)                 |
| Metabolic gair  Jan  (66)m= 115.66  Lighting gains  (67)m= 18.17  Appliances ga  (68)m= 203.86  Cooking gains  (69)m= 34.57  Pumps and fa  (70)m= 3  Losses e.g. ev  (71)m= -92.53                         | reb (Calcula 16.14 16.14 16.15 (Calcula 34.57 16 16 16 16 16 16 16 16 16 16 16 16 16                                  | E Table 5 E 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64 ted in A 34.57 (Table 5 3 on (negat                            | ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 3 tive value                                               | May 115.66  L, equati 7.43  dix L, equati 174.97  L, equati 34.57  3  es) (Tab    | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>ion L15<br>34.57                          | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57      | Oct<br>115.66<br>15.01<br>ble 5<br>167.07<br>5<br>34.57 | Nov<br>115.66<br>17.52<br>181.4<br>34.57                | Dec 115.66 18.68 194.86 34.57   | eating        | (67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gain  Jan  (66)m= 115.66  Lighting gains (67)m= 18.17  Appliances ga (68)m= 203.86  Cooking gains (69)m= 34.57  Pumps and fa (70)m= 3  Losses e.g. ev                                            | reb (Calcula 16.14 16.14 16.15 (Calcula 34.57 16 16 16 16 16 16 16 16 16 16 16 16 16                                  | E Table 5 E 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64 ted in A 34.57 (Table 5 3 on (negat                            | ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 3 tive value                                               | May 115.66  L, equati 7.43  dix L, equati 174.97  L, equati 34.57  3  es) (Tab    | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>ion L15<br>34.57                          | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57      | Oct<br>115.66<br>15.01<br>ble 5<br>167.07<br>5<br>34.57 | Nov<br>115.66<br>17.52<br>181.4<br>34.57                | Dec 115.66 18.68 194.86 34.57   | eating        | (67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gairs  Jan  (66)m= 115.66  Lighting gains (67)m= 18.17  Appliances ga (68)m= 203.86  Cooking gains (69)m= 34.57  Pumps and fa (70)m= 3  Losses e.g. ev (71)m= -92.53  Water heating              | res (Table Feb 115.66 (calcula 16.14 tims (calcula 205.97 s (calcula 34.57 ns gains 3 vaporatio -92.53 gains (T 79.11 | E Table 5 E 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64 ted in Ap 34.57 (Table 5 3 on (negation) -92.53 Table 5) 74.22 | s and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Appendix<br>189.29<br>opendix<br>34.57<br>5a)<br>3<br>tive valu | May 115.66  L, equati 7.43  dix L, equati 174.97  L, equati 34.57  3  es) (Tab    | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>ion L15<br>34.57<br>3<br>lle 5)<br>-92.53 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57<br>3 | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57<br>3 | Oct 115.66  15.01 ble 5 167.07 5 34.57  3 -92.53        | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>3<br>-92.53 | Dec 115.66 18.68 194.86 34.57 3 | eating        | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Metabolic gairs  Jan  (66)m= 115.66  Lighting gains (67)m= 18.17  Appliances ga (68)m= 203.86  Cooking gains (69)m= 34.57  Pumps and fa (70)m= 3  Losses e.g. ev (71)m= -92.53  Water heating (72)m= 81.78 | res (Table Feb 115.66 (calcula 16.14 tims (calcula 205.97 s (calcula 34.57 ns gains 3 vaporatio -92.53 gains (T 79.11 | E Table 5 E 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64 ted in Ap 34.57 (Table 5 3 on (negation) -92.53 Table 5) 74.22 | s and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94<br>Appendix<br>189.29<br>opendix<br>34.57<br>5a)<br>3<br>tive valu | May 115.66  L, equati 7.43  dix L, equati 174.97  L, equati 34.57  3  es) (Tab    | Jun<br>115.66<br>ion L9 of<br>6.27<br>uation L<br>161.5<br>ion L15<br>34.57<br>3<br>lle 5)<br>-92.53 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>0, also se<br>34.57<br>3 | Sep<br>115.66<br>Table 5<br>11.82<br>see Tal<br>155.72<br>ee Table<br>34.57<br>3 | Oct 115.66  15.01 ble 5 167.07 5 34.57  3 -92.53        | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>3<br>-92.53 | Dec 115.66 18.68 194.86 34.57 3 | eating        | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x | 0.77                      | X | 1.53       | x | 11.28            | x | 0.55           | x | 0.7            | =   | 4.61         | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 22.97            | X | 0.55           | x | 0.7            | =   | 9.38         | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 41.38            | x | 0.55           | x | 0.7            | =   | 16.89        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 67.96            | x | 0.55           | x | 0.7            | =   | 27.74        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 91.35            | X | 0.55           | x | 0.7            | =   | 37.29        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 97.38            | x | 0.55           | x | 0.7            | =   | 39.75        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 91.1             | x | 0.55           | x | 0.7            | ] = | 37.19        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 72.63            | X | 0.55           | x | 0.7            | =   | 29.65        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 50.42            | x | 0.55           | x | 0.7            | =   | 20.58        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 28.07            | x | 0.55           | x | 0.7            | =   | 11.46        | (75) |
| Northeast 0.9x | 0.77                      | X | 1.53       | X | 14.2             | X | 0.55           | X | 0.7            | =   | 5.8          | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 9.21             | x | 0.55           | x | 0.7            | =   | 3.76         | (75) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 36.79            | x | 0.55           | x | 0.7            | =   | 69.7         | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 36.79            | x | 0.55           | x | 0.7            | =   | 96.79        | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 36.79            | x | 0.55           | x | 0.7            | ] = | 73.43        | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 62.67            | x | 0.55           | X | 0.7            | =   | 118.72       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 62.67            | X | 0.55           | x | 0.7            | =   | 164.87       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 62.67            | x | 0.55           | x | 0.7            | =   | 125.08       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 85.75            | X | 0.55           | X | 0.7            | =   | 162.44       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 85.75            | X | 0.55           | x | 0.7            | =   | 225.59       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 85.75            | x | 0.55           | x | 0.7            | =   | 171.14       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 106.25           | x | 0.55           | X | 0.7            | =   | 201.27       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 106.25           | x | 0.55           | x | 0.7            | =   | 279.52       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 106.25           | x | 0.55           | x | 0.7            | ] = | 212.05       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 119.01           | x | 0.55           | X | 0.7            | =   | 225.44       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 119.01           | x | 0.55           | x | 0.7            | =   | 313.08       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 119.01           | x | 0.55           | x | 0.7            | ] = | 237.51       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 118.15           | X | 0.55           | x | 0.7            | =   | 223.81       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 118.15           | x | 0.55           | x | 0.7            | ] = | 310.82       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 118.15           | x | 0.55           | x | 0.7            | =   | 235.79       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 113.91           | x | 0.55           | X | 0.7            | =   | 215.78       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 113.91           | x | 0.55           | x | 0.7            | =   | 299.66       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 113.91           | x | 0.55           | x | 0.7            | =   | 227.33       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 104.39           | x | 0.55           | x | 0.7            | =   | 197.75       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 104.39           | x | 0.55           | x | 0.7            | =   | 274.62       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.48       | x | 104.39           | x | 0.55           | x | 0.7            | ] = | 208.33       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.1        | x | 92.85            | x | 0.55           | x | 0.7            | ] = | 175.89       | (77) |
| Southeast 0.9x | 0.77                      | X | 9.86       | x | 92.85            | x | 0.55           | х | 0.7            | ] = | 244.27       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.48       | × | 92.85            | x | 0.55           | x | 0.7            | ] = | 185.3        | (77) |
|                |                           |   |            | - |                  | - |                | • |                | -   |              | _    |

| Southeast <sub>0.9x</sub>  | 0.77          | X         | 7.1       |          | x        | 69.27          | X            | 0.55           | X        | 0.7            | =            | 131.21 | (77) |
|----------------------------|---------------|-----------|-----------|----------|----------|----------------|--------------|----------------|----------|----------------|--------------|--------|------|
| Southeast <sub>0.9x</sub>  | 0.77          | X         | 9.86      | 3        | x        | 69.27          | x            | 0.55           | x        | 0.7            | =            | 182.22 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77          | X         | 7.48      | 3        | x        | 69.27          | x            | 0.55           | x        | 0.7            | =            | 138.24 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77          | X         | 7.1       |          | x        | 44.07          | x            | 0.55           | x        | 0.7            | =            | 83.48  | (77) |
| Southeast <sub>0.9x</sub>  | 0.77          | x         | 9.86      | 6        | x        | 44.07          | x            | 0.55           | x        | 0.7            | =            | 115.94 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77          | x         | 7.48      | 3        | x        | 44.07          | x            | 0.55           | x        | 0.7            | =            | 87.95  | (77) |
| Southeast 0.9x             | 0.77          | x         | 7.1       |          | x        | 31.49          | x            | 0.55           | ×        | 0.7            | =            | 59.65  | (77) |
| Southeast <sub>0.9x</sub>  | 0.77          | ×         | 9.86      | 3        | x        | 31.49          | x            | 0.55           | ×        | 0.7            | =            | 82.83  | (77) |
| Southeast <sub>0.9x</sub>  | 0.77          | x         | 7.48      | 3        | x        | 31.49          | x            | 0.55           | x        | 0.7            | =            | 62.84  | (77) |
| Rooflights 0.9x            | 1             | x         | 1.14      | 1        | x        | 26             | x            | 0.55           | x        | 0.8            | =            | 11.74  | (82) |
| Rooflights 0.9x            | 1             | x         | 1.14      | 1        | x        | 54             | x            | 0.55           | ×        | 0.8            | =            | 24.38  | (82) |
| Rooflights 0.9x            | 1             | x         | 1.14      | 1        | x        | 96             | x            | 0.55           | ×        | 0.8            | =            | 43.34  | (82) |
| Rooflights <sub>0.9x</sub> | 1             | x         | 1.14      | 4        | x        | 150            | x            | 0.55           | x        | 0.8            | =            | 67.72  | (82) |
| Rooflights 0.9x            | 1             | ×         | 1.14      | 1        | x        | 192            | x            | 0.55           | ×        | 0.8            | =            | 86.68  | (82) |
| Rooflights 0.9x            | 1             | x         | 1.14      | 1        | x        | 200            | x            | 0.55           | ×        | 0.8            | =            | 90.29  | (82) |
| Rooflights 0.9x            | 1             | x         | 1.14      | 1        | x        | 189            | x            | 0.55           | ×        | 0.8            | <del>-</del> | 85.32  | (82) |
| Rooflights 0.9x            | 1             | ×         | 1.14      | 1        | x        | 157            | x            | 0.55           | ×        | 0.8            | =            | 70.88  | (82) |
| Rooflights 0.9x            | 1             | x         | 1.14      | 1        | x        | 115            | x            | 0.55           | ×        | 0.8            | =            | 51.92  | (82) |
| Rooflights 0.9x            | 1             | ×         | 1.14      | 1        | x        | 66             | x            | 0.55           | ×        | 0.8            | <del>-</del> | 29.8   | (82) |
| Rooflights 0.9x            | 1             | x         | 1.14      | 4        | x        | 33             | x            | 0.55           | ×        | 0.8            | <u> </u>     | 14.9   | (82) |
| Rooflights 0.9x            | 1             | x         | 1.14      | 4        | x        | 21             | x            | 0.55           | x        | 0.8            | <u> </u>     | 9.48   | (82) |
| _                          |               |           |           |          | •        |                | •            |                |          |                |              |        |      |
| Solar gains in             | watts, calc   | culated   | for each  | month    |          |                | (83)m        | n = Sum(74)m . | (82)m    |                |              |        |      |
| (83)m= 256.27              | T             | 619.4     | 788.29    | 900      | Т        | 00.46 865.28   | 781          | <u> </u>       | 492.9    | 3 308.06       | 218.56       |        | (83) |
| Total gains – i            | nternal and   | d solar   | (84)m =   | (73)m    | + (8     | 33)m , watts   |              | •              |          | •              | •            |        |      |
| (84)m= 620.77              | 804.35 9      | 968.08    | 1116.02   | 1206.51  | 11       | 86.42 1138.23  | 1060         | ).49 968.24    | 804.3    | 7 643.75       | 572.53       |        | (84) |
| 7. Mean inter              | nal temper    | rature (  | heating   | season   | )        |                |              |                |          |                |              |        |      |
| Temperature                |               |           |           |          |          | area from Tal  | ole 9        | , Th1 (°C)     |          |                |              | 21     | (85) |
| Utilisation fac            | ctor for gair | ns for li | ving are  | a, h1,m  | (S       | ee Table 9a)   |              |                |          |                |              |        |      |
| Jan                        | Feb           | Mar       | Apr       | May      | Ù        | Jun Jul        | Α            | ug Sep         | Oct      | Nov            | Dec          |        |      |
| (86)m= 0.99                | 0.97          | 0.92      | 0.8       | 0.63     | (        | 0.45 0.33      | 0.3          | 0.58           | 0.87     | 0.98           | 0.99         |        | (86) |
| Mean interna               | l temperati   | ure in li | iving are | a T1 (fo | ollo     | w steps 3 to 7 | in T         | able 9c)       |          | •              |              | •      |      |
| (87)m= 19.93               | <del></del>   | 20.53     | 20.82     | 20.95    | _        | 0.99 21        | 2            | <u> </u>       | 20.76    | 20.28          | 19.87        |        | (87) |
| Temperature                | during her    | ating ne  | ariode in | rest of  | ۳.       | elling from Ta | hla (        | Th2 (°C)       |          |                |              |        |      |
| (88)m= 19.93               | <del></del>   | 19.93     | 19.94     | 19.94    | _        | 9.95 19.95     | 19.          | · · · ·        | 19.94    | 19.94          | 19.93        |        | (88) |
| ` '                        | <u> </u>      |           |           |          |          | ļ.             | Q-\          |                |          |                |              |        | . ,  |
| Utilisation fac            | 0.96          | 0.9       | 0.76      | 0.57     | _        | ).38 0.25      | 9a)<br>0.2   | 28 0.5         | 0.83     | 0.97           | 0.99         |        | (89) |
| ` '                        | <u> </u>      |           |           |          | _        | Į.             |              |                |          | 0.31           | 0.99         |        | (55) |
| Mean interna               |               | r         | r         |          | Ť        | <u>`</u>       | <del>-</del> |                |          | 1              | ,            | Ī      | (00) |
| (90)m= 18.53               | 18.93         | 19.38     | 19.75     | 19.9     | <u> </u> | 9.95 19.95     | 19.          |                | 19.69    |                | 18.45        |        | (90) |
|                            |               |           |           |          |          |                |              | I              | LA = LI\ | ving area ÷ (4 | +) -         | 0.45   | (91) |
|                            |               | 15        |           |          |          | \ CLA T4       | . /4         | (I A) TO       |          |                |              |        |      |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 19.16    | 19.51       | 19.89      | 20.23     | 20.37              | 20.42     | 20.42    | 20.42     | 20.4             | 20.17                 | 19.59                   | 19.09                  |         | (92)  |
|-----------------|-------------|------------|-----------|--------------------|-----------|----------|-----------|------------------|-----------------------|-------------------------|------------------------|---------|-------|
| Apply adjustr   | nent to t   | he mean    | internal  | temper             | ature fro | m Table  | 4e, whe   | ere appro        | priate                |                         |                        |         |       |
| (93)m= 19.01    | 19.36       | 19.74      | 20.08     | 20.22              | 20.27     | 20.27    | 20.27     | 20.25            | 20.02                 | 19.44                   | 18.94                  |         | (93)  |
| 8. Space hea    | ting requ   | uirement   |           |                    |           |          |           |                  |                       |                         |                        |         |       |
| Set Ti to the   |             |            | •         |                    | ed at ste | ep 11 of | Table 9   | b, so tha        | t Ti,m=(              | 76)m an                 | d re-calc              | culate  |       |
| the utilisation | i           |            |           | ble 9a             | -         | ·        |           | 1                |                       | 1                       | 1                      | I       |       |
| Jan             | Feb         | Mar        | Apr       | May                | Jun       | Jul      | Aug       | Sep              | Oct                   | Nov                     | Dec                    |         |       |
| Utilisation fac | ·           | 1          |           |                    |           |          |           |                  |                       |                         |                        | 1       |       |
| (94)m= 0.98     | 0.96        | 0.89       | 0.76      | 0.58               | 0.4       | 0.27     | 0.31      | 0.53             | 0.83                  | 0.96                    | 0.99                   |         | (94)  |
| Useful gains,   |             | <u> </u>   | <u> </u>  |                    | ı .       | T        |           |                  |                       |                         |                        | 1       | (0.7) |
| (95)m= 611.23   | 768.84      | 863.79     | 850.35    | 703.1              | 475.59    | 309.77   | 325.71    | 510.39           | 669.32                | 620.88                  | 566.21                 |         | (95)  |
| Monthly aver    |             |            |           |                    |           |          |           | <del></del>      |                       |                         |                        | Ī       | (0.0) |
| (96)m= 4.3      | 4.9         | 6.5        | 8.9       | 11.7               | 14.6      | 16.6     | 16.4      | 14.1             | 10.6                  | 7.1                     | 4.2                    |         | (96)  |
| Heat loss rate  |             |            |           |                    | i         |          |           | <u> </u>         |                       |                         |                        | 1       |       |
| ` ′             |             | 1146.44    | 956.93    | 728.05             | 478.68    | 310.12   | 326.33    | 521.78           | 804.83                | 1059.25                 | 1270.36                |         | (97)  |
| Space heatin    | ř           |            |           |                    |           |          |           | <del>i `</del>   | <del></del>           | <del> </del>            |                        | 1       |       |
| (98)m= 496.51   | 326.08      | 210.29     | 76.74     | 18.57              | 0         | 0        | 0         | 0                | 100.82                | 315.63                  | 523.89                 |         | _     |
|                 |             |            |           |                    |           |          | Tota      | l per year       | (kWh/yeaı             | r) = Sum(9              | 8) <sub>15,912</sub> = | 2068.53 | (98)  |
| Space heatin    | g require   | ement in   | kWh/m²    | <sup>2</sup> /year |           |          |           |                  |                       |                         |                        | 28.39   | (99)  |
| 9a. Energy red  | nuiremer    | nts – Indi | vidual h  | eating sy          | vstems i  | ncludina | micro-C   | CHP)             |                       |                         |                        |         |       |
| Space heating   |             |            |           | <b></b>            | , 0.0     |          |           | , ,              |                       |                         |                        |         |       |
| Fraction of sp  | •           | at from se | econdar   | y/supple           | mentary   | system   |           |                  |                       |                         |                        | 0       | (201) |
| Fraction of sp  |             |            |           |                    | •         | -        | (202) = 1 | - (201) <b>=</b> |                       |                         |                        | 1       | (202) |
| Fraction of to  |             |            | -         | • •                |           |          |           | 02) × [1 –       | (203)] =              |                         |                        | 1       | (204) |
|                 |             | •          | -         |                    |           |          | (=0.) (=  | o=) [.           | (=00)]                |                         |                        |         | ╡```  |
| Efficiency of   | •           |            | 0 ,       |                    |           |          |           |                  |                       |                         |                        | 90.3    | (206) |
| Efficiency of   | seconda<br> | ry/supple  | ementar   | y heating          | g systen  | า, %<br> |           |                  |                       |                         |                        | 0       | (208) |
| Jan             | Feb         | Mar        | Apr       | May                | Jun       | Jul      | Aug       | Sep              | Oct                   | Nov                     | Dec                    | kWh/ye  | ar    |
| Space heatin    | g require   | ement (c   | alculate  | d above)           | )         |          |           |                  |                       | _                       |                        |         |       |
| 496.51          | 326.08      | 210.29     | 76.74     | 18.57              | 0         | 0        | 0         | 0                | 100.82                | 315.63                  | 523.89                 |         |       |
| (211)m = {[(98  | )m x (20    | (4)] } x 1 | 00 ÷ (20  | 06)                |           |          |           |                  |                       |                         |                        |         | (211) |
| 549.85          | 361.11      | 232.88     | 84.98     | 20.56              | 0         | 0        | 0         | 0                | 111.65                | 349.53                  | 580.17                 |         |       |
|                 | •           | •          |           |                    |           |          | Tota      | ıl (kWh/yea      | ar) =Sum(2            | 211),5,1012             | =                      | 2290.73 | (211) |
| Space heatin    | g fuel (s   | econdar    | y), kWh/  | month              |           |          |           |                  |                       |                         |                        |         | _     |
| = {[(98)m x (20 | • ,         |            | • •       |                    |           |          |           |                  |                       |                         |                        |         |       |
| (215)m= 0       | 0           | 0          | 0         | 0                  | 0         | 0        | 0         | 0                | 0                     | 0                       | 0                      |         |       |
|                 |             |            |           |                    |           |          | Tota      | ıl (kWh/yea      | ar) =Sum(2            | 215) <sub>15,1012</sub> | =                      | 0       | (215) |
| Water heating   | נ           |            |           |                    |           |          |           |                  |                       |                         |                        |         |       |
| Output from w   |             | ter (calc  | ulated al | bove)              |           |          |           |                  |                       |                         |                        |         |       |
| 195.38          | 170.67      | 177.57     | 157.5     | 152.48             | 134.3     | 128.67   | 143.44    | 145.02           | 165.13                | 176.28                  | 190.79                 |         |       |
| Efficiency of w | ater hea    | iter       |           |                    | -         | -        | -         | -                |                       | _                       | -                      | 81      | (216) |
| (217)m= 87.46   | 86.87       | 85.79      | 83.83     | 81.92              | 81        | 81       | 81        | 81               | 84.29                 | 86.73                   | 87.61                  |         | (217) |
| Fuel for water  | heating.    | kWh/ma     | onth      |                    |           |          | I         |                  | <u> </u>              | <u> </u>                | ı                      | 1       |       |
| (219)m = (64)   | •           |            | m         |                    |           |          |           |                  |                       |                         |                        | •       |       |
| (219)m= 223.38  | 196.46      | 206.98     | 187.88    | 186.15             | 165.8     | 158.85   | 177.08    | 179.04           | 195.91                | 203.24                  | 217.76                 |         |       |
|                 |             |            |           |                    |           |          | Tota      | al = Sum(2       | 19a) <sub>112</sub> = |                         |                        | 2298.53 | (219) |
|                 |             |            |           |                    |           |          |           |                  |                       |                         |                        |         |       |

| Annual totals                                                                                                                                   |                                                                                                            | kWh/year                               |          | kWh/year                                               | 1                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|--------------------------------------------------------|-------------------------------------------|
| Space heating fuel used, main system 1                                                                                                          |                                                                                                            |                                        |          | 2290.73                                                |                                           |
| Water heating fuel used                                                                                                                         |                                                                                                            |                                        |          | 2298.53                                                |                                           |
| Electricity for pumps, fans and electric keep-hot                                                                                               |                                                                                                            |                                        |          |                                                        |                                           |
| mechanical ventilation - balanced, extract or pos                                                                                               | itive input from outside                                                                                   |                                        | 158.98   |                                                        | (230a)                                    |
| central heating pump:                                                                                                                           |                                                                                                            | [                                      | 30       |                                                        | (230c)                                    |
| boiler with a fan-assisted flue                                                                                                                 |                                                                                                            |                                        | 45       |                                                        | (230e)                                    |
| Total electricity for the above, kWh/year                                                                                                       | sum of (2                                                                                                  | 230a)(230g) =                          |          | 233.98                                                 | (231)                                     |
| Electricity for lighting                                                                                                                        |                                                                                                            |                                        |          | 320.96                                                 | (232)                                     |
| 12a. CO2 emissions – Individual heating system                                                                                                  | s including micro-CHP                                                                                      |                                        |          |                                                        |                                           |
| 12a. 3 22 Similosions marriada mading dystern                                                                                                   | 5515.G                                                                                                     |                                        |          |                                                        |                                           |
| TEA. 002 Official individual floating cycloth                                                                                                   | <b>Energy</b><br>kWh/year                                                                                  | <b>Emission fact</b><br>kg CO2/kWh     | tor      | <b>Emissions</b><br>kg CO2/yea                         | r                                         |
| Space heating (main system 1)                                                                                                                   | Energy                                                                                                     |                                        | tor<br>= |                                                        | r<br>](261)                               |
| , , , , , , , , , , , , , , , , , , ,                                                                                                           | <b>Energy</b><br>kWh/year                                                                                  | kg CO2/kWh                             |          | kg CO2/yea                                             |                                           |
| Space heating (main system 1)                                                                                                                   | Energy<br>kWh/year                                                                                         | kg CO2/kWh                             | =        | kg CO2/yea                                             | (261)                                     |
| Space heating (main system 1) Space heating (secondary)                                                                                         | Energy<br>kWh/year<br>(211) x<br>(215) x                                                                   | 0.216<br>0.519<br>0.216                | =        | kg CO2/yea                                             | (261)                                     |
| Space heating (main system 1) Space heating (secondary) Water heating                                                                           | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x                                                        | 0.216<br>0.519<br>0.216                | =        | kg CO2/yea<br>494.8<br>0<br>496.48                     | (261)<br>(263)<br>(264)                   |
| Space heating (main system 1) Space heating (secondary) Water heating Space and water heating                                                   | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)                       | kg CO2/kWh  0.216  0.519  0.216        | = = =    | kg CO2/yea<br>494.8<br>0<br>496.48<br>991.28           | (261)<br>(263)<br>(264)<br>(265)          |
| Space heating (main system 1) Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>(231) x<br>(232) x | kg CO2/kWh  0.216  0.519  0.216  0.519 | = = = =  | kg CO2/yea<br>494.8<br>0<br>496.48<br>991.28<br>121.43 | (261)<br>(263)<br>(264)<br>(265)<br>(267) |

El rating (section 14)

(274)

| User Details:                                                                                                                                                                                                   |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Assessor Name: Chris Hocknell Stroma Number: STR00                                                                                                                                                              | 16363               |
|                                                                                                                                                                                                                 | : 1.0.4.16          |
| Property Address: Apartment 4                                                                                                                                                                                   |                     |
| Address:                                                                                                                                                                                                        |                     |
| 1. Overall dwelling dimensions:  Area(m²)  Av. Height(m)                                                                                                                                                        | Volume(m³)          |
| Ground floor 61.4 (1a) x 2.7 (2a) =                                                                                                                                                                             | 165.78 (3a)         |
| Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 61.4 (4)                                                                                                                                                 |                     |
| Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = $                                                                                                                                                              | 165.78 (5)          |
| 2. Ventilation rate:                                                                                                                                                                                            |                     |
| main secondary other total heating heating                                                                                                                                                                      | m³ per hour         |
| Number of chimneys $0 + 0 = 0 \times 40 =$                                                                                                                                                                      | 0 (6a)              |
| Number of open flues $0 + 0 + 0 = 0 \times 20 =$                                                                                                                                                                | 0 (6b)              |
| Number of intermittent fans  0 × 10 =                                                                                                                                                                           | 0 (7a)              |
| Number of passive vents 0 × 10 =                                                                                                                                                                                | 0 (7b)              |
| Number of flueless gas fires  0 × 40 =                                                                                                                                                                          | 0 (7c)              |
|                                                                                                                                                                                                                 |                     |
|                                                                                                                                                                                                                 | nges per hour       |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ $\div (5) = 0$ If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) | 0 (8)               |
| Number of storeys in the dwelling (ns)                                                                                                                                                                          | 0 (9)               |
| Additional infiltration [(9)-1]x0.1 =                                                                                                                                                                           | 0 (10)              |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction  if both types of wall are present, use the value corresponding to the greater wall area (after                        | 0 (11)              |
| deducting areas of openings); if equal user 0.35                                                                                                                                                                |                     |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0                                                                                                                                   | 0 (12)              |
| If no draught lobby, enter 0.05, else enter 0  Percentage of windows and doors draught stripped                                                                                                                 | 0 (13)              |
| Window infiltration  0.25 - [0.2 x (14) ÷ 100] =                                                                                                                                                                | 0 (14)              |
| Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =                                                                                                                                                      | 0 (16)              |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area                                                                                                               | 3 (17)              |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$                                                                                                                | 0.15 (18)           |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used  Number of sides sheltered                                                                     | 2 (19)              |
| Shelter factor (20) = 1 - [0.075 x (19)] =                                                                                                                                                                      | 2 (19)<br>0.85 (20) |
| Infiltration rate incorporating shelter factor (21) = (18) x (20) =                                                                                                                                             | 0.13 (21)           |
| Infiltration rate modified for monthly wind speed                                                                                                                                                               |                     |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                 |                     |
| Monthly average wind speed from Table 7                                                                                                                                                                         |                     |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7                                                                                                                                                              |                     |
|                                                                                                                                                                                                                 |                     |
| Wind Factor $(22a)m = (22)m \div 4$                                                                                                                                                                             |                     |

| Adjusted infilt                         | ration rat            | e (allowi                              | ng for sh   | nelter an | nd wind s      | speed) =          | : (21a) x          | (22a)m         |                                                  |             |                  |          |           |
|-----------------------------------------|-----------------------|----------------------------------------|-------------|-----------|----------------|-------------------|--------------------|----------------|--------------------------------------------------|-------------|------------------|----------|-----------|
| 0.16                                    | 0.16                  | 0.16                                   | 0.14        | 0.14      | 0.12           | 0.12              | 0.12               | 0.13           | 0.14                                             | 0.14        | 0.15             | ]        |           |
| Calculate effe                          |                       | _                                      | rate for t  | he appli  | cable ca       | se                |                    |                | !                                                | l           |                  |          | _         |
| If mechanic                             |                       |                                        |             | al.) (aa  |                |                   |                    | . (00)         | \ (00 \)                                         |             |                  | 0.5      | (23a      |
| If exhaust air h                        |                       | 0                                      |             | , ,       | ,              | . `               | ,, .               | •              | ) = (23a)                                        |             |                  | 0.5      | (23b      |
| If balanced wit                         |                       | -                                      | -           | _         |                |                   |                    |                |                                                  |             |                  | 75.65    | (230      |
| a) If balance                           | 1                     |                                        |             |           |                | <del>- ` ` </del> | <del>- ^ ` -</del> | <del>í `</del> | <del>-                                    </del> | <del></del> | <del>- ` `</del> | ) ÷ 100] |           |
| (24a)m= 0.28                            | 0.28                  | 0.28                                   | 0.26        | 0.26      | 0.24           | 0.24              | 0.24               | 0.25           | 0.26                                             | 0.27        | 0.27             |          | (24a      |
| b) If balance                           | 1                     | anical ve                              | entilation  |           | 1              | covery (I         | MV) (24k           | o)m = (22      | 2b)m + (                                         | 23b)        |                  | 1        |           |
| (24b)m= 0                               | 0                     | 0                                      | 0           | 0         | 0              | 0                 | 0                  | 0              | 0                                                | 0           | 0                |          | (24h      |
| c) If whole h<br>if (22b)ı              | nouse ex<br>m < 0.5 > |                                        |             | •         | •              |                   |                    |                | .5 × (23b                                        | ))          |                  |          |           |
| (24c)m= 0                               | 0                     | 0                                      | 0           | 0         | 0              | 0                 | 0                  | 0              | 0                                                | 0           | 0                |          | (240      |
| d) If natural<br>if (22b)               | ventilation           |                                        |             | •         | •              |                   |                    |                | 0.5]                                             |             |                  |          |           |
| (24d)m= 0                               | 0                     | 0                                      | 0           | 0         | 0              | 0                 | 0                  | 0              | 0                                                | 0           | 0                | ]        | (240      |
| Effective air                           | change                | rate - er                              | nter (24a   | ) or (24b | b) or (24      | c) or (24         | ld) in bo          | x (25)         | -                                                | -           | -                | -        |           |
| (25)m= 0.28                             | 0.28                  | 0.28                                   | 0.26        | 0.26      | 0.24           | 0.24              | 0.24               | 0.25           | 0.26                                             | 0.27        | 0.27             | ]        | (25)      |
| 3. Heat losse                           | e and he              | nat loce i                             | aramote     | or:       | •              |                   |                    |                |                                                  |             |                  | -        |           |
| ELEMENT                                 | Gros<br>area          | SS                                     | Openin<br>m | gs        | Net Ar<br>A ,r |                   | U-val<br>W/m2      |                | A X U<br>(W/l                                    | K)          | k-value          |          | X k       |
| Doors                                   | urcu                  | ( ) )                                  |             | •         | 2              | <br>x             | 1.3                |                | 2.6                                              |             | NO/III           | it ito   | (26)      |
| Windows Type                            | e 1                   |                                        |             |           | 3.7            |                   | /[1/( 1.3 )+       |                | 4.57                                             | =           |                  |          | (27)      |
| Windows Typ                             |                       |                                        |             |           | 0.91           | = .               | /[1/( 1.3 )+       |                |                                                  | =           |                  |          | (27)      |
| Windows Typ                             |                       |                                        |             |           |                | =                 | /[1/( 1.3 )+       |                | 1.12                                             | ᠆           |                  |          | , ,       |
| • •                                     |                       |                                        |             |           | 6.29           | =                 |                    |                | 7.77                                             | =           |                  |          | (27)      |
| Windows Typ                             |                       |                                        |             |           | 8.37           | =                 | /[1/( 1.3 )+       |                | 10.34                                            | <b>=</b>    |                  |          | (27)      |
| Windows Typ                             |                       |                                        |             |           | 6.29           | x¹                | /[1/( 1.3 )+       | 0.04] =        | 7.77                                             | ᆿ ,         |                  |          | (27)<br>— |
| Walls Type1                             | 51.4                  | 13                                     | 29.20       | 6         | 22.17          | 7 X               | 0.15               | = !            | 3.33                                             | _           |                  | _        | (29)      |
| Walls Type2                             | 35.9                  | 95                                     | 2           |           | 33.9           | 5 X               | 0.13               | =              | 4.53                                             |             |                  |          | (29)      |
| Roof                                    | 61.                   | 4                                      | 0           |           | 61.4           | X                 | 0.1                | =              | 6.14                                             |             |                  |          | (30)      |
| Total area of                           | elements              | , m²                                   |             |           | 148.7          | 8                 |                    |                |                                                  |             |                  |          | (31)      |
| Party wall                              |                       |                                        |             |           | 17.92          | <u>x</u>          | 0                  | =              | 0                                                |             |                  |          | (32)      |
| Party floor                             |                       |                                        |             |           | 61.4           |                   |                    |                |                                                  | ſ           |                  |          | (32       |
| * for windows and<br>** include the are |                       |                                        |             |           |                | lated using       | g formula 1        | 1/[(1/U-valı   | ıe)+0.04] a                                      | as given in | paragrapl        | 1 3.2    | _         |
| Fabric heat lo                          | ss, W/K               | = S (A x                               | U)          |           |                |                   | (26)(30            | ) + (32) =     |                                                  |             |                  | 52.76    | (33)      |
| Heat capacity                           | Cm = S                | (A x k )                               |             |           |                |                   |                    | ((28).         | (30) + (32                                       | 2) + (32a). | (32e) =          | 14029.8  | (34)      |
| Thermal mass                            | s parame              | ter (TMF                               | P = Cm ÷    | - TFA) ir | n kJ/m²K       |                   |                    | Indica         | itive Value                                      | : Medium    |                  | 250      | (35)      |
| For design asses can be used inste      |                       |                                        |             | construct | tion are no    | t known p         | recisely the       | e indicative   | e values of                                      | TMP in T    | able 1f          |          |           |
| Thermal bridg                           | es : S (L             | x Y) cal                               | culated i   | ısina Ar  | pendix         | K                 |                    |                |                                                  |             |                  | 15.8     | (36)      |
|                                         | (=                    | ,, , , , , , , , , , , , , , , , , , , | oalatoa t   | g         |                |                   |                    |                |                                                  |             |                  | 13.0     | (00,      |

|                                     |                |             |           |             |              |              |                  |            |                |                        |         |         | _        |
|-------------------------------------|----------------|-------------|-----------|-------------|--------------|--------------|------------------|------------|----------------|------------------------|---------|---------|----------|
| Total fabric hea                    |                |             |           |             |              |              |                  | ` '        | (36) =         |                        |         | 68.55   | (37)     |
| Ventilation hea                     | t loss ca      |             | l monthl  | у           |              | ı            | 1                | . ,        | = 0.33 × (     | 25)m x (5)             |         |         |          |
| Jan                                 | Feb            | Mar         | Apr       | May         | Jun          | Jul          | Aug              | Sep        | Oct            | Nov                    | Dec     |         | (00)     |
| (38)m= 15.55                        | 15.38          | 15.21       | 14.33     | 14.16       | 13.29        | 13.29        | 13.11            | 13.64      | 14.16          | 14.51                  | 14.86   |         | (38)     |
| Heat transfer co                    | oefficier      | nt, W/K     | •         |             |              | •            |                  | (39)m      | = (37) + (     | 38)m                   |         |         |          |
| (39)m= 84.11                        | 83.93          | 83.76       | 82.89     | 82.71       | 81.84        | 81.84        | 81.67            | 82.19      | 82.71          | 83.06                  | 83.41   |         | <b>¬</b> |
| Heat loss parar                     | meter (H       | HP) W/      | m²K       |             |              |              |                  |            | = (39)m ÷      | Sum(39) <sub>1.</sub>  | 12 /12= | 82.84   | (39)     |
| (40)m= 1.37                         | 1.37           | 1.36        | 1.35      | 1.35        | 1.33         | 1.33         | 1.33             | 1.34       | 1.35           | 1.35                   | 1.36    |         |          |
| ` /                                 |                |             |           |             |              | <u> </u>     |                  |            | L<br>Average = | Sum(40) <sub>1.</sub>  | 12 /12= | 1.35    | (40)     |
| Number of day                       | s in mor       | nth (Tab    | le 1a)    |             |              |              |                  |            |                | , ,                    |         |         |          |
| Jan                                 | Feb            | Mar         | Apr       | May         | Jun          | Jul          | Aug              | Sep        | Oct            | Nov                    | Dec     |         |          |
| (41)m= 31                           | 28             | 31          | 30        | 31          | 30           | 31           | 31               | 30         | 31             | 30                     | 31      |         | (41)     |
|                                     |                |             |           |             |              |              |                  |            |                |                        |         |         |          |
| 4. Water heati                      | ing ener       | gy requi    | irement:  |             |              |              |                  |            |                |                        | kWh/ye  | ear:    |          |
| Assumed occur                       | nancy I        | NI.         |           |             |              |              |                  |            |                |                        | 00      |         | (42)     |
| if TFA > 13.9                       |                |             | [1 - exp  | (-0.0003    | 349 x (TF    | A -13.9      | )2)] + 0.0       | 0013 x (   | TFA -13        |                        | 02      |         | (42)     |
| if TFA £ 13.9                       | •              |             |           |             |              |              | , , <del>-</del> |            |                |                        |         |         |          |
| Annual average<br>Reduce the annual |                |             |           |             |              |              |                  |            | se taraet o    |                        | 2.2     |         | (43)     |
| not more that 125                   |                |             |           |             |              |              | io acriicve      | a water ut | sc larger o    | ı                      |         |         |          |
| Jan                                 | Feb            | Mar         | Apr       | May         | Jun          | Jul          | Aug              | Sep        | Oct            | Nov                    | Dec     |         |          |
| Hot water usage in                  |                |             |           |             |              |              |                  |            |                |                        |         |         |          |
| (44)m= 90.42                        | 87.13          | 83.84       | 80.55     | 77.27       | 73.98        | 73.98        | 77.27            | 80.55      | 83.84          | 87.13                  | 90.42   |         |          |
|                                     |                |             |           |             |              |              |                  |            | Total = Su     | m(44) <sub>112</sub> = |         | 986.36  | (44)     |
| Energy content of I                 | hot water      | used - cal  | culated m | onthly = 4. | 190 x Vd,r   | n x nm x C   | OTm / 3600       | kWh/mor    | nth (see Ta    | ables 1b, 1            | c, 1d)  |         |          |
| (45)m= 134.09                       | 117.27         | 121.01      | 105.5     | 101.23      | 87.36        | 80.95        | 92.89            | 94         | 109.55         | 119.58                 | 129.85  |         | _        |
| If instantaneous wa                 | atar haatii    | na at noint | of use (n | n hot water | etoraga)     | enter () in  | hoves (16        |            | Total = Su     | m(45) <sub>112</sub> = |         | 1293.28 | (45)     |
|                                     |                |             |           |             |              |              |                  |            | 10.40          | 47.04                  | 40.40   |         | (46)     |
| (46)m= 20.11 Water storage          | 17.59<br>loss: | 18.15       | 15.83     | 15.18       | 13.1         | 12.14        | 13.93            | 14.1       | 16.43          | 17.94                  | 19.48   |         | (46)     |
| Storage volume                      |                | includin    | ng any s  | olar or W   | /WHRS        | storage      | within sa        | ame ves    | sel            |                        | 0       |         | (47)     |
| If community he                     | • •            |             | •         |             |              | •            |                  |            |                |                        | _       |         | ` ,      |
| Otherwise if no                     | •              |             |           | _           |              |              | ` '              | ers) ente  | er '0' in (    | 47)                    |         |         |          |
| Water storage                       |                |             |           |             |              |              |                  |            |                |                        |         |         |          |
| a) If manufactu                     |                |             |           | or is kno   | wn (kWł      | n/day):      |                  |            |                |                        | 0       |         | (48)     |
| Temperature fa                      | actor fro      | m Table     | 2b        |             |              |              |                  |            |                |                        | 0       |         | (49)     |
| Energy lost from                    |                | _           | -         |             |              |              | (48) x (49)      | =          |                |                        | 0       |         | (50)     |
| b) If manufactu<br>Hot water stora  |                |             | -         |             |              |              |                  |            |                |                        | 2       |         | (51)     |
| If community he                     | -              |             |           | IC 2 (KVV)  | iiiiiii Ciac | · <b>y</b> / |                  |            |                |                        | 0       |         | (51)     |
| Volume factor f                     | _              |             |           |             |              |              |                  |            |                |                        | 0       |         | (52)     |
| Temperature fa                      | actor fro      | m Table     | 2b        |             |              |              |                  |            |                |                        | 0       |         | (53)     |
| Energy lost from                    | m water        | storage     | , kWh/y   | ear         |              |              | (47) x (51)      | x (52) x ( | 53) =          |                        | 0       |         | (54)     |
| Enter (50) or (                     | 54) in (5      | 55)         |           |             |              |              |                  |            |                |                        | 0       |         | (55)     |
|                                     |                |             |           |             |              |              |                  |            |                |                        |         |         |          |

|                                                                   | storage                                                                  | loss cal                                                                                  | culated f                                                             | or each                                                | month                                                               |                                                                   |                                                                   | ((56)m = (                                               | 55) × (41)ı                                       | m                                       |                                        |                                        |                      |                                      |
|-------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------|--------------------------------------|
| (56)m=                                                            | 0                                                                        | 0                                                                                         | 0                                                                     | 0                                                      | 0                                                                   | 0                                                                 | 0                                                                 | 0                                                        | 0                                                 | 0                                       | 0                                      | 0                                      |                      | (56)                                 |
| If cylind                                                         | er contains                                                              | dedicated                                                                                 | d solar sto                                                           | rage, (57)ı                                            | n = (56)m                                                           | x [(50) – (                                                       | H11)] ÷ (50                                                       | 3), else (57                                             | 7)m = (56)                                        | m where (                               | H11) is fro                            | m Append                               | ix H                 |                                      |
| (57)m=                                                            | 0                                                                        | 0                                                                                         | 0                                                                     | 0                                                      | 0                                                                   | 0                                                                 | 0                                                                 | 0                                                        | 0                                                 | 0                                       | 0                                      | 0                                      |                      | (57)                                 |
| Prima                                                             | ry circuit                                                               | loss (an                                                                                  | nual) fro                                                             | m Table                                                | 3                                                                   |                                                                   |                                                                   |                                                          |                                                   |                                         |                                        | 0                                      |                      | (58)                                 |
| Prima                                                             | ry circuit                                                               | loss cal                                                                                  | culated t                                                             | for each                                               | month (                                                             | 59)m = (                                                          | (58) ÷ 36                                                         | 5 × (41)                                                 | m                                                 |                                         |                                        |                                        |                      |                                      |
| (mo                                                               | dified by                                                                | factor fr                                                                                 | om Tab                                                                | le H5 if t                                             | here is s                                                           | olar wat                                                          | er heatir                                                         | ng and a                                                 | cylinde                                           | r thermo                                | stat)                                  |                                        | _                    |                                      |
| (59)m=                                                            | 0                                                                        | 0                                                                                         | 0                                                                     | 0                                                      | 0                                                                   | 0                                                                 | 0                                                                 | 0                                                        | 0                                                 | 0                                       | 0                                      | 0                                      |                      | (59)                                 |
| Comb                                                              | i loss cal                                                               | culated                                                                                   | for each                                                              | month (                                                | 61)m =                                                              | (60) ÷ 36                                                         | 35 × (41)                                                         | )m                                                       |                                                   |                                         |                                        |                                        |                      |                                      |
| (61)m=                                                            | 46.08                                                                    | 40.1                                                                                      | 42.72                                                                 | 39.72                                                  | 39.37                                                               | 36.48                                                             | 37.7                                                              | 39.37                                                    | 39.72                                             | 42.72                                   | 42.97                                  | 46.08                                  |                      | (61)                                 |
| Total h                                                           | heat requ                                                                | uired for                                                                                 | water he                                                              | eating ca                                              | alculated                                                           | for eacl                                                          | n month                                                           | (62)m =                                                  | 0.85 × (                                          | (45)m +                                 | (46)m +                                | (57)m +                                | (59)m + (61)m        |                                      |
| (62)m=                                                            | 180.16                                                                   | 157.38                                                                                    | 163.74                                                                | 145.23                                                 | 140.61                                                              | 123.84                                                            | 118.65                                                            | 132.26                                                   | 133.72                                            | 152.27                                  | 162.55                                 | 175.93                                 | 1                    | (62)                                 |
| Solar D                                                           | HW input o                                                               | alculated                                                                                 | using App                                                             | endix G or                                             | Appendix                                                            | H (negati                                                         | ve quantity                                                       | /) (enter '0'                                            | ' if no sola                                      | r contribut                             | on to wate                             | er heating)                            | ı                    |                                      |
| (add a                                                            | additional                                                               | l lines if                                                                                | FGHRS                                                                 | and/or \                                               | VWHRS                                                               | applies                                                           | , see Ap                                                          | pendix (                                                 | 3)                                                |                                         |                                        |                                        |                      |                                      |
| (63)m=                                                            | 0                                                                        | 0                                                                                         | 0                                                                     | 0                                                      | 0                                                                   | 0                                                                 | 0                                                                 | 0                                                        | 0                                                 | 0                                       | 0                                      | 0                                      |                      | (63)                                 |
| Outpu                                                             | t from wa                                                                | ater hea                                                                                  | ter                                                                   |                                                        |                                                                     |                                                                   |                                                                   |                                                          |                                                   |                                         |                                        |                                        | •                    |                                      |
| (64)m=                                                            | 180.16                                                                   | 157.38                                                                                    | 163.74                                                                | 145.23                                                 | 140.61                                                              | 123.84                                                            | 118.65                                                            | 132.26                                                   | 133.72                                            | 152.27                                  | 162.55                                 | 175.93                                 |                      |                                      |
|                                                                   |                                                                          |                                                                                           |                                                                       |                                                        |                                                                     |                                                                   |                                                                   | Outp                                                     | out from wa                                       | ater heate                              | r (annual)₁                            | 12                                     | 1786.33              | (64)                                 |
| Heat ç                                                            | gains fror                                                               | n water                                                                                   | heating,                                                              | kWh/m                                                  | onth 0.2                                                            | 5 ′ [0.85                                                         | × (45)m                                                           | + (61)m                                                  | n] + 0.8 x                                        | κ [(46)m                                | + (57)m                                | + (59)m                                | ]                    | _                                    |
| (65)m=                                                            | 56.1                                                                     | 49.02                                                                                     | 50.92                                                                 | 45.01                                                  | 43.5                                                                | 38.17                                                             | 36.34                                                             | 40.73                                                    | 41.19                                             | 47.11                                   | 50.5                                   | 54.7                                   | <u> </u>             | (65)                                 |
| inclu                                                             | ude (57)r                                                                | m in calc                                                                                 | culation of                                                           | of (65)m                                               | only if c                                                           | ylinder i                                                         | s in the ເ                                                        | dwelling                                                 | or hot w                                          | ater is fr                              | om com                                 | munity h                               | neating              |                                      |
|                                                                   | ternal ga                                                                |                                                                                           |                                                                       |                                                        | -                                                                   | -                                                                 |                                                                   |                                                          |                                                   |                                         |                                        | •                                      |                      |                                      |
|                                                                   | olic gain                                                                | ·                                                                                         |                                                                       |                                                        |                                                                     |                                                                   |                                                                   |                                                          |                                                   |                                         |                                        |                                        |                      |                                      |
| MCtab                                                             | Jan                                                                      | Feb                                                                                       | Mar                                                                   | Apr                                                    | May                                                                 | Jun                                                               | Jul                                                               | Aug                                                      | Sep                                               | Oct                                     | Nov                                    | Dec                                    |                      |                                      |
| (66)m=                                                            |                                                                          | 101.05                                                                                    | 101.05                                                                | 101.05                                                 | 101.05                                                              | 101.05                                                            | 101.05                                                            |                                                          |                                                   | -                                       |                                        |                                        |                      |                                      |
| Liahtir                                                           | na aains                                                                 | (calculat                                                                                 | ted in Ar                                                             | nendiy                                                 |                                                                     |                                                                   | 101.05                                                            | 101.05                                                   | 101.05                                            | 101.05                                  | 101.05                                 | 101.05                                 |                      | (66)                                 |
| (67)m=                                                            |                                                                          | 13.97                                                                                     |                                                                       |                                                        | L. eguati                                                           | on L9 or                                                          |                                                                   |                                                          |                                                   | 101.05                                  | 101.05                                 | 101.05                                 |                      | (66)                                 |
| Annlia                                                            |                                                                          |                                                                                           | 11.36                                                                 | 8.6                                                    | _, equat<br>6.43                                                    | ion L9 oi<br>5.43                                                 | r L9a), a                                                         |                                                          |                                                   | 101.05                                  | 101.05                                 | 101.05                                 | <b> </b><br>         | (66)<br>(67)                         |
|                                                                   | nces gai                                                                 |                                                                                           |                                                                       | 8.6                                                    | 6.43                                                                | 5.43                                                              | r L9a), a<br>5.87                                                 | lso see                                                  | Table 5                                           | 13                                      |                                        | l                                      |                      | ` '                                  |
|                                                                   | nces gai                                                                 | ns (calc                                                                                  | ulated in                                                             | 8.6<br>Append                                          | 6.43<br>lix L, eq                                                   | 5.43<br>uation L                                                  | r L9a), a<br>5.87<br>13 or L1                                     | lso see <sup>7</sup> .63<br>3a), also                    | Table 5<br>10.23<br>see Ta                        | 13<br>ble 5                             | 15.17                                  | 16.17                                  | ]<br> <br>           | ` '                                  |
| (68)m=                                                            | 176.46                                                                   | ns (calc<br>178.29                                                                        | ulated in                                                             | 8.6<br>Append<br>163.86                                | 6.43<br>dix L, eq<br>151.46                                         | 5.43<br>uation L <sup>2</sup>                                     | 5.87<br>13 or L1:                                                 | 7.63<br>3a), also                                        | Table 5 10.23 see Ta 134.8                        | 13<br>ble 5                             |                                        | l                                      | ]                    | (67)                                 |
| (68)m=<br>Cookir                                                  | 176.46<br>ng gains                                                       | ns (calc<br>178.29                                                                        | ulated in                                                             | 8.6<br>Append<br>163.86                                | 6.43<br>dix L, eq<br>151.46                                         | 5.43<br>uation L <sup>2</sup>                                     | 5.87<br>13 or L1:                                                 | 7.63<br>3a), also                                        | Table 5 10.23 see Ta 134.8                        | 13<br>ble 5                             | 15.17                                  | 16.17                                  |                      | (67)                                 |
| (68)m=<br>Cookir<br>(69)m=                                        | 176.46<br>ng gains<br>33.1                                               | ns (calc<br>178.29<br>(calcula<br>33.1                                                    | ulated in<br>173.68<br>ted in A<br>33.1                               | 8.6<br>Append<br>163.86<br>opendix<br>33.1             | 6.43<br>lix L, equator 151.46<br>L, equator 151.46                  | 5.43<br>uation L <sup>2</sup><br>139.8<br>tion L15                | r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)              | so see                                                   | Table 5 10.23 see Ta 134.8 ee Table               | 13<br>ble 5<br>144.62                   | 15.17<br>157.02                        | 16.17                                  | ]<br> <br>           | (67)<br>(68)                         |
| (68)m=<br>Cookir<br>(69)m=<br>Pumps                               | 176.46 ng gains 33.1 s and far                                           | ns (calcula<br>178.29<br>(calcula<br>33.1                                                 | ulated in<br>173.68<br>ted in A<br>33.1<br>(Table 5                   | 8.6<br>Append<br>163.86<br>opendix<br>33.1             | 6.43<br>dix L, equ<br>151.46<br>L, equat<br>33.1                    | 5.43<br>uation L <sup>2</sup><br>139.8<br>ion L15<br>33.1         | r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)<br>33.1      | 7.63<br>3a), also<br>130.18<br>), also se<br>33.1        | Table 5 10.23 see Ta 134.8 ee Table 33.1          | 13<br>ble 5<br>144.62<br>5<br>33.1      | 15.17<br>157.02<br>33.1                | 16.17<br>168.68<br>33.1                | ]<br> <br> <br>      | (67)<br>(68)<br>(69)                 |
| (68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=                     | 176.46<br>ng gains<br>33.1<br>s and far                                  | ns (calc<br>178.29<br>(calcula<br>33.1<br>ns gains                                        | ulated in<br>173.68<br>ted in A<br>33.1<br>(Table 5                   | 8.6<br>Append<br>163.86<br>opendix<br>33.1<br>5a)      | 6.43<br>dix L, equat<br>151.46<br>L, equat<br>33.1                  | 5.43<br>uation L <sup>2</sup><br>139.8<br>tion L15<br>33.1        | r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)              | so see                                                   | Table 5 10.23 see Ta 134.8 ee Table               | 13<br>ble 5<br>144.62                   | 15.17<br>157.02                        | 16.17                                  | ]<br> <br> <br>      | (67)<br>(68)                         |
| (68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses           | 176.46 ng gains 33.1 s and far 3 s e.g. ev                               | ins (calcula<br>178.29<br>(calcula<br>33.1<br>ns gains<br>3<br>aporatio                   | ulated in<br>173.68<br>ted in A<br>33.1<br>(Table 5<br>3<br>n (negat  | 8.6 Appendix 163.86 Dependix 33.1 Sa) 3                | 6.43<br>dix L, equal 151.46<br>L, equal 33.1                        | 5.43  uation L <sup>2</sup> 139.8  tion L15 33.1  3  le 5)        | r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)<br>33.1      | 130.18<br>130.18<br>33.1                                 | Table 5 10.23 see Ta 134.8 ee Table 33.1          | 13<br>ble 5<br>144.62<br>5<br>33.1      | 15.17<br>157.02<br>33.1                | 16.17<br>168.68<br>33.1                | ]<br> <br> <br> <br> | (67)<br>(68)<br>(69)<br>(70)         |
| (68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m= | 176.46 ng gains 33.1 s and far 3 s e.g. ev -80.84                        | ns (calc<br>178.29<br>(calcula<br>33.1<br>ns gains<br>3<br>aporatio<br>-80.84             | ulated in<br>173.68<br>ted in A<br>33.1<br>(Table 5<br>3<br>n (negate | 8.6<br>Append<br>163.86<br>opendix<br>33.1<br>5a)      | 6.43<br>dix L, equat<br>151.46<br>L, equat<br>33.1                  | 5.43<br>uation L <sup>2</sup><br>139.8<br>tion L15<br>33.1        | r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)<br>33.1      | 7.63<br>3a), also<br>130.18<br>), also se<br>33.1        | Table 5 10.23 see Ta 134.8 ee Table 33.1          | 13<br>ble 5<br>144.62<br>5<br>33.1      | 15.17<br>157.02<br>33.1                | 16.17<br>168.68<br>33.1                | <br> <br> <br> <br>  | (67)<br>(68)<br>(69)                 |
| (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water             | 176.46 ng gains 33.1 s and far 3 s e.g. ev -80.84 heating                | ns (calc<br>178.29<br>(calcula<br>33.1<br>ns gains<br>3<br>aporatio<br>-80.84<br>gains (T | ulated in 173.68 ted in A 33.1 (Table 5 3 n (negative -80.84 fable 5) | 8.6 Append 163.86 Appendix 33.1 5a) 3 tive valu -80.84 | 6.43<br>dix L, equat<br>151.46<br>L, equat<br>33.1<br>3<br>es) (Tab | 5.43  uation L <sup>2</sup> 139.8  tion L15 33.1  3  le 5) -80.84 | r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)<br>33.1      | 130.18<br>3a), also<br>130.18<br>), also se<br>33.1<br>3 | Table 5 10.23 see Ta 134.8 ee Table 33.1 3        | 13<br>ble 5<br>144.62<br>5<br>33.1<br>3 | 15.17<br>157.02<br>33.1<br>3           | 16.17<br>168.68<br>33.1<br>3           | ]<br>]<br> <br> <br> | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m=      | 176.46 ng gains 33.1 s and far 3 s e.g. ev -80.84 heating 75.41          | ins (calcula 178.29) (calcula 33.1) ins gains 3 aporatio -80.84 gains (T                  | ulated in 173.68 ted in A 33.1 (Table 5 3 n (negarable 5) 68.44       | 8.6 Appendix 163.86 Dependix 33.1 Sa) 3                | 6.43<br>dix L, equal 151.46<br>L, equal 33.1                        | 5.43  uation L  139.8  tion L15  33.1  3  le 5)  -80.84           | r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)<br>33.1<br>3 | 130.18<br>3a), also<br>130.18<br>), also se<br>33.1<br>3 | Table 5 10.23 see Ta 134.8 ee Table 33.1 3 -80.84 | 13 ble 5 144.62 5 33.1 3 -80.84         | 15.17<br>157.02<br>33.1<br>3<br>-80.84 | 16.17<br>168.68<br>33.1<br>3<br>-80.84 |                      | (67)<br>(68)<br>(69)<br>(70)         |
| (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m=      | 176.46 ng gains 33.1 s and far 3 s e.g. ev -80.84 heating 75.41 internal | ins (calcula 178.29) (calcula 33.1) ins gains 3 aporatio -80.84 gains (T                  | ulated in 173.68 ted in A 33.1 (Table 5 3 n (negarable 5) 68.44       | 8.6 Append 163.86 Appendix 33.1 5a) 3 tive valu -80.84 | 6.43<br>dix L, equat<br>151.46<br>L, equat<br>33.1<br>3<br>es) (Tab | 5.43  uation L  139.8  tion L15  33.1  3  le 5)  -80.84           | r L9a), a<br>5.87<br>13 or L1:<br>132.02<br>or L15a)<br>33.1      | 130.18<br>3a), also<br>130.18<br>), also se<br>33.1<br>3 | Table 5 10.23 see Ta 134.8 ee Table 33.1 3 -80.84 | 13 ble 5 144.62 5 33.1 3 -80.84         | 15.17<br>157.02<br>33.1<br>3<br>-80.84 | 16.17<br>168.68<br>33.1<br>3<br>-80.84 |                      | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

|                           | Access Factor<br>Fable 6d | • | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|---------------------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 36.79            |   | 0.55           | x | 0.7            | =        | 82.17        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 36.79            |   | 0.55           | x | 0.7            | =        | 61.75        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | х | 62.67            |   | 0.55           | x | 0.7            | =        | 139.96       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 62.67            |   | 0.55           | x | 0.7            | ] =      | 105.18       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 85.75            |   | 0.55           | x | 0.7            | =        | 191.5        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 85.75            |   | 0.55           | x | 0.7            | =        | 143.91       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | X | 106.25           |   | 0.55           | x | 0.7            | =        | 237.28       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 106.25           |   | 0.55           | x | 0.7            | =        | 178.31       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 119.01           |   | 0.55           | x | 0.7            | =        | 265.77       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 119.01           |   | 0.55           | x | 0.7            | <b>=</b> | 199.72       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 118.15           |   | 0.55           | x | 0.7            | =        | 263.85       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 118.15           |   | 0.55           | x | 0.7            | =        | 198.28       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 113.91           |   | 0.55           | x | 0.7            | =        | 254.38       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 113.91           |   | 0.55           | x | 0.7            | =        | 191.16       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 104.39           |   | 0.55           | x | 0.7            | =        | 233.12       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 104.39           |   | 0.55           | x | 0.7            | =        | 175.19       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 92.85            |   | 0.55           | x | 0.7            | =        | 207.35       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 92.85            |   | 0.55           | x | 0.7            | =        | 155.82       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 69.27            |   | 0.55           | x | 0.7            | =        | 154.69       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 69.27            |   | 0.55           | x | 0.7            | =        | 116.25       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 44.07            |   | 0.55           | x | 0.7            | =        | 98.42        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | X | 44.07            |   | 0.55           | x | 0.7            | =        | 73.96        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | X | 31.49            |   | 0.55           | X | 0.7            | =        | 70.32        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | X | 31.49            |   | 0.55           | X | 0.7            | =        | 52.84        | (79) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 3.7        | X | 11.28            | X | 0.55           | X | 0.7            | =        | 22.28        | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 0.91       | x | 11.28            | X | 0.55           | X | 0.7            | =        | 2.74         | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 11.28            | X | 0.55           | X | 0.7            | =        | 18.94        | (81) |
| Northwest 0.9x            | 0.77                      | X | 3.7        | X | 22.97            | X | 0.55           | X | 0.7            | =        | 45.34        | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.91       | X | 22.97            | x | 0.55           | X | 0.7            | =        | 5.58         | (81) |
| Northwest 0.9x            | 0.77                      | X | 6.29       | X | 22.97            | X | 0.55           | X | 0.7            | =        | 38.54        | (81) |
| Northwest 0.9x            | 0.77                      | X | 3.7        | X | 41.38            | X | 0.55           | X | 0.7            | =        | 81.7         | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.91       | x | 41.38            | X | 0.55           | X | 0.7            | =        | 10.05        | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | X | 41.38            | X | 0.55           | X | 0.7            | =        | 69.44        | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 3.7        | X | 67.96            | X | 0.55           | X | 0.7            | =        | 134.17       | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 0.91       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 16.5         | (81) |
| Northwest 0.9x            | 0.77                      | X | 6.29       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 114.04       | (81) |
| Northwest 0.9x            | 0.77                      | X | 3.7        | x | 91.35            | x | 0.55           | x | 0.7            | =        | 180.35       | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.91       | x | 91.35            | x | 0.55           | x | 0.7            | =        | 22.18        | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | X | 91.35            | x | 0.55           | X | 0.7            | =        | 153.3        | (81) |

| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 3.        | 7         | X            | 9       | 7.38      | X        |       | 0.55     | X       | 0.7           |       | - [        | 192.27 | (81) |
|---------|---------------------|-------------|-----------|-----------|-----------|--------------|---------|-----------|----------|-------|----------|---------|---------------|-------|------------|--------|------|
| Northwe | est <sub>0.9x</sub> | 0.77        | x         | 0.9       | 91        | X            | 9       | 7.38      | x        |       | 0.55     | x       | 0.7           |       | = [        | 23.64  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | x         | 6.2       | 29        | X            | 9       | 7.38      | x        |       | 0.55     | x       | 0.7           |       | = [        | 163.43 | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | x         | 3.        | 7         | X            | ,       | 91.1      | x        |       | 0.55     | x       | 0.7           |       | = [        | 179.87 | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | x         | 0.9       | 91        | X            | ,       | 91.1      | x        |       | 0.55     | x       | 0.7           |       | = [        | 22.12  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | x         | 6.2       | 29        | X            | ,       | 91.1      | x        |       | 0.55     | x       | 0.7           |       | = [        | 152.89 | (81) |
| Northwe | est 0.9x            | 0.77        | X         | 3.        | 7         | X            | 7       | 2.63      | x        |       | 0.55     | X       | 0.7           |       | <b>-</b> [ | 143.39 | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 0.9       | 91        | X            | 7       | 2.63      | x        |       | 0.55     | x       | 0.7           |       | = [        | 17.63  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | x         | 6.2       | 29        | X            | 7       | 2.63      | x        |       | 0.55     | X       | 0.7           |       | = [        | 121.88 | (81) |
| Northwe | est 0.9x            | 0.77        | X         | 3.        | 7         | X            | 5       | 50.42     | x        |       | 0.55     | x       | 0.7           |       | = [        | 99.55  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | x         | 0.9       | 91        | X            | 5       | 50.42     | x        |       | 0.55     | x       | 0.7           |       | = [        | 12.24  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 6.2       | 29        | X            | 5       | 50.42     | x        |       | 0.55     | x       | 0.7           |       | = [        | 84.62  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 3.        | 7         | X            | 2       | 28.07     | x        |       | 0.55     | X       | 0.7           |       | = [        | 55.41  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 0.9       | 91        | X            | 2       | 28.07     | X        |       | 0.55     | X       | 0.7           |       | = [        | 6.81   | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 6.2       | 29        | X            | 2       | 28.07     | x        |       | 0.55     | X       | 0.7           |       | = [        | 47.1   | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 3.        | 7         | X            |         | 14.2      | x        |       | 0.55     | x       | 0.7           |       | = [        | 28.03  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 0.9       | 91        | X            |         | 14.2      | X        |       | 0.55     | X       | 0.7           |       | = [        | 3.45   | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 6.2       | 29        | X            |         | 14.2      | X        |       | 0.55     | X       | 0.7           |       | = [        | 23.83  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 3.        | 7         | X            | ,       | 9.21      | X        |       | 0.55     | X       | 0.7           |       | = [        | 18.19  | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 0.9       | 91        | X            | ,       | 9.21      | X        |       | 0.55     | X       | 0.7           |       | = [        | 2.24   | (81) |
| Northwe | est <sub>0.9x</sub> | 0.77        | X         | 6.2       | 29        | X            | ,       | 9.21      | X        |       | 0.55     | X       | 0.7           |       | = [        | 15.46  | (81) |
|         |                     |             |           |           |           |              |         |           |          |       |          |         |               |       |            |        |      |
| Ť       | I                   | watts, calc |           |           | ı         | $\neg$       |         | r         | <u> </u> |       | m(74)m   | (82)m   |               |       | _          |        |      |
| (83)m=  | 187.86              |             | 496.59    | 680.3     | 821.32    |              | 41.47   | 800.41    | 691      | .22   | 559.58   | 380.26  | 227.68        | 159.0 | )5         |        | (83) |
| Ī       |                     | nternal and | -         | ` '       | ·         | <del>_</del> |         |           |          |       | -        |         |               | i     | _          |        |      |
| (84)m=  | 511.78              | 656.13      | 306.39    | 971.59    | 1093.99   | 9 10         | 096.03  | 1043.45   | 940      | .08   | 818.13   | 657.5   | 526.32        | 473.7 | ′3         |        | (84) |
| 7. Mea  | an inter            | nal tempe   | rature (  | (heating  | seaso     | n)           |         |           |          |       |          |         |               |       |            |        |      |
| Tempe   | erature             | during hea  | ating pe  | eriods ir | n the liv | ing          | area    | from Tab  | ole 9,   | , Th1 | (°C)     |         |               |       |            | 21     | (85) |
| Utilisa | tion fac            | tor for gai | ns for li | iving are | ea, h1,r  | n (s         | ee Ta   | ble 9a)   |          |       |          |         |               | 1     |            |        |      |
| ļ       | Jan                 | Feb         | Mar       | Apr       | May       | <u> </u>     | Jun     | Jul       | A        | ug    | Sep      | Oct     | Nov           | De    | С          |        |      |
| (86)m=  | 0.99                | 0.98        | 0.94      | 0.83      | 0.65      |              | 0.47    | 0.34      | 0.4      | 4     | 0.65     | 0.91    | 0.98          | 0.99  | )          |        | (86) |
| Mean    | internal            | temperat    | ure in I  | iving are | ea T1 (   | follo        | w ste   | ps 3 to 7 | ' in T   | able  | 9c)      |         |               |       |            |        |      |
| (87)m=  | 19.68               | 19.96       | 20.33     | 20.71     | 20.92     | 2            | 20.98   | 21        | 20.      | 99    | 20.94    | 20.61   | 20.06         | 19.63 | 3          |        | (87) |
| Temp    | erature             | during hea  | ating pe  | eriods ir | n rest o  | f dw         | elling/ | from Ta   | ble 9    | 9, Th | 2 (°C)   |         |               |       |            |        |      |
| (88)m=  | 19.79               | 19.79       | 19.79     | 19.8      | 19.8      | 1            | 19.82   | 19.82     | 19.      | 82    | 19.81    | 19.8    | 19.8          | 19.8  | 3          |        | (88) |
| Utilisa | tion fac            | tor for gai | ns for r  | est of d  | welling   | . h2         | .m (se  | ee Table  | 9a)      | •     | •        |         | •             |       |            |        |      |
| (89)m=  | 0.99                | 0.97        | 0.92      | 0.79      | 0.58      | $\neg$       | 0.39    | 0.25      | 0.3      | 3     | 0.55     | 0.87    | 0.98          | 0.99  |            |        | (89) |
| Mean    | internal            | temperat    | ure in t  | he rest   | of dwe    | lling        | T2 (f   | ollow ste | ne a     | to 7  | in Tahle | 9c)     |               |       |            |        |      |
| (90)m=  | 18.07               |             | 18.99     | 19.5      | 19.74     | Ť            | 12 (1)  | 19.81     | 19.      |       | 19.77    | 19.4    | 18.63         | 18    | $\neg$     |        | (90) |
| (-0)    |                     |             |           |           | ı '       | - 1 '        |         | ı         | ı        |       |          |         | 1 .5.55       | ı     | - 1        |        | ` '  |
|         | •                   | •           |           |           |           | •            |         |           |          |       | fL       | A = Liv | ing area ÷ (4 | 4) =  | ╗          | 0.5    | (91) |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.1                                                                                                   | 20.32                                                                    | 20.39              | 20.4             | 20.4                              | 20.35                                     | 20                                             | 19.34                                                                                 | 18.81                                     |                          | (92)                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------|------------------|-----------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|----------------------------------------------------------|
| Apply adjustm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ent to th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | internal                                                                                               | temper                                                                   | ature fro          | m Table          | 4e, whe                           | ere appro                                 | priate                                         |                                                                                       |                                           |                          |                                                          |
| (93)m= 18.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.95                                                                                                  | 20.17                                                                    | 20.24              | 20.25            | 20.25                             | 20.2                                      | 19.85                                          | 19.19                                                                                 | 18.66                                     |                          | (93)                                                     |
| 8. Space heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |                                                                          |                    |                  |                                   |                                           |                                                |                                                                                       |                                           |                          |                                                          |
| Set Ti to the n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                          | ned at ste         | ep 11 of         | Table 9l                          | b, so tha                                 | t Ti,m=(                                       | 76)m an                                                                               | d re-calc                                 | ulate                    |                                                          |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                    | May                                                                      | Jun                | Jul              | Aug                               | Sep                                       | Oct                                            | Nov                                                                                   | Dec                                       |                          |                                                          |
| Utilisation fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or for ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ains, hm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                      |                                                                          |                    |                  |                                   | •                                         |                                                |                                                                                       |                                           |                          |                                                          |
| (94)m= 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.79                                                                                                   | 0.61                                                                     | 0.42               | 0.29             | 0.33                              | 0.58                                      | 0.87                                           | 0.97                                                                                  | 0.99                                      |                          | (94)                                                     |
| Useful gains,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hmGm ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W = (94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1)m x (84                                                                                              | 4)m                                                                      |                    |                  |                                   |                                           |                                                |                                                                                       |                                           |                          |                                                          |
| (95)m= 504.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 633.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 736.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 768.49                                                                                                 | 662.54                                                                   | 456.2              | 298.17           | 313.05                            | 478.17                                    | 573.42                                         | 511.5                                                                                 | 469.03                                    |                          | (95)                                                     |
| Monthly avera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ige exte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rnal tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | perature                                                                                               | from Ta                                                                  | able 8             |                  |                                   |                                           |                                                |                                                                                       |                                           |                          |                                                          |
| (96)m= 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.9                                                                                                    | 11.7                                                                     | 14.6               | 16.6             | 16.4                              | 14.1                                      | 10.6                                           | 7.1                                                                                   | 4.2                                       |                          | (96)                                                     |
| Heat loss rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an intern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al tempe                                                                                               | erature,                                                                 | Lm , W =           | =[(39)m          | x [(93)m                          | – (96)m                                   | ]                                              |                                                                                       |                                           |                          |                                                          |
| (97)m= 1213.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1188.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1089.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 915.9                                                                                                  | 700.88                                                                   | 461.84             | 298.96           | 314.61                            | 501.74                                    | 765.11                                         | 1004.41                                                                               | 1206.31                                   |                          | (97)                                                     |
| Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r each m                                                                                               | nonth, k\                                                                | Wh/mont            | th = 0.02        | 4 x [(97                          | )m – (95                                  | )m] x (4                                       | 1)m                                                                                   | •                                         |                          |                                                          |
| (98)m= 526.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 372.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 262.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106.14                                                                                                 | 28.52                                                                    | 0                  | 0                | 0                                 | 0                                         | 142.62                                         | 354.89                                                                                | 548.54                                    |                          | _                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                          |                    |                  | Tota                              | l per year                                | (kWh/year                                      | ) = Sum(9                                                                             | 8) <sub>15,912</sub> =                    | 2342.67                  | (98)                                                     |
| Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ement in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m²                                                                                                 | /year                                                                    |                    |                  |                                   |                                           |                                                |                                                                                       |                                           | 38.15                    | (99)                                                     |
| 9a. Energy req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uiremen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ts – Indi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vidual h                                                                                               | eating s                                                                 | vstems i           | ncludina         | micro-C                           | CHP)                                      |                                                |                                                                                       |                                           |                          |                                                          |
| Space heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                          | ,                  |                  |                                   | ,                                         |                                                |                                                                                       |                                           |                          |                                                          |
| Fraction of spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t from se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | econdary                                                                                               | y/supple                                                                 | mentary            | system           |                                   |                                           |                                                |                                                                                       |                                           | 0                        | (201)                                                    |
| Fraction of spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ace hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                          |                    |                  |                                   |                                           |                                                |                                                                                       |                                           |                          |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ace nea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t from m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ain syst                                                                                               | em(s)                                                                    |                    |                  | (202) = 1                         | <b>- (201) =</b>                          |                                                |                                                                                       |                                           | 1                        | (202)                                                    |
| Fraction of tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                      | • ,                                                                      |                    |                  |                                   | - (201) =<br>02) × [1 - (                 | (203)] =                                       |                                                                                       |                                           |                          | ╡`                                                       |
| Fraction of tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al heatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng from r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | main sys                                                                                               | stem 1                                                                   |                    |                  |                                   | , ,                                       | (203)] =                                       |                                                                                       |                                           | 1                        | (204)                                                    |
| Efficiency of n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al heatir<br>nain spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng from r<br>ice heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | main sys                                                                                               | stem 1<br>em 1                                                           | a system           |                  |                                   | , ,                                       | (203)] =                                       |                                                                                       |                                           | 90.3                     | (204)                                                    |
| Efficiency of n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al heatir<br>nain spa<br>econdai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng from r<br>ice heati<br>ry/supple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | main sys                                                                                               | stem 1<br>em 1<br>y heating                                              |                    | 1, %             | (204) = (2                        | 02) × [1 –                                |                                                |                                                                                       | _                                         | 90.3                     | (204)<br>(206)<br>(208)                                  |
| Efficiency of n Efficiency of s  Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al heatir<br>nain spa<br>econda<br>Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng from r<br>ace heati<br>ry/supple<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | main sys<br>ing syste<br>ementary<br>Apr                                                               | stem 1<br>em 1<br>y heating<br>May                                       | Jun                |                  |                                   | , ,                                       | (203)] =                                       | Nov                                                                                   | Dec                                       | 90.3                     | (204)<br>(206)<br>(208)                                  |
| Efficiency of n Efficiency of s  Jan Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al heatir<br>nain spa<br>econdar<br>Feb<br>g require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng from r<br>ice heati<br>ry/supple<br>Mar<br>ement (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | main systementary  Apr  alculated                                                                      | etem 1 em 1 y heating May d above                                        | Jun                | ı, %<br>Jul      | (204) = (2<br>Aug                 | 02) × [1 –                                | Oct                                            |                                                                                       |                                           | 90.3                     | (204)<br>(206)<br>(208)                                  |
| Efficiency of n Efficiency of s  Jan Space heating 526.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al heatir<br>nain spa<br>econdar<br>Feb<br>g require<br>372.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng from race heating/supplement (co. 262.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | main systementary Apr Alculated                                                                        | em 1 em 1 y heating May d above 28.52                                    | Jun                | 1, %             | (204) = (2                        | 02) × [1 –                                |                                                | Nov<br>354.89                                                                         | Dec 548.54                                | 90.3                     | (204)<br>(206)<br>(208)<br>ar                            |
| Efficiency of n Efficiency of s  Jan Space heating  526.85  (211)m = {[(98)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al heatir<br>nain spa<br>econdar<br>Feb<br>g require<br>372.89<br>m x (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng from rice heating/supplement (co. 262.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | main systementary Apr alculated 106.14 00 ÷ (20                                                        | stem 1 em 1 y heating May d above 28.52                                  | Jun<br>)<br>0      | n, %<br>Jul<br>0 | (204) = (2<br>Aug                 | 02) × [1 -                                | Oct 142.62                                     | 354.89                                                                                | 548.54                                    | 90.3                     | (204)<br>(206)<br>(208)                                  |
| Efficiency of n Efficiency of s  Jan Space heating 526.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al heatir<br>nain spa<br>econdar<br>Feb<br>g require<br>372.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng from race heating/supplement (co. 262.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | main systementary Apr Alculated                                                                        | em 1 em 1 y heating May d above 28.52                                    | Jun                | ı, %<br>Jul      | (204) = (2<br>Aug<br>0            | 02) × [1 -                                | Oct 142.62 157.94                              | 354.89<br>393.02                                                                      | 548.54<br>607.46                          | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ar<br>(211)                   |
| Efficiency of n Efficiency of s  Jan Space heating 526.85  (211)m = {[(98)] 583.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al heatin<br>nain spa<br>econdal<br>Feb<br>g require<br>372.89<br>m x (20<br>412.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg from race heating/supplement (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (content (conten | main systementary Apr alculated 106.14 00 ÷ (20 117.54                                                 | stem 1 em 1 y heating May d above 28.52 6) 31.59                         | Jun<br>)<br>0      | n, %<br>Jul<br>0 | (204) = (2<br>Aug<br>0            | 02) × [1 -                                | Oct 142.62 157.94                              | 354.89<br>393.02                                                                      | 548.54<br>607.46                          | 90.3                     | (204)<br>(206)<br>(208)<br>ar                            |
| Efficiency of m Efficiency of s  Jan Space heating  526.85  (211)m = {[(98)  583.44  Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al heatin<br>nain spa<br>econdar<br>Feb<br>grequire<br>372.89<br>m x (20<br>412.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg from race heating/supplement (caree) 3 x 1 290.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | main systementary Apr alculated 106.14 00 ÷ (20 117.54                                                 | stem 1 em 1 y heating May d above 28.52 6) 31.59                         | Jun<br>)<br>0      | n, %<br>Jul<br>0 | (204) = (2<br>Aug<br>0            | 02) × [1 -                                | Oct 142.62 157.94                              | 354.89<br>393.02                                                                      | 548.54<br>607.46                          | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ar                            |
| Efficiency of n Efficiency of s  Jan Space heating  526.85  (211)m = {[(98) 583.44}  Space heating = {[(98)m x (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al heatin<br>nain spa<br>econdal<br>Feb<br>g require<br>372.89<br>m x (20<br>412.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg from race heating/supplement (compared 262.22 4)] } x 1 290.38 econdary 00 ÷ (200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | main systementary Apr alculated 106.14 00 ÷ (20 117.54                                                 | stem 1 em 1 y heating May d above 28.52 6) 31.59 month                   | Jun<br>)<br>0      | o 0              | (204) = (2  Aug  0  Tota          | 02) × [1 – 1                              | Oct 142.62 157.94 ar) =Sum(2                   | 354.89<br>393.02<br>211) <sub>15,1012</sub>                                           | 548.54<br>607.46                          | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ar                            |
| Efficiency of m Efficiency of s  Jan Space heating  526.85  (211)m = {[(98)  583.44  Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al heatin<br>nain spa<br>econdar<br>Feb<br>grequire<br>372.89<br>m x (20<br>412.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg from race heating/supplement (caree) 3 x 1 290.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | main systementary Apr alculated 106.14 00 ÷ (20 117.54                                                 | stem 1 em 1 y heating May d above 28.52 6) 31.59                         | Jun<br>)<br>0      | n, %<br>Jul<br>0 | (204) = (2  Aug  0  Tota          | 02) × [1 -                                | Oct  142.62  157.94  ar) = Sum(2)              | 354.89<br>393.02<br>211) <sub>15,1012</sub>                                           | 548.54<br>607.46<br>=                     | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ar<br>(211)          |
| Efficiency of m Efficiency of s  Jan Space heating 526.85  (211)m = {[(98) 583.44  Space heating = {[(98)m x (20) (215)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | reduire 372.89 m x (20412.95 display 1)] } x 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg from race heating/supplement (compared 262.22 4)] } x 1 290.38 econdary 00 ÷ (200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | main systementary Apr alculated 106.14 00 ÷ (20 117.54                                                 | stem 1 em 1 y heating May d above 28.52 6) 31.59 month                   | Jun<br>)<br>0      | o 0              | (204) = (2  Aug  0  Tota          | 02) × [1 – 1                              | Oct  142.62  157.94  ar) = Sum(2)              | 354.89<br>393.02<br>211) <sub>15,1012</sub>                                           | 548.54<br>607.46<br>=                     | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ar                            |
| Efficiency of m Efficiency of s  Jan Space heating  526.85  (211)m = {[(98)  583.44  Space heating = {[(98)m x (20) (215)m=0  Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al heatin<br>nain spa<br>econdar<br>Feb<br>grequire<br>372.89<br>m x (20<br>412.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg from race heating/supplement (caree) 3 x 1 290.38 econdary 00 ÷ (200.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 from 100.00 fro | main systementary Apr alculated 106.14 00 ÷ (20 117.54  y), kWh/8                                      | stem 1 em 1 y heating May d above; 28.52 66) 31.59 month                 | Jun<br>)<br>0      | o 0              | (204) = (2  Aug  0  Tota          | 02) × [1 -                                | Oct  142.62  157.94  ar) = Sum(2)              | 354.89<br>393.02<br>211) <sub>15,1012</sub>                                           | 548.54<br>607.46<br>=                     | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ar<br>(211)          |
| Efficiency of n Efficiency of s  Jan Space heating 526.85  (211)m = {[(98) 583.44  Space heating = {[(98)m x (20) (215)m=0  Water heating Output from wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al heatin sparecondar Feb grequire 372.89 m x (20412.95 green fuel (settle fuel fuel fuel fuel fuel fuel fuel fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg from race heating/supplement (content decordary)    290.38    econdary   00 ÷ (200 decordary)   0    ter (calculated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | main systementary Apr alculated 106.14 00 ÷ (20 117.54  y), kWh/ 8) 0                                  | stem 1 em 1 y heating May d above 28.52 6) 31.59 month 0                 | Jun ) 0 0 0        | o 0              | (204) = (2  Aug  0  Tota  0  Tota | 02) × [1 – 1                              | Oct  142.62  157.94  ir) =Sum(2                | 354.89<br>393.02<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 548.54<br>607.46<br>=<br>0                | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ar<br>(211)          |
| Efficiency of m Efficiency of s  Jan Space heating 526.85  (211)m = {[(98) 583.44  Space heating = {[(98)m x (20) (215)m=0  Water heating Output from wa 180.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reduire 372.89 m x (20412.95 duel (set 1)] } x 10 duel ter heat 157.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg from race heating/supplement (concentrated and concentrated n systementary Apr alculated 106.14 00 ÷ (20 117.54  y), kWh/8                                      | stem 1 em 1 y heating May d above; 28.52 66) 31.59 month                 | Jun<br>)<br>0      | o 0              | (204) = (2  Aug  0  Tota          | 02) × [1 -                                | Oct  142.62  157.94  ar) = Sum(2)              | 354.89<br>393.02<br>211) <sub>15,1012</sub>                                           | 548.54<br>607.46<br>=                     | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ar<br>(211)<br>(211)          |
| Efficiency of m Efficiency of s  Jan Space heating  526.85  (211)m = {[(98)  583.44  Space heating = {[(98)m x (20) (215)m= 0  Water heating Output from water heating  Efficiency of water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al heatin sparecondar Feb grequire 372.89 m x (20412.95 green fuel (settle 1)] } x 1 0 green fuel (settle 1) atter heat 157.38 green heat 157.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mar mement (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calculater (calcul | main systementary Apr alculated 106.14 00 ÷ (20 117.54  y), kWh// 8) 0                                 | stem 1 em 1 y heating May d above 28.52 6) 31.59 month 0                 | Jun<br>)<br>0<br>0 | o 0 118.65       | (204) = (2  Aug  0  Tota  132.26  | 02) × [1 – 1                              | Oct  142.62  157.94  ar) =Sum(2  0  ar) =Sum(2 | 354.89<br>393.02<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 548.54<br>607.46<br>=<br>0<br>=           | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ar<br>(211)<br>(211) |
| Efficiency of n Efficiency of s  Jan Space heating 526.85  (211)m = {[(98) 583.44  Space heating = {[(98)m x (20) (215)m= 0  Water heating Output from wa 180.16  Efficiency of wa (217)m= 87.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al heatin sparecondar Feb grequire 372.89 m x (20412.95 green full (set 1)] } x 1 0 green full (set 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg from race heating/supplement (ca 262.22 4)] } x 1 290.38 econdary 00 ÷ (200 0 0 eter (calcuter 86.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | main systementary Apr alculated 106.14 00 ÷ (20 117.54  y), kWh/8 0                                    | stem 1 em 1 y heating May d above 28.52 6) 31.59 month 0                 | Jun ) 0 0 0        | o 0              | (204) = (2  Aug  0  Tota  0  Tota | 02) × [1 – 1                              | Oct  142.62  157.94  ir) =Sum(2                | 354.89<br>393.02<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 548.54<br>607.46<br>=<br>0                | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>ar<br>(211)<br>(211)          |
| Efficiency of n Efficiency of s  Jan Space heating  526.85  (211)m = {[(98)  583.44   Space heating = {[(98)m x (20) (215)m= 0   Water heating Output from water heating (217)m= 87.73  Fuel for water h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al heatin sparecondar Feb grequire 372.89 m x (20412.95 gfuel (set) 1)] } x 10 gfuel find a ter heat 157.38 ater heat 87.32 heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg from race heating/supplement (caree)   X 1 290.38   Caree (calculater   86.48   KWh/mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | main systementary Apr alculated 106.14 00 ÷ (20 117.54  y), kWh/8 0 ulated al 145.23  84.68 onth       | stem 1 em 1 y heating May d above 28.52 6) 31.59 month 0                 | Jun<br>)<br>0<br>0 | o 0 118.65       | (204) = (2  Aug  0  Tota  132.26  | 02) × [1 – 1                              | Oct  142.62  157.94  ar) =Sum(2  0  ar) =Sum(2 | 354.89<br>393.02<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 548.54<br>607.46<br>=<br>0<br>=           | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ar<br>(211)<br>(211) |
| Efficiency of m Efficiency of s  Jan Space heating  526.85  (211)m = {[(98)  583.44   Space heating = {[(98)m x (20) (215)m= 0  Water heating Output from wa  180.16  Efficiency of wa (217)m= 87.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al heatin sparecondar Feb grequire 372.89 m x (20412.95 gfuel (set) 1)] } x 10 gfuel find a ter heat 157.38 ater heat 87.32 heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg from race heating/supplement (caree)   X 1 290.38   Caree (calculater   86.48   KWh/mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | main systementary Apr alculated 106.14 00 ÷ (20 117.54  y), kWh/8 0 ulated al 145.23  84.68 onth       | stem 1 em 1 y heating May d above 28.52 6) 31.59 month 0                 | Jun<br>)<br>0<br>0 | o 0 118.65       | (204) = (2  Aug  0  Tota  132.26  | 02) × [1 – 1                              | Oct  142.62  157.94  ar) =Sum(2  0  ar) =Sum(2 | 354.89<br>393.02<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub>           | 548.54<br>607.46<br>=<br>0<br>=           | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ar<br>(211)<br>(211) |
| Efficiency of m Efficiency of s  Jan Space heating 526.85  (211)m = {[(98) 583.44  Space heating = {[(98)m x (20) (215)m= 0  Water heating Output from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from water from wat | al heatin spanecondar Feb grequire 372.89 m x (20412.95) green full (settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for the settle for t | mg from race heating/supplement (calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled and parts of the calcaled an | main systementary Apr alculated 106.14 00 ÷ (20 117.54  y), kWh//8) 0  ulated al 145.23  84.68  onth m | stem 1 em 1 y heating May d above 28.52 6) 31.59 month 0  0 00000 140.61 | Jun ) 0 0 123.84   | o 0 118.65       | O Tota  132.26  81                | 02) × [1 -   Sep  0 0 0 I (kWh/yea 133.72 | Oct  142.62  157.94  178.63                    | 354.89<br>393.02<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub><br>162.55 | 548.54<br>607.46<br>=<br>0<br>=<br>175.93 | 1<br>90.3<br>0<br>kWh/ye | (204)<br>(206)<br>(208)<br>(208)<br>ar<br>(211)<br>(211) |

| Annual totals Space heating fuel used, main system 1                                                                                            |                                                                                                              | kWh/year                 | Г                 | kWh/year                                                 | 1                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|----------------------------------------------------------|-------------------------------------------|
|                                                                                                                                                 |                                                                                                              |                          | اِ                | 2594.32                                                  | _                                         |
| Water heating fuel used                                                                                                                         |                                                                                                              |                          | L                 | 2110.1                                                   |                                           |
| Electricity for pumps, fans and electric keep-hot                                                                                               |                                                                                                              |                          |                   |                                                          |                                           |
| mechanical ventilation - balanced, extract or pos                                                                                               | itive input from outside                                                                                     |                          | 133.99            |                                                          | (230a)                                    |
| central heating pump:                                                                                                                           |                                                                                                              |                          | 30                |                                                          | (230c)                                    |
| boiler with a fan-assisted flue                                                                                                                 |                                                                                                              |                          | 45                |                                                          | (230e)                                    |
| Total electricity for the above, kWh/year                                                                                                       | sum of (230                                                                                                  | 0a)(230g) =              | [                 | 208.99                                                   | (231)                                     |
| Electricity for lighting                                                                                                                        |                                                                                                              |                          | [                 | 277.83                                                   | (232)                                     |
| 12a. CO2 emissions – Individual heating systems                                                                                                 | s including micro-CHP                                                                                        |                          | _                 |                                                          |                                           |
|                                                                                                                                                 |                                                                                                              |                          |                   |                                                          |                                           |
|                                                                                                                                                 | <b>Energy</b><br>kWh/year                                                                                    | Emission factor          | or                | <b>Emissions</b><br>kg CO2/yea                           | r                                         |
| Space heating (main system 1)                                                                                                                   | Energy                                                                                                       | kg CO2/kWh               | or<br>= [         |                                                          | r<br>(261)                                |
| , and the second second second second second second second second second second second second second second se                                  | <b>Energy</b><br>kWh/year                                                                                    | kg CO2/kWh               | -<br>-            | kg CO2/yea                                               | ,                                         |
| Space heating (main system 1)                                                                                                                   | Energy<br>kWh/year                                                                                           | kg CO2/kWh  0.216  0.519 | = [               | kg CO2/yea                                               | (261)                                     |
| Space heating (main system 1) Space heating (secondary)                                                                                         | Energy<br>kWh/year<br>(211) x<br>(215) x                                                                     | kg CO2/kWh  0.216  0.519 | = [               | kg CO2/yea                                               | (261)<br>(263)                            |
| Space heating (main system 1) Space heating (secondary) Water heating                                                                           | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x                                                          | 0.216<br>0.519<br>0.216  | = [               | kg CO2/yea<br>560.37<br>0<br>455.78                      | (261)<br>(263)<br>(264)                   |
| Space heating (main system 1) Space heating (secondary) Water heating Space and water heating                                                   | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264) =                       | 0.216<br>0.519<br>0.519  | = [<br>= [<br>= [ | kg CO2/yea<br>560.37<br>0<br>455.78                      | (261)<br>(263)<br>(264)<br>(265)          |
| Space heating (main system 1) Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264) =<br>(231) x<br>(232) x | 0.216<br>0.519<br>0.216  | = [<br>= [<br>= [ | kg CO2/yea<br>560.37<br>0<br>455.78<br>1016.15<br>108.47 | (261)<br>(263)<br>(264)<br>(265)<br>(267) |

El rating (section 14)

|                                                          |                                                         |                 | User D    | otaile:          |            |            |          |                     |                        |      |
|----------------------------------------------------------|---------------------------------------------------------|-----------------|-----------|------------------|------------|------------|----------|---------------------|------------------------|------|
| A N                                                      | Obrita I I a alva all                                   |                 |           |                  | - NI       |            |          | OTDO                | 040000                 |      |
| Assessor Name: Software Name:                            | Chris Hocknell Stroma FSAP 201                          | 2               |           | Stroma<br>Softwa | _          |            |          |                     | 016363<br>on: 1.0.4.16 |      |
| Software Hame.                                           | Ottoma i Orti 201                                       |                 |           | Address:         |            |            |          | VCISIO              | JII. 1.0.4.10          |      |
| Address :                                                |                                                         |                 |           |                  |            |            |          |                     |                        |      |
| 1. Overall dwelling dime                                 | ensions:                                                |                 |           |                  |            |            |          |                     |                        |      |
| Ground floor                                             |                                                         |                 |           | a(m²)            | (4-)       |            | ight(m)  | ] <sub>(0=)</sub> = | Volume(m³)             | _    |
|                                                          | N. (41 N. (4 N. (4 N. (4                                | )               |           |                  | (1a) x     |            | 2.7      | (2a) =              | 203.58                 | (3a) |
| Total floor area TFA = (1                                | a)+(1b)+(1c)+(1d)+(1e                                   | e)+(1N)         | 7         | 75.4             | (4)        |            |          |                     |                        | _    |
| Dwelling volume                                          |                                                         |                 |           |                  | (3a)+(3b)  | )+(3c)+(3c | d)+(3e)+ | .(3n) =             | 203.58                 | (5)  |
| 2. Ventilation rate:                                     | main se                                                 | econdary        | •         | other            |            | total      |          |                     | m³ per hou             | r    |
| North an of all large and                                | heating h                                               | eating          |           |                  | ,          |            |          | 40 - 1              | -                      | _    |
| Number of chimneys                                       | 0 +                                                     | 0               | ]         | 0                | ] = [      | 0          |          | 40 =                | 0                      | (6a) |
| Number of open flues                                     | 0 +                                                     | 0               | ] + _     | 0                | ]          | 0          |          | 20 =                | 0                      | (6b) |
| Number of intermittent fa                                |                                                         |                 |           |                  |            | 0          | X '      | 10 =                | 0                      | (7a) |
| Number of passive vents                                  | <b>3</b>                                                |                 |           |                  |            | 0          | X        | 10 =                | 0                      | (7b) |
| Number of flueless gas fi                                | ires                                                    |                 |           |                  |            | 0          | X 4      | 40 =                | 0                      | (7c) |
|                                                          |                                                         |                 |           |                  |            |            |          | Δir ch              | anges per ho           | ur   |
| Infiltration due to chimne                               | vs. flues and fans = $(6)$                              | a)+(6b)+(7a     | )+(7b)+(7 | 7c) =            | Г          | 0          |          | ÷ (5) =             | 0                      | (8)  |
| If a pressurisation test has b                           | •                                                       |                 |           |                  | ontinue fr |            |          | . (5) –             | U                      |      |
| Number of storeys in the                                 | he dwelling (ns)                                        |                 |           |                  |            |            |          |                     | 0                      | (9)  |
| Additional infiltration                                  |                                                         |                 |           |                  |            |            | [(9)     | -1]x0.1 =           | 0                      | (10) |
| Structural infiltration: 0                               | .25 for steel or timber to resent, use the value corres |                 |           |                  | •          | uction     |          |                     | 0                      | (11) |
| deducting areas of openi                                 |                                                         | portaing to the | ne greau  | er wan are       | a (aner    |            |          |                     |                        |      |
| If suspended wooden                                      | floor, enter 0.2 (unseal                                | ed) or 0.1      | (seale    | d), else         | enter 0    |            |          |                     | 0                      | (12) |
| If no draught lobby, en                                  | ter 0.05, else enter 0                                  |                 |           |                  |            |            |          |                     | 0                      | (13) |
| Percentage of window                                     | s and doors draught st                                  | ripped          |           |                  |            |            |          |                     | 0                      | (14) |
| Window infiltration                                      |                                                         |                 |           | 0.25 - [0.2      |            |            |          |                     | 0                      | (15) |
| Infiltration rate                                        |                                                         |                 |           | (8) + (10)       | , , ,      | , , ,      | . ,      |                     | 0                      | (16) |
| Air permeability value,                                  | •                                                       |                 | •         | •                | •          | etre of e  | envelope | area                | 3                      | (17) |
| If based on air permeabil  Air permeability value applie | -                                                       |                 |           |                  |            | is heina u | sed      |                     | 0.15                   | (18) |
| Number of sides sheltere                                 |                                                         | been done       | or a deg  | jice un pei      | meability  | io being a | oca      |                     | 1                      | (19) |
| Shelter factor                                           |                                                         |                 |           | (20) = 1 -       | 0.075 x (1 | 19)] =     |          |                     | 0.92                   | (20) |
| Infiltration rate incorporate                            | ting shelter factor                                     |                 |           | (21) = (18)      | x (20) =   |            |          |                     | 0.14                   | (21) |
| Infiltration rate modified f                             | or monthly wind speed                                   | i               |           |                  |            |            |          | '                   |                        | _    |
| Jan Feb                                                  | Mar Apr May                                             | Jun             | Jul       | Aug              | Sep        | Oct        | Nov      | Dec                 |                        |      |
| Monthly average wind sp                                  | peed from Table 7                                       |                 |           |                  |            |            |          |                     |                        |      |
| (22)m= 5.1 5                                             | 4.9 4.4 4.3                                             | 3.8             | 3.8       | 3.7              | 4          | 4.3        | 4.5      | 4.7                 |                        |      |
| Wind Factor (22a)m = (2                                  | 2)m ÷ 4                                                 |                 |           |                  |            |            |          |                     |                        |      |
|                                                          | 1.23 1.1 1.08                                           | 0.95            | 0.95      | 0.92             | 1          | 1.08       | 1.12     | 1.18                |                        |      |
| ` ''                                                     |                                                         |                 |           |                  | -          |            |          |                     | J                      |      |

| djusted infiltra                                          | <u>`</u>                           | <del></del>              |                | 1                | ·             | (21a) x        | <del>`´</del> |               |                           |                    | 1               |               |
|-----------------------------------------------------------|------------------------------------|--------------------------|----------------|------------------|---------------|----------------|---------------|---------------|---------------------------|--------------------|-----------------|---------------|
| 0.18<br>Calculate effec                                   | 0.17 0.1                           |                          | 0.15           | 0.13             | 0.13          | 0.13           | 0.14          | 0.15          | 0.16                      | 0.16               | J               |               |
|                                                           | al ventilation:                    | -                        | пе аррп        | cable ca         | 36            |                |               |               |                           |                    | 0.5             | (23           |
| If exhaust air he                                         | eat pump using /                   | Appendix N, (2           | 23b) = (23a    | a) × Fmv (e      | quation (l    | N5)) , othe    | rwise (23b    | ) = (23a)     |                           |                    | 0.5             | (2:           |
| If balanced with                                          | heat recovery:                     | efficiency in %          | allowing f     | for in-use fa    | actor (fron   | n Table 4h     | ) =           |               |                           |                    | 74.8            | (23           |
| a) If balance                                             | d mechanica                        | l ventilation            | with he        | at recove        | ery (MV       | HR) (24a       | a)m = (22     | 2b)m + (2     | 23b) × [1                 | 1 – (23c)          | ÷ 100]          |               |
| 24a)m= 0.3                                                | 0.3 0.3                            | 0.28                     | 0.28           | 0.26             | 0.26          | 0.25           | 0.26          | 0.28          | 0.28                      | 0.29               |                 | (24           |
| b) If balance                                             | d mechanica                        | I ventilation            | without        | heat rec         | overy (ľ      | MV) (24b       | )m = (22      | 2b)m + (2     | 23b)                      | _                  |                 |               |
| 24b)m= 0                                                  | 0 0                                | 0                        | 0              | 0                | 0             | 0              | 0             | 0             | 0                         | 0                  |                 | (2            |
| c) If whole he                                            |                                    |                          | •              | •                |               |                |               |               |                           |                    |                 |               |
| , i i                                                     | 1 < 0.5 × (23k                     | <del></del>              | <del>í``</del> | <del>^</del>     |               | <del>´`</del>  | ŕ             | · ` ·         | •                         |                    | 1               | (0            |
| 24c)m= 0                                                  | 0 0                                |                          | 0              | 0                | 0             | 0              | 0             | 0             | 0                         | 0                  | J               | (24           |
| d) If natural v<br>if (22b)m                              | ventilation or<br>n = 1, then (2   |                          |                |                  |               |                |               | 0.5]          |                           |                    |                 |               |
| 24d)m= 0                                                  | 0 0                                | 0                        | 0              | 0                | 0             | 0              | 0             | 0             | 0                         | 0                  | ]               | (24           |
| Effective air                                             | change rate                        | - enter (24a             | a) or (24h     | b) or (24d       | c) or (24     | d) in box      | x (25)        |               |                           |                    | _               |               |
| 25)m= 0.3                                                 | 0.3 0.3                            | 3 0.28                   | 0.28           | 0.26             | 0.26          | 0.25           | 0.26          | 0.28          | 0.28                      | 0.29               |                 | (2            |
| 3. Heat losses                                            | s and heat lo                      | ss paramet               | er:            |                  |               |                |               |               |                           |                    |                 |               |
| LEMENT                                                    | Gross<br>area (m²)                 | Openir                   |                | Net Ar           |               | U-valı<br>W/m2 |               | A X U<br>(W/h | ()                        | k-value<br>kJ/m²·l |                 | A X k<br>kJ/K |
| oors (                                                    | urou ( )                           |                          |                | 2                | <br>x         | 1.3            | <br>          | 2.6           | <u>''</u>                 | 110/111            | •               | (2            |
| Vindows Type                                              | <u>:</u> 1                         |                          |                | 1.27             |               | /[1/( 1.3 )+   | 0.04] =       | 1.57          | =                         |                    |                 | (2            |
| Vindows Type                                              |                                    |                          |                | 2.7              | =             | /[1/( 1.3 )+   | L             | 3.34          | =                         |                    |                 | (2            |
| Vindows Type                                              |                                    |                          |                | 2.22             | _             | /[1/( 1.3 )+   | L             | 2.74          | ╡                         |                    |                 | (2            |
| Vindows Type                                              |                                    |                          |                | 2.78             | =             | /[1/( 1.3 )+   | L             | 3.44          | $\exists$                 |                    |                 | (2            |
| Vindows Type                                              |                                    |                          |                | 7.75             | _             | /[1/( 1.3 )+   | L             | 9.58          | =                         |                    |                 | (2            |
| Vindows Type                                              |                                    |                          |                | 1.19             | =             | /[1/( 1.3 )+   | L             | 1.47          | $\dashv$                  |                    |                 | (2            |
| Vindows Type                                              |                                    |                          |                | 2                | _             | /[1/( 1.3 )+   | L             | 2.47          | $\exists$                 |                    |                 | (2            |
| Rooflights                                                | •                                  |                          |                | 1.05             |               | /[1/(1.6) +    |               | 1.68          | $\exists$                 |                    |                 | (2            |
| Valls Type1                                               | 68.45                              | 21.9                     | 1              | 46.54            | =             | 0.15           |               | 6.98          | =                         |                    |                 | (2            |
| Valls Type2                                               | 4.03                               | 21.8                     |                | 2.03             | $=$ $\hat{x}$ | 0.13           | ╣╸╠           | 0.90          | <u> </u>                  |                    |                 | (2            |
| Roof                                                      | 75.4                               | 1.09                     |                | 74.35            | =             | 0.13           |               | 7.44          | <b>-</b>                  |                    |                 | (3            |
| otal area of e                                            |                                    | 1.0                      |                | 147.88           | =             | 0.1            |               | 7.44          |                           |                    |                 | (3            |
|                                                           | icinicinto, in                     |                          |                |                  | =             |                |               |               | — r                       |                    |                 | (3            |
| artv wall                                                 |                                    |                          |                | 42.95            | ×             | 0              | [             | 0             |                           |                    | 亅 늗             |               |
| arty wall                                                 |                                    |                          |                | 75.4             | ated using    | r formula 1    | /[(1/         | م 041 مراها   | e diven in                | naraarank          |                 | (3            |
| arty floor                                                | roof windows                       | se effective w           | indow H.w      | ייי יחופה בו וופ |               | , ioiiiiuia I  | IL ITO-Valu   | 0)+0.04j a    | s giv <del>e</del> ii III | ραιαγιαρι          | 1 0.2           |               |
| Party wall Party floor for windows and * include the area |                                    |                          |                |                  |               |                |               |               |                           |                    |                 |               |
| arty floor<br>for windows and                             | as on both sides                   | of internal wa           |                |                  |               | (26)(30)       | ) + (32) =    |               |                           |                    | 45.94           | 4 (3          |
| arty floor<br>for windows and<br>include the area         | as on both sides<br>ss, W/K = S (/ | of internal wa<br>A x U) |                |                  |               | (26)(30)       |               | .(30) + (32   | ?) + (32a).               | (32e) =            | 45.94<br>13772. | <del></del>   |

| can be used incident of a deciliaridic calculated using Appendix K  ### decision of the main brokings are not known (86) = 0.15 x (31)  **Total fabric heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Usings = 0.33 x (25)mx (5)  **Ventilation heat loss calculated monthly  **Usings = 0.33 x (25)mx (5)  **Ventilation heat loss calculated monthly  **Usings = 0.33 x (25)mx (5)  **Ventilation heat loss calculated monthly  **Usings = 0.33 x (25)mx (5)  **Ventilation heat loss calculated monthly  **Usings = 0.33 x (25)mx (5)  **Ventilation heat loss calculated monthly  **Usings = 0.33 x (25)mx (5)  **Ventilation heat loss calculated monthly  **Usings = 0.33 x (25)mx (5)  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss calculated monthly  **Ventilation heat loss cal | can ha i | read inetar | ad of a de | tailed calc | ulation                                          |                |                  |            |             |            |             |                        |         |          |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|------------|-------------|--------------------------------------------------|----------------|------------------|------------|-------------|------------|-------------|------------------------|---------|----------|-------------|
| Internal bridging are not known (36) = 0.15 x (31)   (33) + (36) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |             |            |             |                                                  | usina An       | pendix I         | <          |             |            |             |                        |         | 17 49    | (36)        |
| Total fabric heat loss calculated monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Ū           | ,          | ,           |                                                  |                | •                |            |             |            |             |                        |         | 17.40    | (00)        |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             |            |             |                                                  |                |                  |            |             | (33) +     | (36) =      |                        |         | 63.43    | (37)        |
| (38) (38) (38) (38) (38) (30) (20) (20) (19) (88) (18,72) (18,48) (17,32) (17,32) (17,78) (17,78) (18,48) (18,95) (19,42) (38) (39) (39) (39) (37) (39) (37) (39) (39) (39) (39) (39) (39) (39) (39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ventila  | ition hea   | it loss ca | alculated   | monthl                                           | y              |                  |            |             | (38)m      | = 0.33 × (  | (25)m x (5)            | )       |          | <del></del> |
| Heat transfer coefficient, W/K  (39)m = (37) + (38)m  83,78   83,55   83,32   82,15   81,92   80,75   80,75   80,52   81,22   81,92   82,38   82,85   82,85    Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (37) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (39)m = (31) + (38)m  Average \( \sum \) (40)  Average \( \sum \) (40)  Average \( \sum \) (40)  Average \( \sum \) (40)  Average \( \sum \) (40)  Average \( \sum \) (40)  Average \( \sum \) (40)  Average \( \sum \) (41)  Average \( \sum \) (42)  Average \( \sum \) (41)  Average \( \sum \) (42)  Average \( \sum \) (42)  Average \( \sum \) (42)  Average \( \sum \) (42)  Average \( \sum \) ( |          | Jan         | Feb        | Mar         | Apr                                              | May            | Jun              | Jul        | Aug         | Sep        | Oct         | Nov                    | Dec     |          |             |
| Sayme   83.78   83.55   83.32   82.15   81.92   80.75   80.75   80.52   81.22   81.92   82.38   82.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (38)m=   | 20.35       | 20.12      | 19.88       | 18.72                                            | 18.49          | 17.32            | 17.32      | 17.09       | 17.79      | 18.49       | 18.95                  | 19.42   |          | (38)        |
| Heat loss parameter (HLP), W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heat tr  | ansfer c    | oefficier  | nt, W/K     |                                                  |                |                  |            |             | (39)m      | = (37) + (  | 38)m                   |         | _        |             |
| Heat loss parameter (HLP), W/m*K  (40)m= 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (39)m=   | 83.78       | 83.55      | 83.32       | 82.15                                            | 81.92          | 80.75            | 80.75      | 80.52       | 81.22      | 81.92       | 82.38                  | 82.85   |          |             |
| Average = Sum(40)/12=   1.09   (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heat Id  | oss para    | meter (H   | HLP), W/    | m²K                                              |                |                  |            |             |            | _           |                        | 12 /12= | 82.09    | (39)        |
| Number of days in month (Table 1a)   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (40)m=   | 1.11        | 1.11       | 1.1         | 1.09                                             | 1.09           | 1.07             | 1.07       | 1.07        | 1.08       | 1.09        | 1.09                   | 1.1     |          |             |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Numbe    | ar of day   | e in moi   | nth (Tah    | le 1a)                                           |                |                  |            |             |            | Average =   | Sum(40) <sub>1</sub>   | 12 /12= | 1.09     | (40)        |
| 4. Water heating energy requirement:    KWh/year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rvanibo  |             |            |             | <del>-                                    </del> | May            | Jun              | Jul        | Aug         | Sep        | Oct         | Nov                    | Dec     | 1        |             |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 85.05 88.67 92.29 95.91 99.53  Total = Sum(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (41)m=   | 31          | 28         | 31          | 30                                               | 31             | 30               | 31         | 31          | <u> </u>   | 31          | 30                     | 31      | 1        | (41)        |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 81.43 85.05 88.67 92.29 95.91 99.53  Total = Sum(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | !           |            | !           |                                                  | !              | !                | !          |             | l.         |             | !                      |         | 4        |             |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)   if TFA £ 13.9, N = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. Wa    | iter heat   | ing ener   | rgy requi   | irement:                                         |                |                  |            |             |            |             |                        | kWh/y   | ear:     |             |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)   if TFA £ 13.9, N = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A = =    |             |            | A.I         |                                                  |                |                  |            |             |            |             |                        |         | 1        | (10)        |
| Annual average hot water usage in litres per day Vd,average = (25 x N) + 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | if TF    | A > 13.9    | 9, N = 1   |             | [1 - exp                                         | (-0.0003       | 349 x (TF        | FA -13.9   | )2)] + 0.0  | 0013 x (   | TFA -13     |                        | .37     | ]        | (42)        |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             | •          | ater usag   | ge in litre                                      | es per da      | ay Vd,av         | erage =    | (25 x N)    | + 36       |             | 90                     | ).48    | 1        | (43)        |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             | _          |             |                                                  |                | _                | _          | to achieve  | a water us | se target o | r                      |         | _        |             |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 85.05 88.67 92.29 95.91 99.53  Total = Sum(44)_12 = 1085.79 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 147.6 129.09 133.21 116.14 111.44 96.16 89.11 102.25 103.47 120.59 131.63 142.94  Total = Sum(45)_12 = 1423.64 (45)  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.14 19.36 19.98 17.42 16.72 14.42 13.37 15.34 15.52 18.09 19.74 21.44 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | not more | = IIIal 125 |            |             | <u> </u>                                         | <u> </u>       |                  |            |             |            |             |                        | I _     | 1        |             |
| (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 85.05 88.67 92.29 95.91 99.53    Total = Sum(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hot wate |             |            |             |                                                  |                |                  |            |             | Sep        | Oct         | Nov                    | Dec     |          |             |
| Total = Sum(44)  =   1085.79   (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             |            |             | 1                                                |                |                  |            | ·           | 00.07      | 00.00       | T 05 04                | 00.50   | 1        |             |
| Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (44)m=   | 99.53       | 95.91      | 92.29       | 88.07                                            | 85.05          | 81.43            | 81.43      | 85.05       |            |             |                        |         | 1085.70  | (44)        |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.14 19.36 19.98 17.42 16.72 14.42 13.37 15.34 15.52 18.09 19.74 21.44  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Energy o | content of  | hot water  | used - cal  | culated m                                        | onthly $= 4$ . | 190 x Vd,r       | n x nm x E | OTm / 3600  |            |             |                        |         | 1005.79  | ()          |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.14 19.36 19.98 17.42 16.72 14.42 13.37 15.34 15.52 18.09 19.74 21.44  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) × (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (45)m=   | 147.6       | 129.09     | 133.21      | 116.14                                           | 111.44         | 96.16            | 89.11      | 102.25      | 103.47     | 120.59      | 131.63                 | 142.94  | ]        |             |
| (46)m= 22.14 19.36 19.98 17.42 16.72 14.42 13.37 15.34 15.52 18.09 19.74 21.44    (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel  O  (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  O  (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             |            |             |                                                  |                |                  |            |             |            | Total = Su  | m(45) <sub>112</sub> = | •       | 1423.64  | (45)        |
| Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year (48) x (49) = 0 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a 0 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |             |            | ng at point |                                                  | not water      | r storage),<br>r | enter 0 in |             | ) to (61)  |             |                        |         | 7        |             |
| Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  o (51)  If community heating see section 4.3  Volume factor from Table 2a  o (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` '      |             |            | 19.98       | 17.42                                            | 16.72          | 14.42            | 13.37      | 15.34       | 15.52      | 18.09       | 19.74                  | 21.44   | ]        | (46)        |
| If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  O  (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | _           |            | ) includin  | ng any so                                        | olar or W      | /WHRS            | storage    | within sa   | ame ves    | sel         |                        | 0       | 1        | (47)        |
| Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  0  (48) × (49) = 0 0 (50) 0 (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        |             | , ,        |             | •                                                |                |                  | _          |             |            |             |                        |         | 1        | ,           |
| a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  (48) × (49) =  0  (50)  (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | •           | •          |             |                                                  | •              |                  |            | ` ,         | ers) ente  | er '0' in ( | (47)                   |         |          |             |
| Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  0 (49)  0 (50)  0 (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | -           |            |             |                                                  |                |                  |            |             |            |             |                        |         | -        |             |
| Energy lost from water storage, kWh/year (48) x (49) = 0 (50) b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) If community heating see section 4.3 Volume factor from Table 2a 0 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,        |             |            |             |                                                  | or is kno      | wn (kWl          | n/day):    |             |            |             |                        | 0       | <u> </u> | (48)        |
| b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  0 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •        |             |            |             |                                                  |                |                  |            |             |            |             |                        | 0       | <u>]</u> | (49)        |
| Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  0 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             |            | _           | -                                                |                | or is not        | known:     | (48) x (49) | ) =        |             |                        | 0       | J        | (50)        |
| If community heating see section 4.3  Volume factor from Table 2a  0 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •        |             |            |             | -                                                |                |                  |            |             |            |             |                        | 0       | 1        | (51)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | _          |             |                                                  | `              |                  | - /        |             |            |             |                        |         | _        | ` '         |
| Temperature factor from Table 2b 0 (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             |            |             | 0.1                                              |                |                  |            |             |            |             |                        | 0       | ]        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tempe    | erature fa  | actor fro  | m Table     | 2b                                               |                |                  |            |             |            |             |                        | 0       | J        | (53)        |

| Enter (50) or (54) in (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (55) - (41) m (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - (41) - ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (47) x (51)                                                                                                | x (52) x (53) =                                                                                                                  |                                                  | 0                                             |               | (54)                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|---------------|----------------------------------------------|
| Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie   Companie    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |                                                                                                                                  |                                                  | 0                                             |               | (55)                                         |
| Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment    | water storage loss calculated for each month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ((56)m = (5                                                                                                | 55) × (41)m                                                                                                                      | ,                                                |                                               | 1             |                                              |
| CF7 mar   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                                                                                                                                  |                                                  |                                               |               | (56)                                         |
| Primary circuit Ioss (anumal) from Table 3 Primary circuit Ioss calculated for each month (59)m = (58) + 365 × (41)m (mondfied by factor from Table H3 if there is solar water heating and a cylinder thermostat)  (g)me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1)] ÷ (50), else (57                                                                                       | 7)m = (56)m where (                                                                                                              | H11) is fro                                      | m Append                                      | ix H          |                                              |
| Primary circul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (57)m= 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                                                                        | 0 0                                                                                                                              | 0                                                | 0                                             |               | (57)                                         |
| Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition   Composition      | Primary circuit loss (annual) from Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |                                                                                                                                  |                                                  | 0                                             |               | (58)                                         |
| Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Combi   Comb   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , , ,                                                                                                      |                                                                                                                                  |                                                  |                                               |               |                                              |
| Combi loss calculated for each month (61)m = (60) + 365 × (41)m   (61)m = 50.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del>                                                                                                |                                                                                                                                  | <del>'</del>                                     |                                               | l             | (50)                                         |
| (61)me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (59)m= 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                                                                        | 0 0                                                                                                                              | 0                                                | 0                                             |               | (59)                                         |
| Total heat required for water heating calculated for each month (62)m = 0.85 × (45)m + (46)m + (57)m + (59)m + (61)m (62)m = 198.32   173.24   180.24   159.87   154.78   136.32   130.61   145.6   147.2   167.62   178.93   193.66   (62)   Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter "0" if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Combi loss calculated for each month (61)m = (60) ÷ 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × (41)m                                                                                                    |                                                                                                                                  |                                                  |                                               |               |                                              |
| 198.32   173.24   180.24   159.87   154.78   136.32   130.61   145.6   147.2   167.62   178.93   193.66   (62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (61)m= 50.72 44.15 47.03 43.73 43.34 40.16 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.5 43.34                                                                                                 | 43.73 47.03                                                                                                                      | 47.3                                             | 50.72                                         |               | (61)                                         |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)  (63)me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total heat required for water heating calculated for each m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nonth (62)m =                                                                                              | 0.85 × (45)m +                                                                                                                   | (46)m +                                          | (57)m +                                       | (59)m + (61)m |                                              |
| (63)me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (62)m= 198.32 173.24 180.24 159.87 154.78 136.32 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.61 145.6                                                                                                | 147.2 167.62                                                                                                                     | 178.93                                           | 193.66                                        |               | (62)                                         |
| (63)me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Solar DHW input calculated using Appendix G or Appendix H (negative of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | quantity) (enter '0'                                                                                       | if no solar contribut                                                                                                            | ion to wate                                      | er heating)                                   | •             |                                              |
| Output from water heater (64)m= 198.32 173.24 180.24 159.87 154.78 136.32 130.61 145.6 147.2 167.62 178.93 193.66    Coutput from water heater (annual)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (add additional lines if FGHRS and/or WWHRS applies, se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ee Appendix G                                                                                              | 6)                                                                                                                               |                                                  |                                               |               |                                              |
| Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Dec   May   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.   | (63)m= 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                                                                        | 0 0                                                                                                                              | 0                                                | 0                                             |               | (63)                                         |
| Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation   Computation      | Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                            | -                                                                                                                                | -                                                | -                                             |               |                                              |
| Heat gains from water heating, kWh/month 0.25 ' [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m = 61.76   53.96   56.05   49.55   47.89   42.01   40   44.83   45.34   51.85   55.59   60.21   (65)m include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating    S. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (64)m= 198.32 173.24 180.24 159.87 154.78 136.32 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.61 145.6                                                                                                | 147.2 167.62                                                                                                                     | 178.93                                           | 193.66                                        |               |                                              |
| (65)me 61.76 53.96 56.05 49.55 47.89 42.01 40 44.83 45.34 51.85 55.59 60.21 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec     118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Outp                                                                                                       | ut from water heate                                                                                                              | r (annual) <sub>1</sub>                          | 12                                            | 1966.39       | (64)                                         |
| (65)me 61.76 53.96 56.05 49.55 47.89 42.01 40 44.83 45.34 51.85 55.59 60.21 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a):  Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec     118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   118.49   | Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (45)m + (61)m                                                                                              | ] + 0.8 x [(46)m                                                                                                                 | + (57)m                                          | + (59)m                                       | ]             |                                              |
| Metabolic gains (Table 5), Watts   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (65)m= 61.76 53.96 56.05 49.55 47.89 42.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 44.83                                                                                                   | 45.34 51.85                                                                                                                      | 55.59                                            | 60.21                                         |               | (65)                                         |
| Metabolic gains (Table 5), Watts   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | include (57)m in calculation of (65)m only if cylinder is in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n the dwelling                                                                                             | or hot water is f                                                                                                                | om com                                           | munity h                                      | eating        |                                              |
| Metabolic gains (Table 5), Watts    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J                                                                                                          |                                                                                                                                  |                                                  | -                                             |               |                                              |
| Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |                                                                                                                                  |                                                  |                                               |               |                                              |
| (66)m= 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 118.49 (66)  Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5  (67)m= 18.68 16.59 13.49 10.22 7.64 6.45 6.97 9.06 12.15 15.43 18.01 19.2 (67)  Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5  (68)m= 209.56 211.73 206.25 194.59 179.86 166.02 156.78 154.6 160.08 171.75 186.47 200.31 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5  (69)m= 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 (69)  Pumps and fans gains (Table 5a)  (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jul Aug                                                                                                    | Sen Oct                                                                                                                          | Nov                                              | Dec                                           |               |                                              |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            | <del></del>                                                                                                                      | 1 1101                                           |                                               |               |                                              |
| (67)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |                                                                                                                                  | 118.49                                           |                                               |               | (66)                                         |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 209.56 211.73 206.25 194.59 179.86 166.02 156.78 154.6 160.08 171.75 186.47 200.31  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 (69)  Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lighting gains (calculated in Appendix L. equation I Q or I C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                            | I                                                                                                                                | 118.49                                           |                                               |               | (66)                                         |
| (68)m= 209.56 211.73 206.25 194.59 179.86 166.02 156.78 154.6 160.08 171.75 186.47 200.31 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5  (69)m= 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 (69)  Pumps and fans gains (Table 5a)  (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del> </del>                                                                                               |                                                                                                                                  |                                                  | 118.49                                        |               | ` '                                          |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5  (69)m= 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 (69)  Pumps and fans gains (Table 5a)  (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (67)m= 18.68 16.59 13.49 10.22 7.64 6.45 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.97 9.06                                                                                                  | 12.15 15.43                                                                                                                      |                                                  | 118.49                                        |               | ` '                                          |
| (69)m= 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 34.85 (69)  Pumps and fans gains (Table 5a)  (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (67)m= 18.68 16.59 13.49 10.22 7.64 6.45 6 Appliances gains (calculated in Appendix L, equation L13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.97 9.06 or L13a), also                                                                                   | 12.15 15.43<br>see Table 5                                                                                                       | 18.01                                            | 118.49                                        |               | (67)                                         |
| Pumps and fans gains (Table 5a)  (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.97 9.06<br>or L13a), also<br>56.78 154.6                                                                 | 12.15 15.43 see Table 5 160.08 171.75                                                                                            | 18.01                                            | 118.49                                        |               | (67)                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       18         Cooking gains (calculated in Appendix L, equation L15 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.97 9.06<br>or L13a), also<br>56.78 154.6<br>L15a), also se                                               | 12.15   15.43<br>see Table 5<br>160.08   171.75<br>ee Table 5                                                                    | 18.01                                            | 118.49                                        |               | (67)<br>(68)                                 |
| Losses e.g. evaporation (negative values) (Table 5) $ (71)m = \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       15         Cooking gains (calculated in Appendix L, equation L15 or (69)m=       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34 | 6.97 9.06<br>or L13a), also<br>56.78 154.6<br>L15a), also se                                               | 12.15   15.43<br>see Table 5<br>160.08   171.75<br>ee Table 5                                                                    | 18.01                                            | 118.49                                        |               | (67)<br>(68)                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       15         Cooking gains (calculated in Appendix L, equation L15 or (69)m=       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34 | 6.97 9.06 or L13a), also 56.78 154.6 L15a), also se 34.85 34.85                                            | 12.15   15.43<br>see Table 5<br>160.08   171.75<br>te Table 5<br>34.85   34.85                                                   | 18.01<br>186.47<br>34.85                         | 118.49<br>19.2<br>200.31<br>34.85             |               | (67)<br>(68)<br>(69)                         |
| Water heating gains (Table 5)  (72)m= $83.01$ $80.3$ $75.34$ $68.82$ $64.37$ $58.35$ $53.77$ $60.26$ $62.97$ $69.7$ $77.21$ $80.93$ (72)  Total internal gains =   (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m  (73)m= $372.8$ $370.17$ $356.63$ $335.17$ $313.41$ $292.37$ $279.06$ $285.46$ $296.75$ $318.42$ $343.24$ $361.99$ (73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       18         Cooking gains (calculated in Appendix L, equation L15 or (69)m=       34.85       34.85       34.85       34.85       34.85       34.85       34.85       3         Pumps and fans gains (Table 5a)       (70)m=       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.97 9.06 or L13a), also 56.78 154.6 L15a), also se 34.85 34.85                                            | 12.15   15.43<br>see Table 5<br>160.08   171.75<br>te Table 5<br>34.85   34.85                                                   | 18.01<br>186.47<br>34.85                         | 118.49<br>19.2<br>200.31<br>34.85             |               | (67)<br>(68)<br>(69)                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       18         Cooking gains (calculated in Appendix L, equation L15 or (69)m=       34.85       34.85       34.85       34.85       34.85       34.85       34.85       3         Pumps and fans gains (Table 5a)       (70)m=       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.97 9.06 or L13a), also 56.78 154.6 L15a), also se 34.85 34.85                                            | 12.15   15.43<br>see Table 5<br>160.08   171.75<br>te Table 5<br>34.85   34.85                                                   | 18.01<br>186.47<br>34.85                         | 118.49<br>19.2<br>200.31<br>34.85             |               | (67)<br>(68)<br>(69)                         |
| Total internal gains = $ (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m $ $ (73)m = 372.8 370.17 356.63 335.17 313.41 292.37 279.06 285.46 296.75 318.42 343.24 361.99 $ $ (73)m = 372.8 370.17 356.63 335.17 313.41 292.37 279.06 285.46 296.75 318.42 343.24 361.99 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       15         Cooking gains (calculated in Appendix L, equation L15 or (69)m=       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34 | 6.97 9.06 or L13a), also 56.78 154.6 L15a), also se 34.85 34.85                                            | 12.15   15.43<br>see Table 5<br>160.08   171.75<br>te Table 5<br>34.85   34.85<br>3   3                                          | 18.01<br>186.47<br>34.85                         | 118.49<br>19.2<br>200.31<br>34.85             |               | (67)<br>(68)<br>(69)<br>(70)                 |
| (73)m= 372.8 370.17 356.63 335.17 313.41 292.37 279.06 285.46 296.75 318.42 343.24 361.99 (73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       15         Cooking gains (calculated in Appendix L, equation L15 or (69)m=       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34 | 6.97 9.06 or L13a), also 56.78 154.6 L15a), also se 34.85 34.85                                            | 12.15   15.43<br>see Table 5<br>160.08   171.75<br>te Table 5<br>34.85   34.85<br>3   3                                          | 18.01<br>186.47<br>34.85                         | 118.49<br>19.2<br>200.31<br>34.85             |               | (67)<br>(68)<br>(69)<br>(70)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       18         Cooking gains (calculated in Appendix L, equation L15 or (69)m=       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34 | 6.97 9.06 or L13a), also 56.78 154.6 L15a), also se 34.85 34.85 34.79 -94.79                               | 12.15   15.43<br>see Table 5<br>160.08   171.75<br>te Table 5<br>34.85   34.85<br>3   3<br>-94.79   -94.79                       | 18.01<br>186.47<br>34.85<br>3                    | 118.49<br>19.2<br>200.31<br>34.85             |               | (67)<br>(68)<br>(69)<br>(70)<br>(71)         |
| O Odlandia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       15         Cooking gains (calculated in Appendix L, equation L15 or (69)m=       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34 | 6.97 9.06 or L13a), also 56.78 154.6 L15a), also se 34.85 34.85 34.79 -94.79 53.77 60.26                   | 12.15   15.43  see Table 5  160.08   171.75  ee Table 5  34.85   34.85  3   3  -94.79   -94.79  62.97   69.7                     | 18.01<br>186.47<br>34.85<br>3<br>-94.79          | 118.49  19.2  200.31  34.85  3  -94.79        |               | (67)<br>(68)<br>(69)<br>(70)<br>(71)         |
| 6. Solar gains:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (67)m=       18.68       16.59       13.49       10.22       7.64       6.45       6         Appliances gains (calculated in Appendix L, equation L13         (68)m=       209.56       211.73       206.25       194.59       179.86       166.02       18         Cooking gains (calculated in Appendix L, equation L15 or 169)m=       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34.85       34 | 6.97 9.06 or L13a), also 56.78 154.6 L15a), also se 34.85 34.85 34.79 -94.79 53.77 60.26 + (67)m + (68)m + | 12.15   15.43  see Table 5  160.08   171.75  ee Table 5  34.85   34.85  3   3  -94.79   -94.79  62.97   69.7  (69)m + (70)m + (7 | 18.01<br>186.47<br>34.85<br>3<br>-94.79<br>77.21 | 118.49  19.2  200.31  34.85  3  -94.79  80.93 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71)<br>(72) |

Stroma FSAP 2012 Version: 1.0.4.16 (SAP 9.92) - http://www.stroma.com

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Factor Table 6d | or | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|-------------------------------------|----|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x 0.77                 | x  | 7.75       | x | 11.28            | x | 0.55           | x | 0.7            | =   | 23.33        | (75) |
| Northeast 0.9x 0.77                 | x  | 1.19       | x | 11.28            | x | 0.55           | x | 0.7            | =   | 3.58         | (75) |
| Northeast 0.9x 0.77                 | x  | 7.75       | x | 22.97            | x | 0.55           | x | 0.7            | =   | 47.49        | (75) |
| Northeast 0.9x 0.77                 | x  | 1.19       | x | 22.97            | x | 0.55           | x | 0.7            | ] = | 7.29         | (75) |
| Northeast 0.9x 0.77                 | х  | 7.75       | x | 41.38            | x | 0.55           | x | 0.7            | =   | 85.56        | (75) |
| Northeast 0.9x 0.77                 | х  | 1.19       | x | 41.38            | x | 0.55           | x | 0.7            | =   | 13.14        | (75) |
| Northeast 0.9x 0.77                 | х  | 7.75       | x | 67.96            | x | 0.55           | x | 0.7            | =   | 140.51       | (75) |
| Northeast 0.9x 0.77                 | x  | 1.19       | x | 67.96            | X | 0.55           | x | 0.7            | =   | 21.58        | (75) |
| Northeast 0.9x 0.77                 | X  | 7.75       | x | 91.35            | x | 0.55           | x | 0.7            | =   | 188.88       | (75) |
| Northeast 0.9x 0.77                 | X  | 1.19       | x | 91.35            | X | 0.55           | x | 0.7            | =   | 29           | (75) |
| Northeast 0.9x 0.77                 | x  | 7.75       | x | 97.38            | x | 0.55           | x | 0.7            | =   | 201.37       | (75) |
| Northeast <sub>0.9x</sub> 0.77      | x  | 1.19       | x | 97.38            | x | 0.55           | x | 0.7            | =   | 30.92        | (75) |
| Northeast 0.9x 0.77                 | x  | 7.75       | x | 91.1             | x | 0.55           | x | 0.7            | ] = | 188.37       | (75) |
| Northeast 0.9x 0.77                 | x  | 1.19       | x | 91.1             | x | 0.55           | x | 0.7            | =   | 28.92        | (75) |
| Northeast 0.9x 0.77                 | x  | 7.75       | x | 72.63            | x | 0.55           | x | 0.7            | =   | 150.17       | (75) |
| Northeast 0.9x 0.77                 | X  | 1.19       | x | 72.63            | x | 0.55           | x | 0.7            | =   | 23.06        | (75) |
| Northeast 0.9x 0.77                 | x  | 7.75       | x | 50.42            | x | 0.55           | x | 0.7            | =   | 104.26       | (75) |
| Northeast 0.9x 0.77                 | X  | 1.19       | x | 50.42            | x | 0.55           | x | 0.7            | =   | 16.01        | (75) |
| Northeast 0.9x 0.77                 | x  | 7.75       | x | 28.07            | X | 0.55           | X | 0.7            | =   | 58.04        | (75) |
| Northeast 0.9x 0.77                 | x  | 1.19       | x | 28.07            | X | 0.55           | x | 0.7            | =   | 8.91         | (75) |
| Northeast 0.9x 0.77                 | x  | 7.75       | x | 14.2             | x | 0.55           | x | 0.7            | =   | 29.36        | (75) |
| Northeast 0.9x 0.77                 | X  | 1.19       | x | 14.2             | x | 0.55           | x | 0.7            | =   | 4.51         | (75) |
| Northeast <sub>0.9x</sub> 0.77      | X  | 7.75       | x | 9.21             | x | 0.55           | x | 0.7            | =   | 19.05        | (75) |
| Northeast 0.9x 0.77                 | X  | 1.19       | x | 9.21             | x | 0.55           | x | 0.7            | =   | 2.93         | (75) |
| Southeast 0.9x 0.77                 | X  | 2          | x | 36.79            | X | 0.55           | X | 0.7            | =   | 39.27        | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | x | 62.67            | X | 0.55           | X | 0.7            | =   | 66.89        | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | x | 85.75            | x | 0.55           | x | 0.7            | =   | 91.52        | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | x | 106.25           | X | 0.55           | X | 0.7            | =   | 113.39       | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | x | 119.01           | X | 0.55           | X | 0.7            | =   | 127.01       | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | x | 118.15           | x | 0.55           | X | 0.7            | =   | 126.09       | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | X | 113.91           | X | 0.55           | X | 0.7            | =   | 121.57       | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | x | 104.39           | X | 0.55           | X | 0.7            | =   | 111.41       | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | x | 92.85            | X | 0.55           | X | 0.7            | =   | 99.09        | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | X | 69.27            | X | 0.55           | X | 0.7            | =   | 73.92        | (77) |
| Southeast 0.9x 0.77                 | X  | 2          | x | 44.07            | x | 0.55           | x | 0.7            | =   | 47.03        | (77) |
| Southeast 0.9x 0.77                 | x  | 2          | x | 31.49            | x | 0.55           | x | 0.7            | =   | 33.6         | (77) |
| Southwest <sub>0.9x</sub> 0.77      | x  | 1.27       | x | 36.79            | ] | 0.55           | x | 0.7            | =   | 12.47        | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x  | 2.7        | x | 36.79            | ] | 0.55           | x | 0.7            | =   | 26.51        | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X  | 2.22       | x | 36.79            | ] | 0.55           | X | 0.7            | =   | 21.79        | (79) |

| Southwest0.9x         0.77         x         2.78         x         36.79         0.55         x         0.7         =         27.29           Southwest0.9x         0.77         x         1.27         x         62.67         0.55         x         0.7         =         21.24           Southwest0.9x         0.77         x         2.7         x         62.67         0.55         x         0.7         =         45.15           Southwest0.9x         0.77         x         2.22         x         62.67         0.55         x         0.7         =         37.12           Southwest0.9x         0.77         x         2.78         x         62.67         0.55         x         0.7         =         46.49           Southwest0.9x         0.77         x         1.27         x         85.75         0.55         x         0.7         =         61.77           Southwest0.9x         0.77         x         2.22         x         85.75         0.55         x         0.7         =         63.6           Southwest0.9x         0.77         x         2.78         x         85.75         0.55         x         0.7         =   | (79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Southwesto.9x         0.77         x         2.7         x         62.67         0.55         x         0.7         =         45.15           Southwesto.9x         0.77         x         2.22         x         62.67         0.55         x         0.7         =         37.12           Southwesto.9x         0.77         x         2.78         x         62.67         0.55         x         0.7         =         46.49           Southwesto.9x         0.77         x         1.27         x         85.75         0.55         x         0.7         =         29.06           Southwesto.9x         0.77         x         2.7         x         85.75         0.55         x         0.7         =         61.77           Southwesto.9x         0.77         x         2.78         x         85.75         0.55         x         0.7         =         50.79           Southwesto.9x         0.77         x         2.78         x         85.75         0.55         x         0.7         =         63.6           Southwesto.9x         0.77         x         2.7         x         106.25         0.55         x         0.7         =    | (79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79) |
| Southwest0.9x         0.77         x         2.22         x         62.67         0.55         x         0.7         =         37.12           Southwest0.9x         0.77         x         2.78         x         62.67         0.55         x         0.7         =         46.49           Southwest0.9x         0.77         x         1.27         x         85.75         0.55         x         0.7         =         29.06           Southwest0.9x         0.77         x         2.7         x         85.75         0.55         x         0.7         =         61.77           Southwest0.9x         0.77         x         2.22         x         85.75         0.55         x         0.7         =         50.79           Southwest0.9x         0.77         x         2.78         x         85.75         0.55         x         0.7         =         63.6           Southwest0.9x         0.77         x         1.27         x         106.25         0.55         x         0.7         =         76.54           Southwest0.9x         0.77         x         2.22         x         106.25         0.55         x         0.7         = | (79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79) |
| Southwesto.9x       0.77       x       2.78       x       62.67       0.55       x       0.7       =       46.49         Southwesto.9x       0.77       x       1.27       x       85.75       0.55       x       0.7       =       29.06         Southwesto.9x       0.77       x       2.7       x       85.75       0.55       x       0.7       =       61.77         Southwesto.9x       0.77       x       2.22       x       85.75       0.55       x       0.7       =       50.79         Southwesto.9x       0.77       x       2.78       x       85.75       0.55       x       0.7       =       63.6         Southwesto.9x       0.77       x       1.27       x       106.25       0.55       x       0.7       =       76.54         Southwesto.9x       0.77       x       2.22       x       106.25       0.55       x       0.7       =       62.93                                                                                                                                                                                                                                                                                          | (79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79) |
| Southwesto.9x       0.77       x       1.27       x       85.75       0.55       x       0.7       =       29.06         Southwesto.9x       0.77       x       2.7       x       85.75       0.55       x       0.7       =       61.77         Southwesto.9x       0.77       x       2.22       x       85.75       0.55       x       0.7       =       50.79         Southwesto.9x       0.77       x       2.78       x       85.75       0.55       x       0.7       =       63.6         Southwesto.9x       0.77       x       1.27       x       106.25       0.55       x       0.7       =       36         Southwesto.9x       0.77       x       2.7       x       106.25       0.55       x       0.7       =       76.54         Southwesto.9x       0.77       x       2.22       x       106.25       0.55       x       0.7       =       62.93                                                                                                                                                                                                                                                                                             | (79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79) |
| Southwest0.9x       0.77       x       2.7       x       85.75       0.55       x       0.7       =       61.77         Southwest0.9x       0.77       x       2.22       x       85.75       0.55       x       0.7       =       50.79         Southwest0.9x       0.77       x       2.78       x       85.75       0.55       x       0.7       =       63.6         Southwest0.9x       0.77       x       1.27       x       106.25       0.55       x       0.7       =       36         Southwest0.9x       0.77       x       2.27       x       106.25       0.55       x       0.7       =       76.54         Southwest0.9x       0.77       x       2.22       x       106.25       0.55       x       0.7       =       62.93                                                                                                                                                                                                                                                                                                                                                                                                                     | (79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)         |
| Southwest0.9x       0.77       x       2.22       x       85.75       0.55       x       0.7       =       50.79         Southwest0.9x       0.77       x       2.78       x       85.75       0.55       x       0.7       =       63.6         Southwest0.9x       0.77       x       1.27       x       106.25       0.55       x       0.7       =       36         Southwest0.9x       0.77       x       2.7       x       106.25       0.55       x       0.7       =       76.54         Southwest0.9x       0.77       x       2.22       x       106.25       0.55       x       0.7       =       62.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (79)<br>(79)<br>(79)<br>(79)<br>(79)<br>(79)                 |
| Southwesto.9x       0.77       x       2.78       x       85.75       0.55       x       0.7       =       63.6         Southwesto.9x       0.77       x       1.27       x       106.25       0.55       x       0.7       =       36         Southwesto.9x       0.77       x       2.7       x       106.25       0.55       x       0.7       =       76.54         Southwesto.9x       0.77       x       2.22       x       106.25       0.55       x       0.7       =       62.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (79)<br>(79)<br>(79)<br>(79)<br>(79)                         |
| Southwest0.9x       0.77       x       1.27       x       106.25       0.55       x       0.7       =       36         Southwest0.9x       0.77       x       2.7       x       106.25       0.55       x       0.7       =       76.54         Southwest0.9x       0.77       x       2.22       x       106.25       0.55       x       0.7       =       62.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)<br>(79)<br>(79)<br>(79)                                 |
| Southwest0.9x       0.77       x       2.7       x       106.25       0.55       x       0.7       =       76.54         Southwest0.9x       0.77       x       2.22       x       106.25       0.55       x       0.7       =       62.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (79)<br>(79)<br>(79)                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.22 x 106.25 0.55 x 0.7 = 62.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)<br>(79)                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.78 x 106.25 0.55 x 0.7 = 78.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ╡                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/70\                                                        |
| Southwest <sub>0.9x</sub> $0.77$ x $1.27$ x $119.01$ $0.55$ x $0.7$ = $40.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (79)                                                         |
| Southwest <sub>0.9x</sub> $0.77$ x $2.7$ x $119.01$ $0.55$ x $0.7$ = $85.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.22 x 119.01 0.55 x 0.7 = 70.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.78 x 119.01 0.55 x 0.7 = 88.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 1.27 x 118.15 0.55 x 0.7 = 40.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.7 x 118.15 0.55 x 0.7 = 85.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.22 x 118.15 0.55 x 0.7 = 69.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.78 x 118.15 0.55 x 0.7 = 87.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 1.27 x 113.91 0.55 x 0.7 = 38.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.7 x 113.91 0.55 x 0.7 = 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.22 x 113.91 0.55 x 0.7 = 67.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.78 x 113.91 0.55 x 0.7 = 84.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 1.27 x 104.39 0.55 x 0.7 = 35.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.7 x 104.39 0.55 x 0.7 = 75.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.22 x 104.39 0.55 x 0.7 = 61.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.78 x 104.39 0.55 x 0.7 = 77.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 1.27 x 92.85 0.55 x 0.7 = 31.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.7 x 92.85 0.55 x 0.7 = 66.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.22 x 92.85 0.55 x 0.7 = 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (79)                                                         |
| Southwesto.9x 0.77 x 2.78 x 92.85 0.55 x 0.7 = 68.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 1.27 x 69.27 0.55 x 0.7 = 23.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.7 x 69.27 0.55 x 0.7 = 49.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.22 x 69.27 0.55 x 0.7 = 41.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.78 x 69.27 0.55 x 0.7 = 51.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 1.27 x 44.07 0.55 x 0.7 = 14.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (79)                                                         |
| Southwest <sub>0.9x</sub> 0.77 x 2.7 x 44.07 0.55 x 0.7 = 31.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ](79)                                                        |
| Southwest <sub>0.9x</sub> 0.77 x 2.22 x 44.07 0.55 x 0.7 = 26.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ](79)                                                        |
| Southwest <sub>0.9x</sub> 0.77 x 2.78 x 44.07 0.55 x 0.7 = 32.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ](79)                                                        |
| 57.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J'' "                                                        |

|                                                                                                                                                                                                                                                     |                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                          |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |    |      |                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|----|------|----------------------------------------------|
| Southwest <sub>0.9x</sub>                                                                                                                                                                                                                           | 0.77                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2                                                                                                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .49                                                                                       |                                                                          | 0.55                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                        | =                                      | 1  | 0.67 | (79)                                         |
| Southwest <sub>0.9x</sub>                                                                                                                                                                                                                           | 0.77                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .49                                                                                       |                                                                          | 0.55                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                        | =                                      | 2: | 2.68 | (79)                                         |
| Southwest <sub>0.9x</sub>                                                                                                                                                                                                                           | 0.77                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2                                                                                                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .49                                                                                       |                                                                          | 0.55                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                        | =                                      | 18 | 8.65 | (79)                                         |
| Southwest <sub>0.9x</sub>                                                                                                                                                                                                                           | 0.77                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7                                                                                                                       | '8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .49                                                                                       |                                                                          | 0.55                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                        | =                                      | 2: | 3.36 | (79)                                         |
| Rooflights <sub>0.9x</sub>                                                                                                                                                                                                                          | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        |                                        | 1  | 0.81 | (82)                                         |
| Rooflights <sub>0.9x</sub>                                                                                                                                                                                                                          | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                                                                                        | X                                                                        | 0.55                                                                                                                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | =                                      | 2  | 2.45 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96                                                                                        | X                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | =                                      | 3  | 9.92 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | =                                      | 6  | 2.37 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | =                                      | 7: | 9.83 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        |                                        | 8: | 3.16 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | =                                      | 78 | 8.59 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | _ =                                    | 6  | 5.28 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | _ =                                    | 4  | 7.82 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | =                                      | 2  | 7.44 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | _ =                                    | 1: | 3.72 | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                     | 1                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                       | )5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                        | x                                                                        | 0.55                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                        | _ =                                    | 8  | 3.73 | (82)                                         |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                          |                                                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                        |    |      |                                              |
| Solar gains in wa                                                                                                                                                                                                                                   | itts, calcul                                                                                                                                                               | ated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for eacl                                                                                                                  | h month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | า                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | (83)m                                                                    | n = Sum(74)m .                                                                                                                         | (82)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                        |    |      |                                              |
| (83)m= 165.05 2                                                                                                                                                                                                                                     | 94.11 435                                                                                                                                                                  | 5.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 592.14                                                                                                                    | 709.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 690.06                                                                                    | 599                                                                      | .75 489.39                                                                                                                             | 334.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 200.09                                   | 139.67                                 |    |      | (83)                                         |
| Total gains – inte                                                                                                                                                                                                                                  | ernal and                                                                                                                                                                  | solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (84)m =                                                                                                                   | = (73)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + (8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83)m , v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | watts                                                                                     |                                                                          |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |    |      |                                              |
| (84)m= 537.84 6                                                                                                                                                                                                                                     | 64.29 791                                                                                                                                                                  | 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 927.31                                                                                                                    | 1022.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 969.12                                                                                    | 885                                                                      | .22 786.14                                                                                                                             | 652.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 543.33                                   | 501.66                                 |    |      | (84)                                         |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                          |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |    |      |                                              |
| 7. Mean interna                                                                                                                                                                                                                                     | I temperat                                                                                                                                                                 | ture (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | heating                                                                                                                   | seasor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                          |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        | _  |      |                                              |
| 7. Mean interna Temperature du                                                                                                                                                                                                                      | •                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | om Tab                                                                                    | ole 9,                                                                   | , Th1 (°C)                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |    | 21   | (85)                                         |
|                                                                                                                                                                                                                                                     | ıring heati                                                                                                                                                                | ng pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriods ir                                                                                                                 | n the livi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | ole 9,                                                                   | , Th1 (°C)                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |    | 21   | (85)                                         |
| Temperature du                                                                                                                                                                                                                                      | ring heati                                                                                                                                                                 | ng pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriods ir                                                                                                                 | n the livi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                          | , Th1 (°C)                                                                                                                             | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov                                        | Dec                                    |    | 21   | (85)                                         |
| Temperature du Utilisation factor                                                                                                                                                                                                                   | r for gains                                                                                                                                                                | ng pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eriods ir                                                                                                                 | the livi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le 9a)                                                                                    |                                                                          | ug Sep                                                                                                                                 | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nov<br>0.99                                | Dec<br>1                               |    | 21   | (85)                                         |
| Temperature du Utilisation factor  Jan  (86)m= 1                                                                                                                                                                                                    | r for gains Feb M 0.99 0.9                                                                                                                                                 | ng pe<br>for li<br>lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eriods ir<br>ving are<br>Apr<br>0.87                                                                                      | n the livi<br>ea, h1,n<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee Tab<br>Jun<br><sup>0.5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul<br>0.37                                                                               | A:                                                                       | ug Sep<br>12 0.67                                                                                                                      | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                        |    | 21   |                                              |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te                                                                                                                                                                                  | r for gains Feb N 0.99 0.                                                                                                                                                  | ng pe<br>for li<br>lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eriods ir<br>ving are<br>Apr<br>0.87                                                                                      | n the livi<br>ea, h1,n<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee Tab<br>Jun<br>0.5<br>w step:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul<br>0.37                                                                               | A:                                                                       | ug Sep<br>12 0.67<br>Table 9c)                                                                                                         | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99                                       | 1                                      |    | 21   |                                              |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2                                                                                                                                                                   | r for gains Feb N 0.99 0.99 emperature 20.13 20                                                                                                                            | ng pe<br>for li<br>far<br>96<br>e in li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eriods ir<br>ving are<br>Apr<br>0.87<br>iving are                                                                         | n the living the living the May 0.7 ea T1 (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing<br>n (s<br>follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Tab Jun 0.5 w step:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jul<br>0.37<br>s 3 to 7                                                                   | 0.4<br>' in T                                                            | ug Sep<br>12 0.67<br>Table 9c)<br>1 20.96                                                                                              | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99                                       |                                        |    | 21   | (86)                                         |
| Temperature du  Utilisation factor  Jan  (86)m= 1  Mean internal te  (87)m= 19.92 2  Temperature du                                                                                                                                                 | r for gains Feb N 0.99 0. emperature 20.13 20 uring heati                                                                                                                  | for li far  96 e in li .44 ng pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eriods ir<br>ving are<br>Apr<br>0.87<br>iving are<br>20.76                                                                | n the living the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand | ing<br>n (s<br>follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ee Tab Jun 0.5 w step: 0.99 relling f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jul<br>0.37<br>s 3 to 7<br>21                                                             | Al<br>0.4<br>' in T<br>2'                                                | ug Sep<br>12 0.67<br>Table 9c)<br>1 20.96<br>9, Th2 (°C)                                                                               | 20.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99                                       | 19.88                                  |    | 21   | (86)                                         |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2  Temperature du (88)m= 19.99 1                                                                                                                                    | r for gains Feb N 0.99 0. emperature 20.13 20 uring heati 19.99 2                                                                                                          | for li far 96 e in li 44 ng pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eriods ir<br>ving are<br>Apr<br>0.87<br>iving are<br>20.76<br>eriods ir<br>20.01                                          | n the living the living the man of the living the man of the living the man of the living the man of the living the living the man of the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the livin | ing n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun 0.5 w step: 0.99 relling f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jul<br>0.37<br>s 3 to 7<br>21<br>from Ta<br>20.02                                         | Au 0.4  in T  2  ble 9                                                   | ug Sep<br>12 0.67<br>Table 9c)<br>1 20.96<br>9, Th2 (°C)                                                                               | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99                                       | 1                                      |    | 21   | (86)                                         |
| Temperature du  Utilisation factor  Jan  (86)m= 1  Mean internal te  (87)m= 19.92 2  Temperature du  (88)m= 19.99 1                                                                                                                                 | r for gains Feb N 0.99 0.0 emperature 20.13 20 uring heati 19.99 2 r for gains                                                                                             | for li for li far ge e in li 44 ng pe for re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eriods ir<br>ving are<br>Apr<br>0.87<br>iving are<br>20.76<br>eriods ir<br>20.01                                          | n the living the high many the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the li | ing n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ee Tab Jun 0.5 w step: 0.99 relling f 0.02 m (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jul<br>0.37<br>s 3 to 7<br>21<br>from Ta<br>20.02                                         | Ai 0.4 ' in T 2' ble 9 20.9                                              | ug Sep 12 0.67 Table 9c) 1 20.96 9, Th2 (°C) 03 20.02                                                                                  | 20.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.24                                      | 19.88                                  |    | 21   | (86)<br>(87)<br>(88)                         |
| Temperature du  Utilisation factor  Jan  (86)m= 1  Mean internal te  (87)m= 19.92 2  Temperature du  (88)m= 19.99 1                                                                                                                                 | r for gains Feb N 0.99 0.9 emperature 20.13 20 uring heati 19.99 2 r for gains                                                                                             | for li far 96 e in li 44 ng pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eriods ir<br>ving are<br>Apr<br>0.87<br>iving are<br>20.76<br>eriods ir<br>20.01                                          | n the living the living the man of the living the man of the living the man of the living the man of the living the living the man of the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the livin | ing n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun 0.5 w step: 0.99 relling f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jul<br>0.37<br>s 3 to 7<br>21<br>from Ta<br>20.02                                         | Au 0.4  in T  2  ble 9                                                   | ug Sep 12 0.67 Table 9c) 1 20.96 9, Th2 (°C) 03 20.02                                                                                  | 20.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99                                       | 19.88                                  |    | 21   | (86)                                         |
| Temperature du  Utilisation factor  Jan  (86)m= 1  Mean internal te  (87)m= 19.92 2  Temperature du  (88)m= 19.99 1                                                                                                                                 | r for gains Feb N 0.99 0.9 emperature 20.13 20 uring heati 19.99 2 r for gains 0.98 0.9                                                                                    | for li for li for li for li for li for re for re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eriods ir<br>ving are<br>Apr<br>0.87<br>iving are<br>20.76<br>eriods ir<br>20.01<br>est of do                             | n the living the hand the living the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the ha | ing (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ustepsion of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the | Jul<br>0.37<br>s 3 to 7<br>21<br>from Ta<br>20.02<br>Table<br>0.29                        | Ai 0.4 7 in T 2 able 9 20.0 9a) 0.3                                      | ug Sep<br>12 0.67<br>Table 9c)<br>1 20.96<br>20.02<br>3 0.59                                                                           | 0.93<br>20.69<br>20.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.24                                      | 19.88                                  |    | 21   | (86)<br>(87)<br>(88)                         |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2  Temperature du (88)m= 19.99 1  Utilisation factor (89)m= 0.99  Mean internal te                                                                                  | r for gains Peb N 0.99 0.  emperatur 20.13 20  uring heati 19.99 2 r for gains 0.98 0.  emperatur                                                                          | for li for li for li for li for li for re for re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eriods ir<br>ving are<br>Apr<br>0.87<br>iving are<br>20.76<br>eriods ir<br>20.01<br>est of do                             | n the living the hand the living the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the hand the ha | follo  follo  follo  follo  graph de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyatio | ustepsion of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the | Jul 0.37 s 3 to 7 21 from Ta 20.02 Table 0.29                                             | Ai 0.4 7 in T 2 able 9 20.0 9a) 0.3                                      | ug Sep 12 0.67  Table 9c) 1 20.96  9, Th2 (°C) 03 20.02  to 7 in Table 03 19.99                                                        | 0.93<br>20.69<br>20.01<br>0.9<br>e 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99<br>20.24<br>20.01<br>0.99             | 1<br>19.88<br>20<br>1<br>18.51         |    | 21   | (86)<br>(87)<br>(88)                         |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2  Temperature du (88)m= 19.99 1  Utilisation factor (89)m= 0.99  Mean internal te                                                                                  | r for gains Peb N 0.99 0.  emperatur 20.13 20  uring heati 19.99 2 r for gains 0.98 0.  emperatur                                                                          | for li far 96 e in li .44 ng pe for re 95 e in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eriods in ving are 0.87 iving are 20.76 eriods in 20.01 est of do 0.83 he rest                                            | man the living the sean of the living the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the sean of the  | follo  follo  follo  follo  graph de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyation de la companyatio | ustepsion of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the | Jul<br>0.37<br>s 3 to 7<br>21<br>from Ta<br>20.02<br>Table<br>0.29                        | Al 0.44 / in T 2 / 20.1 / 20.1 / 9a) 0.33 / ps 3                         | ug Sep 12 0.67  Table 9c) 1 20.96  9, Th2 (°C) 03 20.02  to 7 in Table 03 19.99                                                        | 0.93<br>20.69<br>20.01<br>0.9<br>e 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99<br>20.24<br>20.01<br>0.99             | 1<br>19.88<br>20<br>1<br>18.51         |    | 21   | (86)<br>(87)<br>(88)<br>(89)                 |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2  Temperature du (88)m= 19.99 1  Utilisation factor (89)m= 0.99  Mean internal te                                                                                  | r for gains Feb N 0.99 0.9 emperature 20.13 20 ring heati 19.99 2 r for gains 0.98 0.9 emperature 18.88 19                                                                 | for li for li for li for li for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re fo | eriods in<br>ving are<br>Apr<br>0.87<br>iving are<br>20.76<br>eriods in<br>20.01<br>est of do<br>0.83<br>he rest<br>19.75 | n the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the livin | follo<br>follo<br>2<br>f dw<br>2<br>h2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | w step: 0.99 relling f 0.02 m (see 0.43 T2 (fol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul<br>0.37<br>s 3 to 7<br>21<br>from Ta<br>20.02<br>e Table<br>0.29<br>llow ste<br>20.02 | Al 0.4 7 in T 2 ble 9 20.0 9a) 0.3                                       | ug Sep 12 0.67  Table 9c) 1 20.96  9, Th2 (°C) 03 20.02  15 7 in Table 19.99                                                           | 0.93<br>20.69<br>20.01<br>0.9<br>e 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99<br>20.24<br>20.01<br>0.99             | 1<br>19.88<br>20<br>1<br>18.51         |    |      | (86)<br>(87)<br>(88)<br>(89)                 |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2  Temperature du (88)m= 19.99 1  Utilisation factor (89)m= 0.99  Mean internal te (90)m= 18.56 1                                                                   | r for gains Peb N 0.99 0.1 Pemperatur 20.13 20 Pemperatur 19.99 2 Pemperatur 19.99 2 Pemperatur 18.88 19 Pemperatur 18.88 19                                               | for li for li for li e in li 44 ng pe for re 95 e in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eriods in<br>ving are<br>Apr<br>0.87<br>iving are<br>20.76<br>eriods in<br>20.01<br>est of do<br>0.83<br>he rest<br>19.75 | n the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the livin | follo  follo  follo  follo  g  h2,  u  elling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | w step: 0.99 relling f 0.02 m (see 0.43 T2 (fol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul<br>0.37<br>s 3 to 7<br>21<br>from Ta<br>20.02<br>e Table<br>0.29<br>llow ste<br>20.02 | Al 0.4 7 in T 2 ble 9 20.0 9a) 0.3                                       | ug Sep 12 0.67  Table 9c) 1 20.96  9, Th2 (°C) 03 20.02  15 7 in Table 03 19.99  - fLA) × T2                                           | 0.93<br>20.69<br>20.01<br>0.9<br>e 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99 20.24 20.01 0.99 19.03 ving area ÷ (4 | 1<br>19.88<br>20<br>1<br>18.51         |    |      | (86)<br>(87)<br>(88)<br>(89)                 |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2  Temperature du (88)m= 19.99 1  Utilisation factor (89)m= 0.99  Mean internal te (90)m= 18.56 1                                                                   | r for gains Feb N 0.99 0.9 emperature 20.13 20 ring heati 19.99 2 r for gains 0.98 0.9 emperature 18.88 19 emperature 19.32 19                                             | for li for li for li for li e in li for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re f | eriods in ving are Apr 0.87 iving are 20.76 eriods in 20.01 est of dv 0.83 he rest 19.75 the wh 20.11                     | n the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the livin | follo  follo  follo  follo  generalization of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the selling of the s | ee Tab Jun 0.5  w step: 0.99  relling f 0.02  m (see 0.43  T2 (fol 0.02  g) = fL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jul 0.37 s 3 to 7 21 from Ta 20.02 Table 0.29 llow ste 20.02 A × T1 20.37                 | Ain 0.4  7' in T  2  ble §  20.1  9a)  0.3  pps 3  20.1  + (1  20.1      | ug Sep 42 0.67  Table 9c) 1 20.96  9, Th2 (°C) 03 20.02  to 7 in Table 03 19.99  - fLA) × T2 37 20.34                                  | 0.93 20.69 20.01 0.9 e 9c) 19.67 LA = Liv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.99 20.24 20.01 0.99 19.03 ving area ÷ (4 | 1<br>19.88<br>20<br>1<br>18.51<br>4) = |    |      | (86)<br>(87)<br>(88)<br>(89)<br>(90)         |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2  Temperature du (88)m= 19.99 1  Utilisation factor (89)m= 0.99 1  Mean internal te (90)m= 18.56 1  Mean internal te (92)m= 19.04 1  Apply adjustment              | r for gains Peb N 0.99 0.1  emperatur 20.13 20  ring heati 19.99 2  r for gains 0.98 0.1  emperatur 18.88 19  emperatur 19.32 19  nt to the m                              | for li for li for li for li e in li for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re f | eriods in ving are Apr 0.87 iving are 20.76 eriods in 20.01 est of dv 0.83 he rest 19.75 the wh 20.11                     | n the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the living the livin | follo  follo  follo  follo  g  h2,  c  pellin  g  ratu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee Tab Jun 0.5  w step: 0.99  relling f 0.02  m (see 0.43  T2 (fol 0.02  g) = fL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jul 0.37 s 3 to 7 21 from Ta 20.02 Table 0.29 llow ste 20.02 A × T1 20.37                 | Ain 0.4  7' in T  2  ble §  20.1  9a)  0.3  pps 3  20.1  + (1  20.1      | ug Sep 12 0.67  Table 9c) 1 20.96  9, Th2 (°C) 03 20.02  15 7 in Table 03 19.99  - fLA) × T2 137 20.34  where appre                    | 0.93 20.69 20.01 0.9 e 9c) 19.67 LA = Liv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.99 20.24 20.01 0.99 19.03 ving area ÷ (4 | 1<br>19.88<br>20<br>1<br>18.51<br>4) = |    |      | (86)<br>(87)<br>(88)<br>(89)<br>(90)         |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2  Temperature du (88)m= 19.99 1  Utilisation factor (89)m= 0.99 1  Mean internal te (90)m= 18.56 1  Mean internal te (92)m= 19.04 1  Apply adjustment              | r for gains Feb N 0.99 0.9 emperature 20.13 20 ring heati 19.99 2 r for gains 0.98 0.9 emperature 18.88 19 emperature 19.32 19 nt to the m 19.17 19                        | for li lar 96 e in li .44 ng pe 95 for re 95 e in t .31 e (for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eriods in ving are Apr 0.87 iving are 20.76 eriods in 20.01 est of do 0.83 he rest 19.75 the wh 20.11 internal            | n the living the sea, h1,n May 0.7 lea T1 (for 20.94 leading) 0.64 leading to sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the sea the  | follo  follo  follo  follo  g  h2,  c  pellin  g  ratu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ee Tab  Jun  0.5  w step: 0.99  relling f 0.02  m (see 0.43  T2 (fol 0.02  g) = fL/ 0.36  ure from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jul 0.37 s 3 to 7 21 from Ta 20.02 Table 0.29 llow ste 20.02 A × T1 20.37 n Table         | Ai 0.4  ' in T 2  ble § 20.0  9a) 0.3  cps 3 20.0  + (1 20.0  4e, '      | ug Sep 12 0.67  Table 9c) 1 20.96  9, Th2 (°C) 03 20.02  15 7 in Table 03 19.99  - fLA) × T2 137 20.34  where appre                    | 0.93  20.69  20.01  0.9  6 9c)  19.67  6LA = Livitate popriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99 20.24 20.01 0.99 19.03 ving area ÷ (4 | 1<br>19.88<br>20<br>1<br>18.51<br>4) = |    |      | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91) |
| Temperature du Utilisation factor  Jan  (86)m= 1  Mean internal te (87)m= 19.92 2  Temperature du (88)m= 19.99 1  Utilisation factor (89)m= 0.99  Mean internal te (90)m= 18.56 1  Mean internal te (92)m= 19.04 1  Apply adjustment (93)m= 18.89 1 | r for gains Feb N 0.99 0.9 emperature 20.13 20 ring heati 19.99 2 r for gains 0.98 0.9 emperature 18.88 19 emperature 19.32 19 nt to the m 19.17 19 g requirer ean interna | for li for li for li for li for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re for re fo | eriods in ving are Apr 0.87 iving are 20.76 eriods in 20.01 est of do 0.83 he rest 19.75 the wh 20.11 internal 19.96      | n the living the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that the living that t | follo  follo  follo  follo  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  generation  ge | ee Tab Jun 0.5  w step: 0.99  relling f 0.02  m (see 0.43  T2 (fol 0.02  g) = fL/ 0.36  ure from 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jul 0.37 s 3 to 7 21 from Ta 20.02 Table 0.29 llow ste 20.02 A × T1 20.37 n Table 20.22   | Ai 0.4  ' in T 2  ble § 20.0  9a) 0.3  cps 3 20.0  + (1 20.0  4e, ; 20.0 | ug Sep 12 0.67  Table 9c) 1 20.96  9, Th2 (°C) 03 20.02  13 0.59  15 7 in Table 03 19.99  - fLA) × T2 137 20.34  where appre 122 20.19 | 0.93  20.69  20.01  0.9  e 9c)  19.67  fLA = Livitation (Livitation  0.99 20.24 20.01 0.99 19.03 ving area ÷ (4 | 1<br>19.88<br>20<br>1<br>18.51<br>4) = |    |      | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91) |

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Jan

Feb

| Utilisati  | on factor for  | gains, hn  | n:         |           |          |           |            |                  |                       |                         |                        |          |       |
|------------|----------------|------------|------------|-----------|----------|-----------|------------|------------------|-----------------------|-------------------------|------------------------|----------|-------|
|            | 0.99 0.98      | 0.94       | 0.83       | 0.65      | 0.44     | 0.3       | 0.35       | 0.61             | 0.9                   | 0.98                    | 0.99                   |          | (94)  |
| Useful (   | gains, hmGr    | n , W = (9 | 4)m x (8   | 4)m       | ı        |           |            |                  |                       |                         |                        |          |       |
| (95)m= 5   | 533.48 649.6   | 7 743.75   | 770.86     | 661.21    | 449.93   | 291.98    | 306.94     | 477.75           | 585.42                | 533.19                  | 498.7                  |          | (95)  |
| Monthly    | / average ex   | ternal ten | nperature  | from Ta   | able 8   |           |            |                  |                       |                         |                        |          |       |
| (96)m=     | 4.3 4.9        | 6.5        | 8.9        | 11.7      | 14.6     | 16.6      | 16.4       | 14.1             | 10.6                  | 7.1                     | 4.2                    |          | (96)  |
| Heat los   | ss rate for m  | -          |            | erature,  | 1        | =[(39)m : |            | – (96)m          | ī —                   |                         |                        |          |       |
| ` ′ _      | 222.44 1192.4  |            |            | 692.72    | 453.37   | 292.33    | 307.66     | 494.35           | 760.62                | 1005.91                 | 1213.46                |          | (97)  |
| _          | heating requ   |            |            |           |          |           |            |                  |                       |                         | 1                      |          |       |
| (98)m= 5   | 512.58 364.7   | 6 256.04   | 99.16      | 23.44     | 0        | 0         | 0          | 0                | 130.35                | 340.36                  | 531.78                 |          | _     |
|            |                |            |            |           |          |           | Tota       | l per year       | (kWh/year             | r) = Sum(9              | 8) <sub>15,912</sub> = | 2258.47  | (98)  |
| Space I    | heating requ   | irement ir | n kWh/m²   | ²/year    |          |           |            |                  |                       |                         |                        | 29.95    | (99)  |
| 9a. Ener   | gy requirem    | ents – Inc | lividual h | eating sy | ystems i | ncluding  | micro-C    | CHP)             |                       |                         |                        |          |       |
| -          | heating:       | _          |            |           |          |           |            |                  |                       |                         | ,                      |          | _     |
|            | n of space h   |            |            |           | mentary  | system    |            |                  |                       |                         |                        | 0        | (201) |
| Fraction   | n of space h   | eat from r | nain syst  | em(s)     |          |           | (202) = 1  | – (201) <b>=</b> |                       |                         |                        | 1        | (202) |
| Fraction   | n of total hea | ating from | main sys   | stem 1    |          |           | (204) = (2 | 02) × [1 –       | (203)] =              |                         |                        | 1        | (204) |
| Efficien   | cy of main s   | pace hea   | ting syste | em 1      |          |           |            |                  |                       |                         |                        | 90.3     | (206) |
| Efficien   | cy of second   | dary/supp  | lementar   | y heating | g systen | າ, %      |            |                  |                       |                         |                        | 0        | (208) |
|            | Jan Fel        | Mar        | Apr        | May       | Jun      | Jul       | Aug        | Sep              | Oct                   | Nov                     | Dec                    | kWh/ye   | ar    |
| Space I    | heating requ   | irement (  | calculate  | d above   | )        | •         |            | •                |                       | •                       |                        |          |       |
| 5          | 512.58 364.7   | 6 256.04   | 99.16      | 23.44     | 0        | 0         | 0          | 0                | 130.35                | 340.36                  | 531.78                 |          |       |
| (211)m =   | = {[(98)m x (  | 204)] } x  | 100 ÷ (20  | 06)       |          |           |            |                  |                       |                         |                        |          | (211) |
| 5          | 567.64 403.9   | 4 283.54   | 109.81     | 25.96     | 0        | 0         | 0          | 0                | 144.35                | 376.92                  | 588.9                  |          |       |
|            |                |            |            |           |          |           | Tota       | ıl (kWh/yea      | ar) =Sum(2            | 211) <sub>15,1012</sub> |                        | 2501.07  | (211) |
| Space I    | heating fuel   | (seconda   | ry), kWh/  | month     |          |           |            |                  |                       |                         |                        |          |       |
|            | n x (201)] } x |            |            |           |          |           |            |                  |                       |                         |                        |          |       |
| (215)m=    | 0 0            | 0          | 0          | 0         | 0        | 0         | 0          | 0                | 0                     | 0                       | 0                      |          | _     |
|            |                |            |            |           |          |           | Tota       | ıl (kWh/yea      | ar) =Sum(2            | 215) <sub>15,1012</sub> | Ē                      | 0        | (215) |
| Water h    | _              |            |            |           |          |           |            |                  |                       |                         |                        |          |       |
|            | rom water he   |            | 159.87     | 154.78    | 136.32   | 130.61    | 145.6      | 147.2            | 167.62                | 178.93                  | 193.66                 |          |       |
| <u> </u>   | y of water h   |            | 100.07     | 1010      | 100.02   | 100.01    | 110.0      |                  | 107.02                | 170.00                  | 100.00                 | 81       | (216) |
| _          | 87.5 87.08     | -          | 84.32      | 82.11     | 81       | 81        | 81         | 81               | 84.82                 | 86.86                   | 87.61                  | 01       | (217) |
| ` ' _      | water heatin   |            | <u> </u>   |           |          |           |            | <u> </u>         | 01.02                 | 00.00                   | 01.01                  |          | ( )   |
|            | = (64)m x 1    | •          |            |           |          |           |            |                  |                       |                         |                        |          |       |
| (219)m= 2  | 226.66 198.9   | 4 209.07   | 189.59     | 188.5     | 168.3    | 161.24    | 179.75     | 181.73           | 197.61                | 205.99                  | 221.04                 |          |       |
|            |                |            |            |           |          |           | Tota       | I = Sum(2        | 19a) <sub>112</sub> = |                         |                        | 2328.42  | (219) |
| Annual     |                |            |            |           |          |           |            |                  | k'                    | Wh/year                 |                        | kWh/year | -     |
| Space he   | eating fuel u  | sed, mair  | system     | 1         |          |           |            |                  |                       |                         |                        | 2501.07  | ╛     |
| Water he   | eating fuel u  | sed        |            |           |          |           |            |                  |                       |                         |                        | 2328.42  |       |
| Electricit | y for pumps    | , fans and | l electric | keep-ho   | t        |           |            |                  |                       |                         |                        |          |       |

| mechanical ventilation - balanced, extract or positive input from | 186.28                |    | (230a) |        |
|-------------------------------------------------------------------|-----------------------|----|--------|--------|
| central heating pump:                                             |                       | 30 |        | (230c) |
| boiler with a fan-assisted flue                                   |                       | 45 |        | (230e) |
| Total electricity for the above, kWh/year                         | sum of (230a)(230g) = |    | 261.28 | (231)  |
| Electricity for lighting                                          |                       |    | 329.94 | (232)  |
| 12a. CO2 emissions – Individual heating systems including mi      | cro-CHP               |    |        |        |
|                                                                   |                       |    |        |        |

| 12a. CO2 emissions – Individual heating system    | s including micro-CHP           |                               |                                 |  |  |
|---------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|--|--|
|                                                   | <b>Energy</b><br>kWh/year       | Emission factor<br>kg CO2/kWh | <b>Emissions</b><br>kg CO2/year |  |  |
| Space heating (main system 1)                     | (211) x                         | 0.216                         | 540.23 (261)                    |  |  |
| Space heating (secondary)                         | (215) x                         | 0.519                         | 0 (263)                         |  |  |
| Water heating                                     | (219) x                         | 0.216                         | 502.94 (264)                    |  |  |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                               | 1043.17 (265)                   |  |  |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519 =                       | 135.6 (267)                     |  |  |
| Electricity for lighting                          | (232) x                         | 0.519 =                       | 171.24 (268)                    |  |  |
| Total CO2, kg/year                                | sum                             | of (265)(271) =               | 1350.01 (272)                   |  |  |
| Dwelling CO2 Emission Rate                        | (272                            | 2) ÷ (4) =                    | 17.9 (273)                      |  |  |
| El rating (section 14)                            |                                 |                               | 85 (274)                        |  |  |
|                                                   |                                 |                               |                                 |  |  |

eight associates

# SAP Worksheets Energy Statement 34A-36 Kilburn High Road

**SAP Worksheets** 

Green DER Worksheets

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | l lsor I   | Details:    |             |            |              |           |                       |      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------|-------------|-------------|------------|--------------|-----------|-----------------------|------|--|--|
| Assessor Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chris Hocknell                                                                   | <u> </u>   | Strom       | a Num       | ber:       |              | STRO      | 016363                |      |  |  |
| Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stroma FSAP 2012                                                                 |            | Softwa      | _           |            | on: 1.0.4.16 |           |                       |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                                                                                | Property   | Address     | Apartm      | ent 1      |              |           |                       |      |  |  |
| Address: 1. Overall dwelling dime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ansions:                                                                         |            |             |             |            |              |           |                       |      |  |  |
| 1. Overall awelling diffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  | Are        | a(m²)       |             | Av. He     | ight(m)      |           | Volume(m <sup>3</sup> | ·)   |  |  |
| Ground floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |            |             | (1a) x      |            | 2.7          | (2a) =    | 135.46                | (3a) |  |  |
| Total floor area TFA = (1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a)+(1b)+(1c)+(1d)+(1e)+(1                                                        | n)         | 50.17       | (4)         |            |              | -         |                       |      |  |  |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | · ·        |             | (3a)+(3b    | )+(3c)+(3c | l)+(3e)+     | .(3n) =   | 135.46                | (5)  |  |  |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |            |             |             |            |              |           |                       |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main seconda<br>heating heating                                                  | ry         | other       |             | total      |              |           | m³ per hou            | r    |  |  |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 + 0                                                                            | _ + [      | 0           | ] = [       | 0          | X 4          | 40 =      | 0                     | (6a) |  |  |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 + 0                                                                            | +          | 0           | ] = [       | 0          | x 2          | 20 =      | 0                     | (6b) |  |  |
| Number of intermittent fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns                                                                               |            |             |             | 0          | x ′          | 10 =      | 0                     | (7a) |  |  |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |            |             |             | 0          | x ′          | 10 =      | 0                     | (7b) |  |  |
| Number of flueless gas fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | res                                                                              |            |             |             | 0          | X 4          | 40 =      | 0                     | (7c) |  |  |
| Air changes per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |            |             |             |            |              |           |                       |      |  |  |
| Infiltration due to chimne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ys, flues and fans = (6a)+(6b)+(                                                 | 7a)+(7b)+  | (7c) =      | Г           | 0          |              | ÷ (5) =   |                       | (8)  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | een carried out or is intended, proced                                           |            |             | continue fr |            |              | - (3) =   | 0                     | (0)  |  |  |
| Number of storeys in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne dwelling (ns)                                                                 |            |             |             |            |              |           | 0                     | (9)  |  |  |
| Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OF for steel or timber from a                                                    | - 0 25 fo  |             |             |            | [(9)-        | -1]x0.1 = | 0                     | (10) |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .25 for steel or timber frame or resent, use the value corresponding to          |            |             | •           | uction     |              |           | 0                     | (11) |  |  |
| deducting areas of openir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ngs); if equal user 0.35                                                         |            |             |             |            |              |           |                       | _    |  |  |
| If suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the suspended wooden to the sus | floor, enter 0.2 (unsealed) or (<br>ter 0.05, else enter 0                       | ).1 (seal  | ea), eise   | enter 0     |            |              |           | 0                     | (12) |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s and doors draught stripped                                                     |            |             |             |            |              |           | 0                     | (14) |  |  |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                |            | 0.25 - [0.2 | x (14) ÷ 1  | 00] =      |              |           | 0                     | (15) |  |  |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |            | (8) + (10)  | + (11) + (1 | 12) + (13) | + (15) =     |           | 0                     | (16) |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | q50, expressed in cubic metr                                                     | •          | •           | •           | etre of e  | envelope     | area      | 3                     | (17) |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ity value, then $(18) = [(17) \div 20] +$ s if a pressurisation test has been do |            |             |             | io boing u | and          |           | 0.15                  | (18) |  |  |
| Number of sides sheltere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                | ne or a ue | gree air pe | пеавшу      | is being u | seu          |           | 1                     | (19) |  |  |
| Shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |            | (20) = 1 -  | [0.075 x (1 | 19)] =     |              |           | 0.92                  | (20) |  |  |
| Infiltration rate incorporat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ting shelter factor                                                              |            | (21) = (18  | ) x (20) =  |            |              |           | 0.14                  | (21) |  |  |
| Infiltration rate modified f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or monthly wind speed                                                            |            |             |             |            | 1            |           | 1                     |      |  |  |
| Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar Apr May Jun                                                                  | Jul        | Aug         | Sep         | Oct        | Nov          | Dec       |                       |      |  |  |
| Monthly average wind sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del> </del>                                                                     | 1          | T           |             | l          | T            |           | 1                     |      |  |  |
| (22)m= 5.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9 4.4 4.3 3.8                                                                  | 3.8        | 3.7         | 4           | 4.3        | 4.5          | 4.7       |                       |      |  |  |
| Wind Factor (22a)m = (22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2)m ÷ 4                                                                          |            |             |             |            |              |           |                       |      |  |  |
| (22a)m= 1.27 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.23 1.1 1.08 0.95                                                               | 0.95       | 0.92        | 1           | 1.08       | 1.12         | 1.18      |                       |      |  |  |

| Adjusted infilt                                       | ration rat            | e (allowi                 | ing for st               | nelter an   | ıd wind s      | speed) =          | : (21a) x                                        | (22a)m                                          |                                                  |             |                    |               |               |
|-------------------------------------------------------|-----------------------|---------------------------|--------------------------|-------------|----------------|-------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------|--------------------|---------------|---------------|
| 0.18                                                  | 0.17                  | 0.17                      | 0.15                     | 0.15        | 0.13           | 0.13              | 0.13                                             | 0.14                                            | 0.15                                             | 0.16        | 0.16               | ]             |               |
| Calculate effe                                        |                       | _                         | rate for t               | he appli    | cable ca       | se                |                                                  |                                                 | •                                                |             | •                  |               |               |
| If mechanic                                           |                       |                           | andiv NL (O              | 12h) - (22a | a) v Emy (4    | aguation (        | NEV otho                                         | nuina (22h                                      | ·\ = (22a\                                       |             |                    | 0.5           | (23:          |
| If exhaust air h                                      |                       | 0                         |                          | , ,         | ,              | . `               | ,, .                                             | `                                               | )) = (23a)                                       |             |                    | 0.5           | (23           |
| If balanced wit                                       |                       | -                         | -                        | _           |                |                   |                                                  |                                                 | <b>0</b> 1.) (                                   |             | 4 (22.)            | 75.65         | (23           |
| a) If balance                                         | 1                     | ı —                       |                          |             | 1              | <del>- ` ` </del> | <del>- ^ ` -</del>                               | ŕ                                               | <del> </del>                                     | <del></del> | <del>1 ` ´</del>   | ) ÷ 100]<br>1 | (24           |
| (24a)m= 0.3                                           | 0.3                   | 0.29                      | 0.27                     | 0.27        | 0.25           | 0.25              | 0.25                                             | 0.26                                            | 0.27                                             | 0.28        | 0.28               | J             | (24)          |
| b) If balance                                         | 1                     | ı —                       |                          |             | 1              | covery (I         | <del>,                                    </del> | $\int_{0}^{\infty} \int_{0}^{\infty} dt = (22)$ | <del>,                                    </del> | <del></del> |                    | 1             | (24           |
| (24b)m= 0                                             | 0                     | 0                         | 0                        | 0           | . ,            |                   | 0                                                |                                                 | 0                                                | 0           | 0                  | J             | (24           |
| c) If whole h                                         | nouse ex<br>m < 0.5 × |                           |                          | •           | •              |                   |                                                  |                                                 | 5 x (23h                                         | .)          |                    |               |               |
| (24c)m= 0                                             | 0.5                   | 0                         | 0                        | 0           | 0              | 0                 | 0                                                | 0                                               | 0                                                | 0           | 0                  | 1             | (24           |
| d) If natural                                         |                       | n or wh                   | ole hous                 | <u> </u>    |                | ventilati         | on from                                          |                                                 |                                                  |             |                    | J             | •             |
|                                                       | m = 1, the            |                           |                          |             |                |                   |                                                  |                                                 | 0.5]                                             |             |                    |               |               |
| (24d)m= 0                                             | 0                     | 0                         | 0                        | 0           | 0              | 0                 | 0                                                | 0                                               | 0                                                | 0           | 0                  | ]             | (24           |
| Effective air                                         | change                | rate - er                 | nter (24a                | ) or (24b   | o) or (24      | c) or (24         | ld) in bo                                        | x (25)                                          | •                                                |             | •                  |               |               |
| (25)m= 0.3                                            | 0.3                   | 0.29                      | 0.27                     | 0.27        | 0.25           | 0.25              | 0.25                                             | 0.26                                            | 0.27                                             | 0.28        | 0.28               |               | (25           |
| 3. Heat losse                                         | es and he             | eat loss i                | paramet                  | er:         |                |                   |                                                  |                                                 |                                                  |             |                    |               |               |
| ELEMENT                                               | Gros<br>area          | SS                        | Openin<br>m              | ıgs         | Net Ar<br>A ,r |                   | U-val<br>W/m2                                    |                                                 | A X U<br>(W/I                                    | <b>〈</b> )  | k-value<br>kJ/m²·l |               | A X k<br>kJ/K |
| Doors                                                 |                       |                           |                          |             | 2              | x                 | 1.3                                              | =                                               | 2.6                                              |             |                    |               | (26           |
| Windows Typ                                           | e 1                   |                           |                          |             | 9.56           | x1                | /[1/( 1.3 ) <del>+</del>                         | 0.04] =                                         | 11.81                                            |             |                    |               | (27           |
| Windows Typ                                           | e 2                   |                           |                          |             | 4.62           | x1                | /[1/( 1.3 )+                                     | 0.04] =                                         | 5.71                                             |             |                    |               | (27           |
| Windows Typ                                           | e 3                   |                           |                          |             | 4.17           | x1                | /[1/( 1.3 )+                                     | 0.04] =                                         | 5.15                                             |             |                    |               | (27           |
| Rooflights Typ                                        | oe 1                  |                           |                          |             | 1.05           | x1                | /[1/(1.6) +                                      | 0.04] =                                         | 1.68                                             |             |                    |               | (27           |
| Rooflights Typ                                        | oe 2                  |                           |                          |             | 1.79           | x1                | /[1/(1.6) +                                      | 0.04] =                                         | 2.864                                            |             |                    |               | (27           |
| Walls Type1                                           | 35.4                  | .8                        | 22.5                     | 2           | 12.96          |                   | 0.15                                             | ─ i                                             | 1.94                                             | =           |                    |               | (29           |
| Walls Type2                                           | 30.4                  |                           | 2                        | =           | 28.48          | =                 | 0.13                                             | <b>=</b>                                        | 3.8                                              | <b>-</b>    |                    | <b>-</b>      | (29           |
| Roof                                                  | 50.1                  |                           | 2.84                     |             | 47.33          | =                 | 0.1                                              | = :                                             | 4.73                                             | ᆿ 片         |                    | = =           | (30           |
| Total area of                                         |                       |                           | 2.04                     |             |                | =                 | 0.1                                              |                                                 | 4.73                                             |             |                    |               | (31           |
| Party wall                                            |                       | , 111                     |                          |             | 116.1          | =                 |                                                  | — _ i                                           |                                                  | <b>—</b> [  |                    |               |               |
| -                                                     |                       |                           |                          |             | 26.97          | =                 | 0                                                | =                                               | 0                                                |             |                    |               | (32           |
| Party floor                                           | d roof wind           |                           | ffa ativa wii            | indou II w  | 50.17          |                   | a formula :                                      | 1/[/1/    1   1   1   1   1   1   1   1   1     | ·a) · 0 041 a                                    |             | norogrank          |               | (32           |
| * for windows and<br>** include the are               |                       |                           |                          |             |                | aleu using        | y iormula i                                      | 7[(170-vait                                     | <i>1e)+</i> 0.04j a                              | is given in | paragrapr          | 1 3.2         |               |
| abric heat lo                                         | ss, W/K :             | = S (A x                  | U)                       |             |                |                   | (26)(30                                          | ) + (32) =                                      |                                                  |             |                    | 45.18         | (33           |
| Heat capacity                                         | Cm = S(               | (Axk)                     |                          |             |                |                   |                                                  | ((28).                                          | (30) + (32                                       | 2) + (32a). | (32e) =            | 10845.77      | 7 (34         |
|                                                       |                       | 40×/TN/F                  | 2 = Cm -                 | ÷ TFA) ir   | n kJ/m²K       | ,                 |                                                  | Indica                                          | ntive Value:                                     | Medium      |                    | 250           | (35           |
| Thermal mass                                          | s parame              | ter (Tivir                | - 0111                   | ,.,         |                |                   |                                                  |                                                 |                                                  |             |                    |               |               |
| Thermal mass<br>For design asses<br>can be used inste | sments wh             | ere the de                | tails of the             | ,           |                | t known p         | recisely the                                     | e indicative                                    | e values of                                      | TMP in Ta   | able 1f            |               |               |
| For design asses                                      | sments wh             | ere the de<br>tailed calc | tails of the<br>ulation. | construct   | ion are no     | ,                 | recisely the                                     | e indicative                                    | e values of                                      | TMP in Ta   | able 1f            | 14.19         | (36           |

| Total fabric heat loss                                                                                                                    | (33) + (36) = 59                                                 | (27)         |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------|
| Ventilation heat loss calculated monthly                                                                                                  | $(33) + (36) = 59.$ $(38)m = 0.33 \times (25)m \times (5)$       | 37 (37)      |
| Jan Feb Mar Apr May Jun Jul                                                                                                               |                                                                  |              |
| (38)m= 13.35 13.2 13.04 12.26 12.11 11.33 11.33                                                                                           | <del>                                     </del>                 | (38)         |
| Heat transfer coefficient, W/K                                                                                                            | (39)m = (37) + (38)m                                             |              |
| (39)m= 72.72 72.57 72.41 71.64 71.48 70.71 70.7                                                                                           |                                                                  |              |
|                                                                                                                                           | Average = Sum(39) <sub>112</sub> /12= 71                         | .6 (39)      |
| Heat loss parameter (HLP), W/m²K                                                                                                          | (40)m = $(39)$ m ÷ $(4)$                                         |              |
| (40)m= 1.45 1.45 1.44 1.43 1.42 1.41 1.41                                                                                                 |                                                                  | (40)         |
| Number of days in month (Table 1a)                                                                                                        | Average = $Sum(40)_{112}/12=$ 1.4                                | (40)         |
| Jan Feb Mar Apr May Jun Jul                                                                                                               | Aug Sep Oct Nov Dec                                              |              |
| (41)m= 31 28 31 30 31 30 31                                                                                                               | 31 30 31 30 31                                                   | (41)         |
|                                                                                                                                           | _                                                                |              |
| 4. Water heating energy requirement:                                                                                                      | kWh/year:                                                        |              |
| Assumed occupancy, N                                                                                                                      | 17                                                               | (42)         |
| if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13                                                                               | 3.9)2)] + 0.0013 x (TFA -13.9)                                   | (42)         |
| if TFA £ 13.9, N = 1                                                                                                                      | (05 N) : 00                                                      |              |
| Annual average hot water usage in litres per day Vd, average Reduce the annual average hot water usage by 5% if the dwelling is designed. | , , ,                                                            | (43)         |
| not more that 125 litres per person per day (all water use, hot and cold)                                                                 |                                                                  |              |
| Jan Feb Mar Apr May Jun Jul                                                                                                               | Aug Sep Oct Nov Dec                                              |              |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1                                                               | c x (43)                                                         |              |
| (44)m= 81.9 78.93 75.95 72.97 69.99 67.01 67.0                                                                                            | 1 69.99 72.97 75.95 78.93 81.9                                   |              |
| Energy content of hot water used, calculated monthly = 4.100 x Vd m x nm                                                                  | Total = Sum(44) <sub>112</sub> 893                               | .51 (44)     |
| Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm                                                                 | · · · · · · · · · · · · · · · · · · ·                            |              |
| (45)m= 121.46 106.23 109.62 95.57 91.7 79.13 73.33                                                                                        |                                                                  | 1.53 (45)    |
| If instantaneous water heating at point of use (no hot water storage), enter 0                                                            | Total = Sum(45) <sub>112</sub> = 1177<br>0 in boxes (46) to (61) | 1.53         |
| (46)m= 18.22 15.93 16.44 14.34 13.76 11.87 11                                                                                             | 12.62 12.77 14.89 16.25 17.64                                    | (46)         |
| Water storage loss:                                                                                                                       |                                                                  |              |
| Storage volume (litres) including any solar or WWHRS storage                                                                              |                                                                  | (47)         |
| If community heating and no tank in dwelling, enter 110 litres                                                                            | ` '                                                              |              |
| Otherwise if no stored hot water (this includes instantaneous Water storage loss:                                                         | combi boilers) enter '0' in (47)                                 |              |
| a) If manufacturer's declared loss factor is known (kWh/day)                                                                              | : 0                                                              | (48)         |
| Temperature factor from Table 2b                                                                                                          |                                                                  | (49)         |
| Energy lost from water storage, kWh/year                                                                                                  | (48) x (49) = 110                                                | (50)         |
| b) If manufacturer's declared cylinder loss factor is not know                                                                            |                                                                  |              |
| Hot water storage loss factor from Table 2 (kWh/litre/day)                                                                                | 0.02                                                             | (51)         |
| If community heating see section 4.3  Volume factor from Table 2a                                                                         | 4.02                                                             | (50)         |
| Temperature factor from Table 2b                                                                                                          | 1.03                                                             | (52)<br>(53) |
| Energy lost from water storage, kWh/year                                                                                                  | (47) x (51) x (52) x (53) = 1.03                                 | (54)         |
| Enter (50) or (54) in (55)                                                                                                                | 1.03                                                             | (55)         |
|                                                                                                                                           |                                                                  |              |

| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | storage                                                                                                 | loss cal                                                                                                                  | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                               | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                              | ((56)m = (                                                                    | 55) × (41)                                                  | m                                              |                                               |                                           |               |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------------------------|---------------|----------------------------------------------|
| (56)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.01                                                                                                   | 28.92                                                                                                                     | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                                  | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                        | 32.01                                                                        | 32.01                                                                         | 30.98                                                       | 32.01                                          | 30.98                                         | 32.01                                     |               | (56)                                         |
| If cylinde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er contains                                                                                             | s dedicate                                                                                                                | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)                                                                             | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                  | H11)] ÷ (5                                                                   | 0), else (5                                                                   | 7)m = (56)                                                  | m where (                                      | H11) is fro                                   | m Append                                  | ix H          |                                              |
| (57)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.01                                                                                                   | 28.92                                                                                                                     | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                                  | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                        | 32.01                                                                        | 32.01                                                                         | 30.98                                                       | 32.01                                          | 30.98                                         | 32.01                                     |               | (57)                                         |
| Primar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v circuit                                                                                               | loss (ar                                                                                                                  | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m Table                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                              |                                                                               |                                                             |                                                |                                               | 0                                         |               | (58)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                       | •                                                                                                                         | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59)m = (                                                                     | (58) ÷ 36                                                                    | 65 × (41)                                                                     | m                                                           |                                                |                                               |                                           | •             |                                              |
| (mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dified by                                                                                               | factor f                                                                                                                  | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                             | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                    | ter heatii                                                                   | ng and a                                                                      | cylinde                                                     | r thermo                                       | stat)                                         |                                           |               |                                              |
| (59)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.26                                                                                                   | 21.01                                                                                                                     | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.51                                                                                  | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.51                                                                        | 23.26                                                                        | 23.26                                                                         | 22.51                                                       | 23.26                                          | 22.51                                         | 23.26                                     |               | (59)                                         |
| Combi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | loss ca                                                                                                 | lculated                                                                                                                  | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                    | 65 × (41)                                                                    | )m                                                                            |                                                             |                                                |                                               |                                           |               |                                              |
| (61)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                       | 0                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                            | 0                                                                             | 0                                                           | 0                                              | 0                                             | 0                                         |               | (61)                                         |
| Total h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eat requ                                                                                                | uired for                                                                                                                 | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                              | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I for eacl                                                                   | h month                                                                      | (62)m =                                                                       | 0.85 × (                                                    | (45)m +                                        | (46)m +                                       | (57)m +                                   | (59)m + (61)m |                                              |
| (62)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176.74                                                                                                  | 156.16                                                                                                                    | 164.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149.06                                                                                 | 146.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 132.63                                                                       | 128.6                                                                        | 139.42                                                                        | 138.64                                                      | 154.51                                         | 161.81                                        | 172.91                                    |               | (62)                                         |
| Solar DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -IW input                                                                                               | calculated                                                                                                                | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                             | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                    | ve quantity                                                                  | /) (enter '0                                                                  | if no sola                                                  | r contribut                                    | ion to wate                                   | er heating)                               | •             |                                              |
| (add a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dditiona                                                                                                | l lines if                                                                                                                | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or \                                                                               | VWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                      | , see Ap                                                                     | pendix (                                                                      | €)                                                          |                                                |                                               |                                           |               |                                              |
| (63)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                       | 0                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                            | 0                                                                            | 0                                                                             | 0                                                           | 0                                              | 0                                             | 0                                         |               | (63)                                         |
| Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | from w                                                                                                  | ater hea                                                                                                                  | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                              |                                                                               |                                                             |                                                |                                               |                                           |               |                                              |
| (64)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176.74                                                                                                  | 156.16                                                                                                                    | 164.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149.06                                                                                 | 146.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 132.63                                                                       | 128.6                                                                        | 139.42                                                                        | 138.64                                                      | 154.51                                         | 161.81                                        | 172.91                                    |               |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                              | Outp                                                                          | out from wa                                                 | ater heate                                     | r (annual) <sub>1</sub>                       | 12                                        | 1822.37       | (64)                                         |
| Heat g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ains fro                                                                                                | m water                                                                                                                   | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m                                                                                  | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                    | × (45)m                                                                      | + (61)m                                                                       | n] + 0.8 x                                                  | ((46)m                                         | + (57)m                                       | + (59)m                                   | ]             |                                              |
| (65)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.61                                                                                                   | 75.26                                                                                                                     | 80.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.57                                                                                  | 74.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69.11                                                                        | 60.6                                                                         |                                                                               |                                                             |                                                | i e                                           |                                           | 1             | (05)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                                                           | 00.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.57                                                                                  | 74.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09.11                                                                        | 68.6                                                                         | 72.2                                                                          | 71.11                                                       | 77.22                                          | 78.81                                         | 83.33                                     |               | (65)                                         |
| inclu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıde (57)                                                                                                | !                                                                                                                         | culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | <u> </u>                                                                     | <u> </u>                                                                      |                                                             |                                                | <u> </u>                                      |                                           | eating        | (65)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ,                                                                                                     | m in cal                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m                                                                               | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | <u> </u>                                                                     | <u> </u>                                                                      |                                                             |                                                | <u> </u>                                      |                                           | eating        | (65)                                         |
| 5. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ternal ga                                                                                               | m in cald                                                                                                                 | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                     | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | <u> </u>                                                                     | <u> </u>                                                                      |                                                             |                                                | <u> </u>                                      |                                           | eating        | (65)                                         |
| 5. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ternal ga                                                                                               | m in cald                                                                                                                 | culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>and 5a                                                                     | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | <u> </u>                                                                     | <u> </u>                                                                      |                                                             |                                                | <u> </u>                                      |                                           | eating        | (65)                                         |
| 5. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ernal ga                                                                                                | m in calo<br>ains (see<br>as (Table                                                                                       | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                     | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                    | s in the o                                                                   | dwelling                                                                      | or hot w                                                    | ater is fr                                     | om com                                        | munity h                                  | eating        | (66)                                         |
| 5. In Metab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olic gain<br>Jan<br>84.76                                                                               | m in caldains (see                                                                                                        | culation of Table 5 5), Wat Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76                                             | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | Jun<br>84.76                                                                 | Jul<br>84.76                                                                 | Aug<br>84.76                                                                  | or hot w<br>Sep<br>84.76                                    | ater is fr                                     | om com                                        | munity h                                  | eating        |                                              |
| 5. In Metab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olic gain<br>Jan<br>84.76                                                                               | m in caldains (see                                                                                                        | culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of the culation of th | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76                                             | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | Jun<br>84.76                                                                 | Jul<br>84.76                                                                 | Aug<br>84.76                                                                  | or hot w<br>Sep<br>84.76                                    | ater is fr                                     | om com                                        | munity h                                  | eating        |                                              |
| 5. In: Metab  (66)m= Lightin (67)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | olic gain Jan 84.76 g gains                                                                             | m in calc<br>ains (see<br>s (Table<br>Feb<br>84.76<br>(calcula                                                            | Example 5 to 2 to 3 to 3 to 3 to 3 to 3 to 3 to 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76<br>opendix<br>7.2                           | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | Jun<br>84.76<br>ion L9 o                                                     | Jul<br>84.76<br>r L9a), a                                                    | Aug<br>84.76<br>Iso see                                                       | Sep<br>84.76<br>Table 5<br>8.57                             | Oct 84.76                                      | Nov<br>84.76                                  | Dec 84.76                                 | eating        | (66)                                         |
| 5. In: Metab  (66)m= Lightin (67)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | olic gain Jan 84.76 g gains                                                                             | m in calc<br>ains (see<br>s (Table<br>Feb<br>84.76<br>(calcula                                                            | E Table 5 E 5), Wat Mar 84.76 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76<br>opendix<br>7.2                           | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | Jun<br>84.76<br>ion L9 o                                                     | Jul<br>84.76<br>r L9a), a                                                    | Aug<br>84.76<br>Iso see                                                       | Sep<br>84.76<br>Table 5<br>8.57                             | Oct 84.76                                      | Nov<br>84.76                                  | Dec 84.76                                 | eating        | (66)                                         |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 84.76 g gains 13.17 nces ga                                                               | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calcula 149.21                                                 | culation of Table 5 2 5), Wat Mar 84.76 ted in Ap 9.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76<br>opendix<br>7.2<br>Appendix<br>137.13     | May<br>84.76<br>L, equat<br>5.38<br>dix L, eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun<br>84.76<br>ion L9 of<br>4.54<br>uation L                                | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48                      | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also                                  | Sep 84.76 Table 5 8.57 see Ta 112.81                        | Oct 84.76  10.88 ble 5 121.03                  | Nov<br>84.76                                  | Dec 84.76                                 | eating        | (66)<br>(67)                                 |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 84.76 g gains 13.17 nces ga                                                               | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calcula 149.21                                                 | e Table 5 e 5), Wat Mar 84.76 ted in Ap 9.51 sulated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>5 and 5a<br>ts<br>Apr<br>84.76<br>opendix<br>7.2<br>Appendix<br>137.13     | May<br>84.76<br>L, equat<br>5.38<br>dix L, eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun<br>84.76<br>ion L9 of<br>4.54<br>uation L                                | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48                      | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also                                  | Sep 84.76 Table 5 8.57 see Ta 112.81                        | Oct 84.76  10.88 ble 5 121.03                  | Nov<br>84.76                                  | Dec 84.76                                 | eating        | (66)<br>(67)                                 |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | ernal gar<br>olic gain<br>Jan<br>84.76<br>g gains<br>13.17<br>nces ga<br>147.68<br>ng gains<br>31.48    | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calc 149.21 (calcula 31.48                                     | e Table 5 e 5), Wat Mar 84.76 ted in Ap 9.51 culated in 145.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of (65)m s and 5a ts Apr 84.76 ppendix 7.2 Append 137.13 ppendix 31.48                 | only if constructions only if constructions on the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of | Jun 84.76 ion L9 of 4.54 uation L 116.99                                     | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a           | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95                        | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table               | Oct 84.76  10.88 ble 5 121.03                  | Nov<br>84.76<br>12.69                         | Dec 84.76                                 | eating        | (66)<br>(67)<br>(68)                         |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | ernal gar<br>olic gain<br>Jan<br>84.76<br>g gains<br>13.17<br>nces ga<br>147.68<br>ng gains<br>31.48    | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calc 149.21 (calcula 31.48                                     | Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Example 5 Exampl | of (65)m s and 5a ts Apr 84.76 ppendix 7.2 Append 137.13 ppendix 31.48                 | only if constructions only if constructions on the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of | Jun 84.76 ion L9 of 4.54 uation L 116.99                                     | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a           | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95                        | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table               | Oct 84.76  10.88 ble 5 121.03                  | Nov<br>84.76<br>12.69                         | Dec 84.76                                 | eating        | (66)<br>(67)<br>(68)                         |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 84.76 g gains 13.17 nces ga 147.68 ng gains 31.48 s and fai                               | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calc 149.21 (calcula 31.48 ns gains 0                          | e Table 5 e 5), Wat Mar 84.76 ted in Ap 9.51 sulated in 145.35 ated in A 31.48 (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m s and 5a ts Apr 84.76 ppendix 7.2 Appendix 137.13 ppendix 31.48 5a) 0         | only if constructions only if constructions only if constructions on the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction  | Jun<br>84.76<br>ion L9 of<br>4.54<br>uation L<br>116.99<br>tion L15<br>31.48 | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48         | Oct 84.76  10.88 ble 5 121.03 5 31.48          | Nov<br>84.76<br>12.69<br>131.41               | Dec 84.76 13.53 141.16 31.48              | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Interpretation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon | olic gain Jan 84.76 g gains 13.17 nces ga 147.68 ng gains 31.48 s and fai                               | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calc 149.21 (calcula 31.48 ns gains 0                          | Evaluation of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection o | of (65)m s and 5a ts Apr 84.76 ppendix 7.2 Appendix 137.13 ppendix 31.48 5a) 0         | only if constructions only if constructions only if constructions on the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction  | Jun<br>84.76<br>ion L9 of<br>4.54<br>uation L<br>116.99<br>tion L15<br>31.48 | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48         | Oct 84.76  10.88 ble 5 121.03 5 31.48          | Nov<br>84.76<br>12.69<br>131.41               | Dec 84.76 13.53 141.16 31.48              | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | polic gain Jan 84.76 g gains 13.17 nces ga 147.68 ng gains 31.48 s and fai                              | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calcula 31.48 ns gains 0                                       | culation of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Ea | of (65)m s and 5a ts Apr 84.76 ppendix 7.2 Append 137.13 ppendix 31.48 5a) 0 tive valu | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 84.76 ion L9 of 4.54 uation L 116.99 tion L15 31.48  0                   | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48         | Oct 84.76  10.88 ble 5 121.03 5 31.48          | Nov<br>84.76<br>12.69<br>131.41               | Dec 84.76 13.53 141.16 31.48              | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | polic gain Jan 84.76 g gains 13.17 nces ga 147.68 ng gains 31.48 s and fai                              | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calcula 31.48 ns gains 0 raporatio                             | culation of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Earth of the Ea | of (65)m s and 5a ts Apr 84.76 ppendix 7.2 Append 137.13 ppendix 31.48 5a) 0 tive valu | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 84.76 ion L9 of 4.54 uation L 116.99 tion L15 31.48  0                   | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.57 see Ta 112.81 ee Table 31.48         | Oct 84.76  10.88 ble 5 121.03 5 31.48          | Nov<br>84.76<br>12.69<br>131.41               | Dec 84.76 13.53 141.16 31.48              | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ernal garolic gain Jan 84.76 g gains 13.17 nces ga 147.68 ng gains 31.48 and far ces ga ev 67.8 heating | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calc 149.21 (calcula 31.48 ns gains 0 raporatio -67.8 gains (T | culation of the Table 5  2 5), Wat Mar  84.76  ted in Ap  9.51  culated in 145.35  ated in Ap  31.48  (Table 5  0  on (negation of the Table 5)  108.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m s and 5a ts Apr 84.76 ppendix 7.2 Appendix 31.48 5a) 0 tive valu -67.8        | only if constructions only if constructions only if constructions on the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction  | Jun 84.76 ion L9 of 4.54 uation L 116.99 tion L15 31.48  0 ole 5) -67.8      | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.57 See Ta 112.81 ee Table 31.48 0 -67.8 | Oct 84.76  10.88 ble 5 121.03 5 31.48  0 -67.8 | Nov<br>84.76<br>12.69<br>131.41<br>31.48<br>0 | Dec 84.76  13.53  141.16  31.48  0  -67.8 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ernal garolic gain Jan 84.76 g gains 13.17 nces ga 147.68 ng gains 31.48 and far ces ga ev 67.8 heating | m in calc ains (see s (Table Feb 84.76 (calcula 11.69 ins (calcula 31.48 as gains 0 raporatic -67.8 gains (T              | culation of the Table 5  2 5), Wat Mar  84.76  ted in Ap  9.51  culated in 145.35  ated in Ap  31.48  (Table 5  0  on (negation of the Table 5)  108.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m s and 5a ts Apr 84.76 ppendix 7.2 Appendix 31.48 5a) 0 tive valu -67.8        | only if constructions only if constructions only if constructions on the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction  | Jun 84.76 ion L9 of 4.54 uation L 116.99 tion L15 31.48  0 ole 5) -67.8      | Jul<br>84.76<br>r L9a), a<br>4.91<br>13 or L1<br>110.48<br>or L15a)<br>31.48 | Aug<br>84.76<br>Iso see<br>6.38<br>3a), also<br>108.95<br>), also se<br>31.48 | Sep 84.76 Table 5 8.57 See Ta 112.81 ee Table 31.48 0 -67.8 | Oct 84.76  10.88 ble 5 121.03 5 31.48  0 -67.8 | Nov<br>84.76<br>12.69<br>131.41<br>31.48<br>0 | Dec 84.76  13.53  141.16  31.48  0  -67.8 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Facto<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|---------------------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                   | x | 9.56       | x | 11.28            | x | 0.55           | x | 0.7            | =        | 28.78        | (75) |
| Northeast 0.9x 0.77                   | x | 4.62       | x | 11.28            | x | 0.55           | x | 0.7            | =        | 13.91        | (75) |
| Northeast 0.9x 0.77                   | X | 9.56       | x | 22.97            | x | 0.55           | x | 0.7            | =        | 58.58        | (75) |
| Northeast 0.9x 0.77                   | x | 4.62       | x | 22.97            | x | 0.55           | x | 0.7            | ] =      | 28.31        | (75) |
| Northeast 0.9x 0.77                   | x | 9.56       | x | 41.38            | x | 0.55           | x | 0.7            | =        | 105.54       | (75) |
| Northeast 0.9x 0.77                   | x | 4.62       | x | 41.38            | x | 0.55           | x | 0.7            | =        | 51.01        | (75) |
| Northeast 0.9x 0.77                   | X | 9.56       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 173.33       | (75) |
| Northeast 0.9x 0.77                   | X | 4.62       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 83.77        | (75) |
| Northeast 0.9x 0.77                   | x | 9.56       | x | 91.35            | x | 0.55           | x | 0.7            | =        | 232.99       | (75) |
| Northeast 0.9x 0.77                   | X | 4.62       | x | 91.35            | x | 0.55           | x | 0.7            | <b>=</b> | 112.6        | (75) |
| Northeast 0.9x 0.77                   | X | 9.56       | x | 97.38            | x | 0.55           | x | 0.7            | =        | 248.39       | (75) |
| Northeast 0.9x 0.77                   | X | 4.62       | x | 97.38            | x | 0.55           | x | 0.7            | =        | 120.04       | (75) |
| Northeast 0.9x 0.77                   | X | 9.56       | x | 91.1             | x | 0.55           | x | 0.7            | <b>=</b> | 232.37       | (75) |
| Northeast 0.9x 0.77                   | X | 4.62       | x | 91.1             | x | 0.55           | x | 0.7            | =        | 112.29       | (75) |
| Northeast 0.9x 0.77                   | X | 9.56       | x | 72.63            | x | 0.55           | x | 0.7            | =        | 185.25       | (75) |
| Northeast 0.9x 0.77                   | x | 4.62       | x | 72.63            | x | 0.55           | x | 0.7            | =        | 89.52        | (75) |
| Northeast 0.9x 0.77                   | X | 9.56       | x | 50.42            | x | 0.55           | x | 0.7            | =        | 128.61       | (75) |
| Northeast 0.9x 0.77                   | x | 4.62       | x | 50.42            | x | 0.55           | x | 0.7            | =        | 62.15        | (75) |
| Northeast 0.9x 0.77                   | X | 9.56       | x | 28.07            | x | 0.55           | X | 0.7            | =        | 71.59        | (75) |
| Northeast 0.9x 0.77                   | X | 4.62       | x | 28.07            | x | 0.55           | x | 0.7            | =        | 34.6         | (75) |
| Northeast 0.9x 0.77                   | x | 9.56       | x | 14.2             | x | 0.55           | x | 0.7            | =        | 36.21        | (75) |
| Northeast 0.9x 0.77                   | X | 4.62       | x | 14.2             | x | 0.55           | x | 0.7            | =        | 17.5         | (75) |
| Northeast 0.9x 0.77                   | X | 9.56       | x | 9.21             | x | 0.55           | x | 0.7            | =        | 23.5         | (75) |
| Northeast 0.9x 0.77                   | X | 4.62       | x | 9.21             | x | 0.55           | x | 0.7            | =        | 11.36        | (75) |
| Northwest 0.9x 0.77                   | X | 4.17       | x | 11.28            | x | 0.55           | X | 0.7            | =        | 25.11        | (81) |
| Northwest 0.9x 0.77                   | X | 4.17       | x | 22.97            | x | 0.55           | X | 0.7            | =        | 51.1         | (81) |
| Northwest 0.9x 0.77                   | X | 4.17       | x | 41.38            | x | 0.55           | x | 0.7            | =        | 92.07        | (81) |
| Northwest 0.9x 0.77                   | X | 4.17       | X | 67.96            | X | 0.55           | X | 0.7            | =        | 151.21       | (81) |
| Northwest 0.9x 0.77                   | X | 4.17       | x | 91.35            | X | 0.55           | X | 0.7            | =        | 203.26       | (81) |
| Northwest 0.9x 0.77                   | X | 4.17       | x | 97.38            | x | 0.55           | X | 0.7            | =        | 216.7        | (81) |
| Northwest 0.9x 0.77                   | X | 4.17       | x | 91.1             | x | 0.55           | X | 0.7            | =        | 202.71       | (81) |
| Northwest 0.9x 0.77                   | X | 4.17       | x | 72.63            | x | 0.55           | X | 0.7            | =        | 161.61       | (81) |
| Northwest 0.9x 0.77                   | X | 4.17       | x | 50.42            | x | 0.55           | x | 0.7            | =        | 112.19       | (81) |
| Northwest 0.9x 0.77                   | X | 4.17       | x | 28.07            | x | 0.55           | x | 0.7            | =        | 62.45        | (81) |
| Northwest 0.9x 0.77                   | x | 4.17       | x | 14.2             | x | 0.55           | x | 0.7            | =        | 31.59        | (81) |
| Northwest 0.9x 0.77                   | × | 4.17       | x | 9.21             | × | 0.55           | x | 0.7            | ] =      | 20.5         | (81) |
| Rooflights 0.9x 1                     | × | 1.05       | x | 26               | x | 0.55           | x | 0.8            | ] =      | 10.81        | (82) |
| Rooflights 0.9x 1                     | × | 1.79       | x | 26               | x | 0.55           | x | 0.8            | ] =      | 18.43        | (82) |
| Rooflights <sub>0.9x</sub> 1          | X | 1.05       | x | 54               | × | 0.55           | X | 0.8            | =        | 22.45        | (82) |

| Rooflights 0.9x            | 1             | X             | 1.79                                         | 0        | X            | 54             | 1 x            | 0.55           | x                 | 0.8           |          | 38.28  | (82)  |
|----------------------------|---------------|---------------|----------------------------------------------|----------|--------------|----------------|----------------|----------------|-------------------|---------------|----------|--------|-------|
| Rooflights 0.9x            | 1             | →   x         | 1.0                                          | =        | ×            | 96             | 」^<br>] x      | 0.55           | $\frac{1}{x}$     | 0.8           | = =      | 39.92  | (82)  |
| Rooflights 0.9x            | 1             | →   x         | 1.79                                         | ==       | ×            | 96             | ] ^<br>] x     | 0.55           | <b> </b>          | 0.8           | = -      | 68.05  | (82)  |
| Rooflights 0.9x            | 1             | $\frac{1}{x}$ | 1.0                                          | ==       | X            | 150            | ] ^<br>] x     | 0.55           | $\exists \hat{x}$ | 0.8           | ╡ .      | 62.37  | (82)  |
| Rooflights 0.9x            | <u>'</u><br>1 | ^ x           | 1.79                                         |          | X            | 150            | ] ^<br>] x     | 0.55           | d °               | 0.8           | =        | 106.33 | (82)  |
| Rooflights 0.9x            | <u>·</u><br>1 |               | 1.0                                          |          | x            | 192            | ]              | 0.55           |                   | 0.8           | = =      | 79.83  | (82)  |
| Rooflights 0.9x            | <u>·</u><br>1 | ×             | 1.79                                         | ==       | X            | 192            | ] x            | 0.55           | = x               | 0.8           | ╡ .      | 136.1  | (82)  |
| Rooflights <sub>0.9x</sub> | <u>·</u><br>1 | <b>=</b> x    | 1.0                                          | =        | X            | 200            | ]<br>]         | 0.55           | ۲ ×               | 0.8           | = =      | 83.16  | (82)  |
| Rooflights 0.9x            | 1             | X             | 1.79                                         | =        | X            | 200            | ]<br>]         | 0.55           | = x               | 0.8           | = =      | 141.77 | (82)  |
| Rooflights 0.9x            | 1             | X             | 1.0                                          |          | X            | 189            | X              | 0.55           | ×                 | 0.8           | =        | 78.59  | (82)  |
| Rooflights <sub>0.9x</sub> | 1             | X             | 1.79                                         | 9        | X            | 189            | X              | 0.55           | ×                 | 0.8           |          | 133.97 | (82)  |
| Rooflights 0.9x            | 1             | x             | 1.0                                          | 5        | X            | 157            | x              | 0.55           | ×                 | 0.8           | =        | 65.28  | (82)  |
| Rooflights 0.9x            | 1             | x             | 1.79                                         | 9        | X            | 157            | x              | 0.55           | ×                 | 0.8           | <u> </u> | 111.29 | (82)  |
| Rooflights 0.9x            | 1             | X             | 1.0                                          | 5        | X            | 115            | x              | 0.55           | ×                 | 0.8           | <u> </u> | 47.82  | (82)  |
| Rooflights 0.9x            | 1             | X             | 1.79                                         | 9        | X            | 115            | X              | 0.55           | ×                 | 0.8           | -        | 81.52  | (82)  |
| Rooflights 0.9x            | 1             | X             | 1.0                                          | 5        | X            | 66             | X              | 0.55           | x                 | 0.8           | =        | 27.44  | (82)  |
| Rooflights 0.9x            | 1             | X             | 1.79                                         | 9        | X            | 66             | X              | 0.55           | X                 | 0.8           | =        | 46.78  | (82)  |
| Rooflights <sub>0.9x</sub> | 1             | X             | 1.0                                          | 5        | X            | 33             | X              | 0.55           | X                 | 0.8           | =        | 13.72  | (82)  |
| Rooflights <sub>0.9x</sub> | 1             | X             | 1.79                                         | 9        | X            | 33             | X              | 0.55           | ×                 | 0.8           | =        | 23.39  | (82)  |
| Rooflights <sub>0.9x</sub> | 1             | X             | 1.0                                          | 5        | X            | 21             | X              | 0.55           | X                 | 0.8           | =        | 8.73   | (82)  |
| Rooflights <sub>0.9x</sub> | 1             | X             | 1.79                                         | 9        | X            | 21             | X              | 0.55           | X                 | 0.8           | =        | 14.89  | (82)  |
|                            |               |               |                                              |          |              |                |                |                |                   |               |          |        |       |
| Solar gains in v           |               |               | for each                                     |          | Т            |                | <del>i i</del> | n = Sum(74)m . |                   |               |          | 1      |       |
| (83)m= 97.03               |               | 356.59        | 577.01                                       | 764.78   |              | 10.06 759.93   | 612            | .94 432.28     | 242.8             | 7 122.41      | 78.98    |        | (83)  |
| Total gains – ir           |               |               | <u>`                                    </u> |          | <del>,</del> | <u> </u>       | 1              | <u> </u>       |                   | . 1 .         |          | 1      | (0.1) |
| (84)m= 420.02              |               | 668.3         | 873.33                                       | 1045.75  | _            | 1015.96        | 873            | .74 700.84     | 526.9             | 3 424.4       | 394.11   |        | (84)  |
| 7. Mean interr             | nal temper    | rature (      | heating                                      | seasor   | 1)           |                |                |                |                   |               |          |        | _     |
| Temperature                | during hea    | ating pe      | eriods in                                    | the livi | ing          | area from Tal  | ble 9          | , Th1 (°C)     |                   |               |          | 21     | (85)  |
| Utilisation fact           | tor for gair  | ns for li     | ving are                                     | a, h1,n  | า (s         | ee Table 9a)   |                |                |                   |               |          | Ī      |       |
| Jan                        | Feb           | Mar           | Apr                                          | May      | ╙            | Jun Jul        | Α              | ug Sep         | Oct               | Nov           | Dec      |        |       |
| (86)m= 0.99                | 0.98          | 0.94          | 0.81                                         | 0.6      | (            | 0.41 0.3       | 0.3            | 0.65           | 0.92              | 0.98          | 0.99     |        | (86)  |
| Mean internal              | temperati     | ure in li     | iving are                                    | ea T1 (f | ollo         | w steps 3 to   | 7 in T         | able 9c)       |                   |               |          |        |       |
| (87)m= 19.58               | 19.83         | 20.25         | 20.71                                        | 20.93    | 2            | 0.99 21        | 20.            | 99 20.93       | 20.54             | 19.97         | 19.54    |        | (87)  |
| Temperature                | during hea    | ating pe      | eriods in                                    | rest of  | dw           | elling from Ta | able 9         | 9, Th2 (°C)    |                   |               |          |        |       |
| (88)m= 19.73               | 19.73         | 19.73         | 19.74                                        | 19.74    | 1            | 9.76 19.76     | 19.            | 76 19.75       | 19.74             | 19.74         | 19.73    |        | (88)  |
| Utilisation fact           | tor for gair  | ns for re     | est of dv                                    | velling, | h2,          | m (see Table   | 9a)            |                |                   |               |          |        |       |
| (89)m= 0.99                | 0.98          | 0.92          | 0.76                                         | 0.53     | T            | 0.34 0.22      | 0.2            | 27 0.55        | 0.89              | 0.98          | 0.99     |        | (89)  |
| Mean internal              | temperati     | ure in t      | he rest o                                    | of dwell | lina         | T2 (follow ste | eps 3          | to 7 in Tabl   | e 9c)             |               |          | -      |       |
| (90)m= 17.89               |               | 18.84         | 19.45                                        | 19.69    | Ť            | 9.75 19.76     | 19.            |                | 19.26             | 18.46         | 17.84    |        | (90)  |
|                            |               | <u>I</u> _    |                                              |          | -            |                |                | 1              | LA = Li           | /ing area ÷ ( | 4) =     | 0.47   | (91)  |
|                            |               |               |                                              |          |              |                |                |                |                   |               |          |        | _     |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18.69 19 19.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.04 20.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.34                       | 20.34                      | 20.29                                   | 19.86                                              | 19.17                            | 18.64                  |                                                             | (92)                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------|------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|
| Apply adjustment to the mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n internal tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rature fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m Table                     | 4e, whe                    | ere appro                               | opriate                                            | Г                                |                        |                                                             |                                                                         |
| (93)m= 18.69 19 19.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.04 20.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.34                       | 20.34                      | 20.29                                   | 19.86                                              | 19.17                            | 18.64                  |                                                             | (93)                                                                    |
| 8. Space heating requiremen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.6                        | T                          |                                         | . —                                                | -0)                              |                        |                                                             |                                                                         |
| Set Ti to the mean internal te<br>the utilisation factor for gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ned at st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ep 11 of                    | able 9                     | o, so tha                               | t II,m=(                                           | /6)m an                          | d re-cald              | ulate                                                       |                                                                         |
| Jan Feb Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Apr May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jul                         | Aug                        | Sep                                     | Oct                                                | Nov                              | Dec                    |                                                             |                                                                         |
| Utilisation factor for gains, hn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                            |                                         |                                                    |                                  |                        |                                                             |                                                                         |
| (94)m= 0.99 0.97 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.77 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.26                        | 0.32                       | 0.59                                    | 0.89                                               | 0.97                             | 0.99                   |                                                             | (94)                                                                    |
| Useful gains, hmGm , W = (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>1' ` 1'                                </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                            |                                         |                                                    |                                  |                        |                                                             | (0-)                                                                    |
| (95)m= 414.51 504.69 613.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 673.54 585.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 401.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 264.04                      | 276.75                     | 414.99                                  | 468.59                                             | 413.61                           | 390.03                 |                                                             | (95)                                                                    |
| Monthly average external ten (96)m= 4.3 4.9 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.9 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.6                        | 16.4                       | 14.1                                    | 10.6                                               | 7.1                              | 4.2                    |                                                             | (96)                                                                    |
| Heat loss rate for mean interr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                            |                                         |                                                    | 7.1                              | 7.2                    |                                                             | (00)                                                                    |
| (97)m= 1046.57 1022.97 941.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 798.28 613.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 264.66                      | 278.14                     | 439.39                                  | 662.11                                             | 866.57                           | 1041.35                |                                                             | (97)                                                                    |
| Space heating requirement for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or each month, k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :Wh/mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | th = $0.02$                 | 24 x [(97                  | )m – (95                                | )m] x (4                                           | 1)m                              |                        |                                                             |                                                                         |
| (98)m= 470.25 348.29 244.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89.81 20.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                           | 0                          | 0                                       | 143.97                                             | 326.13                           | 484.58                 |                                                             |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Tota                       | l per year                              | (kWh/year                                          | r) = Sum(9                       | 8) <sub>15,912</sub> = | 2128.29                                                     | (98)                                                                    |
| Space heating requirement in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n kWh/m²/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                            |                                         |                                                    |                                  |                        | 42.42                                                       | (99)                                                                    |
| 9b. Energy requirements – Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mmunity heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                           |                            |                                         |                                                    |                                  |                        |                                                             |                                                                         |
| This part is used for space hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | • .                        | -                                       |                                                    | unity sch                        | neme.                  |                                                             | <b>¬</b>                                                                |
| Fraction of space heat from se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | econdary/supple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating (                   | Table 1                    | 1) '0' if n                             | one                                                |                                  |                        | 0                                                           | (301)                                                                   |
| Fraction of space heat from co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mmunity systen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1 – (30 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1) =                        |                            |                                         |                                                    |                                  |                        | 1                                                           | (302)                                                                   |
| The community scheme may obtain h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                            |                                         |                                                    |                                  |                        |                                                             |                                                                         |
| includes hailers heat numbs geather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                            |                                         | up to four (                                       | other heat                       | sources; ti            | ne latter                                                   |                                                                         |
| includes boilers, heat pumps, geother<br>Fraction of heat from Commur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mal and waste heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                            |                                         | up to four (                                       | other heat                       | sources; ti            | ne latter                                                   | (303a)                                                                  |
| · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mal and waste heat<br>nity heat pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | from powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                            |                                         | up to four (                                       | other heat                       | sources; ti            |                                                             | (303a)<br>(303a)                                                        |
| Fraction of heat from Commun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mal and waste heat<br>nity heat pump<br>nity heat pump (\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | from powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r stations.                 |                            |                                         | up to four (                                       | other heat                       | sources; ti            | 1                                                           | =                                                                       |
| Fraction of heat from Commun<br>Fraction of heat from Commun<br>Fraction of community heat from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mal and waste heat<br>nity heat pump<br>nity heat pump (\<br>om heat source 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from power  Water)  (Water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r stations.                 |                            |                                         |                                                    | other heat<br>02) x (303         |                        | 0.7                                                         | (303a)                                                                  |
| Fraction of heat from Commun<br>Fraction of heat from Commun<br>Fraction of community heat from<br>Fraction of total space heat from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mal and waste heat<br>nity heat pump<br>nity heat pump (\<br>om heat source 2<br>om Community h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | from powe  Nater)  (Water)  eat pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r stations.                 | See Appe                   | ndix C.                                 | (3                                                 |                                  |                        | 1<br>0.7<br>0.3                                             | (303a)<br>(303b)<br>(304a)                                              |
| Fraction of heat from Commun<br>Fraction of heat from Commun<br>Fraction of community heat from<br>Fraction of total space heat from<br>Fractor for control and charging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mal and waste heat<br>nity heat pump<br>nity heat pump (\<br>om heat source 2<br>om Community h<br>g method (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nater)  (Water)  eat pumpled (4c(3)) for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r stations.<br>O<br>r commu | See Appe                   | ndix C.                                 | (3                                                 |                                  |                        | 1<br>0.7<br>0.3<br>1                                        | (303a)<br>(303b)<br>(304a)<br>(305)                                     |
| Fraction of heat from Community Fraction of heat from Community heat from Fraction of total space heat from Fraction for control and charging Distribution loss factor (Table 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mal and waste heat<br>nity heat pump<br>nity heat pump (\<br>om heat source 2<br>om Community h<br>g method (Table<br>12c) for commun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water) (Water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r stations.  o  r commu     | See Appe<br>unity hea<br>m | ndix C.<br>ating sys                    | (3                                                 |                                  |                        | 1<br>0.7<br>0.3<br>1<br>1<br>1.05                           | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)                            |
| Fraction of heat from Community Fraction of heat from Community heat from Fraction of total space heat from Fraction of total space heat from Fraction for control and charging Distribution loss factor (Table Distribution loss factor (Table Postribution l | mal and waste heat<br>nity heat pump<br>nity heat pump (\<br>om heat source 2<br>om Community h<br>g method (Table<br>12c) for commun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water) (Water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r stations.  o  r commu     | See Appe<br>unity hea<br>m | ndix C.<br>ating sys                    | (3                                                 |                                  |                        | 1<br>0.7<br>0.3<br>1<br>1<br>1.05                           | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of heat from Community Fraction of heat from Community heat from Fraction of total space heat from Fraction for control and charging Distribution loss factor (Table 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mal and waste heat nity heat pump () om heat source 2 om Community heat method (Table 12c) for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for commu | Water) (Water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r stations.  o  r commu     | See Appe<br>unity hea<br>m | ndix C.<br>ating sys                    | (3                                                 |                                  |                        | 1<br>0.7<br>0.3<br>1<br>1<br>1.05                           | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of heat from Community Fraction of heat from Community Fraction of community heat from Fraction of total space heat from Fractor for control and charging Distribution loss factor (Table of Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mal and waste heat nity heat pump () ity heat pump () om heat source 2 om Community heat method (Table 12c) for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for community for co | Water) (Water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water) (water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r stations.  o  r commu     | See Appe<br>unity hea<br>m | ating sys                               | (3<br>tem                                          |                                  | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 kWh/year                            | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of heat from Community Fraction of heat from Community heat from Fraction of total space heat from Fraction of total space heat from Fraction for control and charging Distribution loss factor (Table Distribution loss factor (Table Space heating Annual space heating requirements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mal and waste heat nity heat pump nity heat pump (\) om heat source 2 om Community h g method (Table 12c) for commun 12c) for commun ment heat pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Water) (Water) (Water) (Ac(3)) for the ation ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heating ity heati | o commung syste             | unity hea<br>m<br>m (Wate  | ating syser)                            | (3<br>tem<br><sup>(30</sup> 4a) x (308             | 02) x (303<br>5) x (306) :       | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 kWh/year 2128.29                    | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of heat from Community Fraction of heat from Community heat from Fraction of total space heat from Fraction of total space heat from Fraction for control and charging Distribution loss factor (Table Distribution loss factor (Table Space heating Annual space heating requirer Space heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Community heat from Commun | mal and waste heat nity heat pump nity heat pump (Norm heat source 2 norm Community h ng method (Table 12c) for community 12c) for community nent neat pump ementary heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) | or commung systeng syste    | unity hea<br>m<br>m (Wate  | ating syser)  (98) x (30)               | (3<br>tem<br><sup>(30</sup> 4a) x (308             | 02) x (303<br>5) x (306) s<br>E) | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 2128.29 2234.71     | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of heat from Community Fraction of community heat from Fraction of total space heat from Fraction of total space heat from Fractor for control and charging Distribution loss factor (Table of Space heating Annual space heating requirer Space heat from Community heating requirer Space heating requirement from Space heating requirement from Space heating requirement from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mal and waste heat nity heat pump nity heat pump (Norm heat source 2 norm Community h ng method (Table 12c) for community 12c) for community nent neat pump ementary heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) | or commung systeng syste    | unity hea<br>m<br>m (Wate  | ating syser)  (98) x (30)               | (3<br>tem<br>04a) x (309<br>ppendix                | 02) x (303<br>5) x (306) s<br>E) | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 2128.29 2234.71 0   | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)<br>(307a)<br>(308 |
| Fraction of heat from Community Fraction of heat from Community Fraction of community heat from Fraction of total space heat from Fraction of total space heat from Fraction for control and charging Distribution loss factor (Table of Space heating Annual space heating requirer Space heat from Community he Efficiency of secondary/supple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mal and waste heat nity heat pump nity heat pump (Norm heat source 2 nm Community h ng method (Table 12c) for community nent neat pump nementary heating nm secondary/su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) | or commung systeng syste    | unity hea<br>m<br>m (Wate  | ating syser)  (98) x (30)               | (3<br>tem<br>04a) x (309<br>ppendix                | 02) x (303<br>5) x (306) s<br>E) | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 2128.29 2234.71 0   | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)<br>(307a)<br>(308 |
| Fraction of heat from Community Fraction of heat from Community Fraction of community heat from Fraction of total space heat from Fractor for control and charging Distribution loss factor (Table of Distribution loss factor (Table of Space heating Annual space heating requirem Space heat from Community he Efficiency of secondary/supple Space heating requirement from Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mal and waste heat nity heat pump nity heat pump (Norm heat source 2 norm Community h ng method (Table 12c) for community nent neat pump nementary heating norm secondary/su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) (Water) | or commung systeng syste    | unity hea<br>m<br>m (Wate  | er)  (98) × (36)  44a or A  (98) × (36) | (3<br>tem<br>04a) x (309<br>ppendix<br>01) x 100 - | 02) x (303<br>5) x (306) s<br>E) | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 2128.29 2234.71 0 0 | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)<br>(307a)<br>(308 |

| Mater boot from boot course 2 (Mater)                                             |                             | (64) × (2026) ×          | (205) × (206) =               | 574.05                | (240b)     |
|-----------------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------|-----------------------|------------|
| Water heat from heat source 2 (Water)                                             |                             |                          | (305) x (306) =               | 574.05                | (310b)     |
| Electricity used for heat distribution                                            |                             |                          | 7e) + (310a)(310e)] =         | 22.35                 | (313)      |
| Electricity used for heat distribution (Wa                                        | ,                           | 0.01 × [(307a)(307       | 7e) + (310a)(310e)] =         | 19.13                 | (313)      |
| Cooling System Energy Efficiency Ratio                                            |                             |                          |                               | 0                     | (314)      |
| Space cooling (if there is a fixed cooling                                        |                             | $= (107) \div (314)$     | ) =                           | 0                     | (315)      |
| Electricity for pumps and fans within dw mechanical ventilation - balanced, extra | • ,                         | utside                   |                               | 109.48                | (330a)     |
| warm air heating system fans                                                      |                             |                          |                               | 0                     | (330b)     |
| pump for solar water heating                                                      |                             |                          |                               | 0                     | (330g)     |
| Total electricity for the above, kWh/yea                                          | r                           | =(330a) + (330           | 0b) + (330g) =                | 109.48                | (331)      |
| Energy for lighting (calculated in Apper                                          | dix L)                      |                          |                               | 232.5                 | (332)      |
| Electricity generated by PVs (Appendix                                            | M) (negative quantity)      |                          |                               | -684.44               | (333)      |
| Electricity generated by wind turbine (A                                          | ppendix M) (negative quar   | ntity)                   |                               | 0                     | (334)      |
| 12b. CO2 Emissions – Community hea                                                | ting scheme                 |                          |                               |                       |            |
|                                                                                   |                             | Energy<br>kWh/year       | Emission factor<br>kg CO2/kWh | Emissions kg CO2/year |            |
| CO2 from other sources of space and v                                             | vater heating (not CHP)     |                          |                               |                       |            |
| Efficiency of heat source 1 (%)                                                   | If there is CHP using t     | wo fuels repeat (363) to | (366) for the second fu       | el 300                | (367a)     |
| CO2 associated with heat source 1                                                 | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0.52                          | 386.6                 | (367)      |
| Electrical energy for heat distribution                                           | [(3                         | 313) x                   | 0.52                          | 11.6                  | (372)      |
| Water heating from separate communit                                              | y system                    |                          |                               |                       |            |
| CO2 from other sources of space and Efficiency of heat source 1 (%)               |                             | wo fuels repeat (363) to | (366) for the second fue      | el 300                | (367a)     |
| Efficiency of heat source 2 (%)                                                   | If there is CHP using t     | wo fuels repeat (363) to | (366) for the second fue      | el 100                | (367b)     |
| CO2 associated with heat source 1                                                 | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0                             | = 231.72              | (367)      |
| CO2 associated with heat source 2                                                 | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0.52                          | 297.93                | (368)      |
| Electrical energy for heat distribution                                           | [(3                         | 313) x                   | 0.52                          | 9.93                  | (372)      |
| Total CO2 associated with community                                               | systems (36                 | 63)(366) + (368)(37      | 2)                            | 937.79                | (373)      |
| CO2 associated with space heating (se                                             | condary) (3                 | 09) x                    | 0                             | = 0                   | (374)      |
| CO2 associated with water from immer                                              | sion heater or instantaneo  | us heater (312) x        | 0.52                          | = 0                   | (375)      |
| Total CO2 associated with space and v                                             | vater heating (3            | 73) + (374) + (375) =    |                               | 937.79                | (376)      |
| CO2 associated with electricity for pum                                           | ps and fans within dwelling | g (331)) x               | 0.52                          | 56.82                 | (378)      |
| CO2 associated with electricity for light                                         | ng (3                       | 32))) x                  | 0.52                          | = 120.67              | (379)      |
| Energy saving/generation technologies Item 1                                      | (333) to (334) as applicab  | le                       | 0.52 x 0.01 =                 | -355.23               | (380)      |
| Total CO2, kg/year                                                                | sum of (376)(382) =         |                          |                               | 760.05                | (383)      |
| Dwelling CO2 Emission Rate                                                        | (383) ÷ (4) =               |                          |                               | 15.15                 | (384)      |
|                                                                                   |                             |                          |                               |                       | <b>`</b> ′ |

El rating (section 14)

89.3 (385)

|                              |                                                             | User De        | etails:                                          |             |             |            |                     |              |         |
|------------------------------|-------------------------------------------------------------|----------------|--------------------------------------------------|-------------|-------------|------------|---------------------|--------------|---------|
| Assessor Name:               | Chris Hocknell                                              |                |                                                  | a Num       | ber:        |            | STRO                | 016363       |         |
| Software Name:               | Stroma FSAP 2012                                            |                |                                                  | are Vei     |             |            |                     | n: 1.0.4.16  |         |
|                              |                                                             | Property A     | Address                                          | Apartm      | ent 2       |            |                     |              |         |
| Address :                    |                                                             |                |                                                  |             |             |            |                     |              |         |
| 1. Overall dwelling dime     | ensions:                                                    |                |                                                  |             |             |            |                     |              |         |
| Ground floor                 |                                                             | Area           | <del>`                                    </del> | (10) 4      |             | ight(m)    | ] <sub>(20)</sub> _ | Volume(m³)   | _       |
|                              |                                                             |                |                                                  | (1a) x      |             | 2.7        | (2a) =              | 159.98       | (3a)    |
| ·                            | a)+(1b)+(1c)+(1d)+(1e)+(                                    | 1n) 59         | 9.25                                             | (4)         |             |            |                     |              | _       |
| Dwelling volume              |                                                             |                |                                                  | (3a)+(3b    | )+(3c)+(3c  | d)+(3e)+   | .(3n) =             | 159.98       | (5)     |
| 2. Ventilation rate:         | main accord                                                 | - W            | - 4la - 11                                       |             |             |            |                     | ma3 may bay  |         |
|                              | main second<br>heating heating                              | •              | other                                            | _           | total       |            |                     | m³ per hou   | _       |
| Number of chimneys           | 0 + 0                                                       | +              | 0                                                | ] = [       | 0           | X 4        | 40 =                | 0            | (6a)    |
| Number of open flues         | 0 + 0                                                       | +              | 0                                                | ] = [       | 0           | x 2        | 20 =                | 0            | (6b)    |
| Number of intermittent fa    | ns                                                          |                |                                                  | Γ           | 0           | <b>X</b> ' | 10 =                | 0            | (7a)    |
| Number of passive vents      | 1                                                           |                |                                                  | Ī           | 0           | <b>x</b> ' | 10 =                | 0            | (7b)    |
| Number of flueless gas fi    | res                                                         |                |                                                  | Ī           | 0           | X 4        | 40 =                | 0            | (7c)    |
|                              |                                                             |                |                                                  | _           |             |            |                     |              | _       |
|                              |                                                             |                |                                                  |             |             |            | Air ch              | anges per ho | ur<br>_ |
| •                            | ys, flues and fans = $(6a)+(6b)+$                           |                |                                                  | . [         | 0           |            | ÷ (5) =             | 0            | (8)     |
| Number of storeys in the     | neen carried out or is intended, proce<br>the dwelling (ns) | eea to (17), o | tnerwise d                                       | continue tr | om (9) to ( | (16)       |                     | 0            | (9)     |
| Additional infiltration      | no awaming (no)                                             |                |                                                  |             |             | [(9)       | -1]x0.1 =           | 0            | (10)    |
| Structural infiltration: 0   | .25 for steel or timber frame                               | or 0.35 for    | masonr                                           | y constr    | uction      | - ,        |                     | 0            | (11)    |
|                              | resent, use the value corresponding                         | to the greate  | er wall are                                      | a (after    |             |            | '                   |              | _       |
| deducting areas of openii    | ngs); if equal user 0.35<br>floor, enter 0.2 (unsealed) or  | 0.1 (sealed    | d) else                                          | enter 0     |             |            |                     | 0            | (12)    |
| If no draught lobby, en      | ,                                                           | 0.1 (00a.0.    | u), 0.00                                         | 00. 0       |             |            |                     | 0            | (13)    |
| •                            | s and doors draught stripped                                |                |                                                  |             |             |            |                     | 0            | (14)    |
| Window infiltration          | •                                                           | (              | 0.25 - [0.2                                      | x (14) ÷ 1  | 00] =       |            |                     | 0            | (15)    |
| Infiltration rate            |                                                             | (              | (8) + (10)                                       | + (11) + (1 | 12) + (13)  | + (15) =   |                     | 0            | (16)    |
| Air permeability value,      | q50, expressed in cubic met                                 | res per hou    | ur per s                                         | quare m     | etre of e   | envelope   | area                | 3            | (17)    |
| If based on air permeabil    | ity value, then (18) = [(17) ÷ 20]                          | +(8), otherwis | se (18) = (                                      | 16)         |             |            |                     | 0.15         | (18)    |
|                              | es if a pressurisation test has been d                      | one or a degi  | ree air pe                                       | rmeability  | is being u  | sed        |                     |              | _       |
| Number of sides sheltere     | ed                                                          | ,              | (20) = 1                                         | 0.075 x (1  | 10)1 -      |            |                     | 3            | (19)    |
| Shelter factor               | line abaltan fastan                                         | ·              | `                                                | `           | 19)] –      |            |                     | 0.78         | (20)    |
| Infiltration rate incorporat | -                                                           | (              | (21) = (18)                                      | ) X (20) –  |             |            |                     | 0.12         | (21)    |
| Infiltration rate modified f | Mar Apr May Jun                                             | Jul            | Aug                                              | Sep         | Oct         | Nov        | Dec                 |              |         |
| Monthly average wind sp      |                                                             | 1 001 1        | Aug                                              | ОСР         | 000         | 1404       | Dec                 |              |         |
| (22)m= 5.1 5                 | 4.9 4.4 4.3 3.8                                             | 3.8            | 3.7                                              | 4           | 4.3         | 4.5        | 4.7                 |              |         |
| , ,                          | 1 1 2 1 2 2 2                                               |                |                                                  |             |             | 1          | I                   | I            |         |
| Wind Factor (22a)m = (2      | <del></del>                                                 |                |                                                  |             | ı           |            | 1 .                 | Ī            |         |
| (22a)m= 1.27 1.25            | 1.23 1.1 1.08 0.95                                          | 0.95           | 0.92                                             | 1           | 1.08        | 1.12       | 1.18                |              |         |

| Adjusted infiltra                                                                                                         | ation rate (allo                                                                                                                     | owing for s                                                                    | helter an                | nd wind s                                 | peed) =                  | (21a) x                                          | (22a)m                                       |                                                  |                       |                                                   |                  |                                              |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------|-------------------------------------------|--------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|-----------------------|---------------------------------------------------|------------------|----------------------------------------------|
| 0.15                                                                                                                      | 0.15 0.14                                                                                                                            | 1                                                                              | 0.12                     | 0.11                                      | 0.11                     | 0.11                                             | 0.12                                         | 0.12                                             | 0.13                  | 0.14                                              | ]                |                                              |
| Calculate effect                                                                                                          | -                                                                                                                                    | ge rate for                                                                    | the appli                | cable ca                                  | se                       | •                                                | •                                            |                                                  |                       | •                                                 | <u>,</u>         | <b>—</b> ,                                   |
|                                                                                                                           | al ventilation:                                                                                                                      | Annandiy N. (                                                                  | 22h) <b>–</b> (22        | a) v Emy /a                               | auation (                | VEVV otho                                        | muiaa (22h                                   | ·) = (22a)                                       |                       |                                                   | 0.5              | (238                                         |
|                                                                                                                           | eat pump using A                                                                                                                     |                                                                                |                          |                                           |                          |                                                  |                                              | i) – (23a)                                       |                       |                                                   | 0.5              | (231                                         |
|                                                                                                                           | n heat recovery: 6                                                                                                                   |                                                                                | _                        |                                           |                          |                                                  |                                              | <b>0</b> 1.) (4                                  |                       | 4 (00)                                            | 75.65            | (230                                         |
| · -                                                                                                                       | ed mechanical                                                                                                                        |                                                                                | 1                        | 1                                         | <del>- ` ` </del>        | <del>-                                    </del> | <del>í `</del>                               | <del>r `</del>                                   |                       | <del>- ` `                                 </del> | ) ÷ 100]<br>1    | (24a                                         |
| (24a)m= 0.27                                                                                                              | 0.27 0.26                                                                                                                            |                                                                                | 0.25                     | 0.23                                      | 0.23                     | 0.23                                             | 0.24                                         | 0.25                                             | 0.25                  | 0.26                                              | J                | (240                                         |
| _ ′ <del> </del>                                                                                                          | ed mechanical                                                                                                                        |                                                                                | 1                        | 1                                         | covery (i                | <del>,                                    </del> | <del>, ` `</del>                             | <del>,                                    </del> |                       | Ι ,                                               | 1                | (24)                                         |
| (24b)m= 0                                                                                                                 | 0 0                                                                                                                                  | 0                                                                              | 0                        | . ,                                       | <u> </u>                 | 0                                                | 0                                            | 0                                                | 0                     | 0                                                 | J                | (24)                                         |
| •                                                                                                                         | iouse extract \<br>n < 0.5 × (23b                                                                                                    |                                                                                | -                        | •                                         |                          |                                                  |                                              | .5 × (23b                                        | )                     |                                                   |                  |                                              |
| (24c)m= 0                                                                                                                 | 0 0                                                                                                                                  | 0                                                                              | 0                        | 0                                         | 0                        | 0                                                | 0                                            | 0                                                | 0                     | 0                                                 | 1                | (240                                         |
|                                                                                                                           | ventilation or                                                                                                                       | whole hou                                                                      | L<br>se nositi           | ve input                                  | ventilatio               | on from                                          | l<br>loft                                    | <u> </u>                                         |                       | <u>!</u>                                          | J                |                                              |
| ,                                                                                                                         | n = 1, then (24)                                                                                                                     |                                                                                | •                        | •                                         |                          |                                                  |                                              | 0.5]                                             |                       |                                                   |                  |                                              |
| (24d)m= 0                                                                                                                 | 0 0                                                                                                                                  | 0                                                                              | 0                        | 0                                         | 0                        | 0                                                | 0                                            | 0                                                | 0                     | 0                                                 |                  | (240                                         |
| Effective air                                                                                                             | change rate -                                                                                                                        | enter (24a                                                                     | a) or (24l               | b) or (24                                 | c) or (24                | d) in bo                                         | x (25)                                       | -                                                |                       | -                                                 | _                |                                              |
| (25)m= 0.27                                                                                                               | 0.27 0.26                                                                                                                            | 6 0.25                                                                         | 0.25                     | 0.23                                      | 0.23                     | 0.23                                             | 0.24                                         | 0.25                                             | 0.25                  | 0.26                                              | ]                | (25)                                         |
| 3. Heat losse                                                                                                             | s and heat los                                                                                                                       | ss paramet                                                                     | er:                      |                                           |                          |                                                  |                                              |                                                  |                       |                                                   |                  |                                              |
| ELEMENT                                                                                                                   | Gross<br>area (m²)                                                                                                                   | Openir                                                                         |                          | Net Ar<br>A ,r                            |                          | U-val<br>W/m2                                    |                                              | A X U<br>(W/ł                                    | <b>(</b> )            | k-value<br>kJ/m²·                                 |                  | X k<br>J/K                                   |
| Doors                                                                                                                     |                                                                                                                                      |                                                                                |                          | 2                                         | x                        | 1.3                                              | = [                                          | 2.6                                              |                       |                                                   |                  | (26)                                         |
| Windows Type                                                                                                              | e 1                                                                                                                                  |                                                                                |                          | 8.26                                      | <b>=</b> x1              | /[1/( 1.3 )+                                     | 0.04] =                                      | 10.21                                            | =                     |                                                   |                  | (27)                                         |
| Windows Type                                                                                                              | e 2                                                                                                                                  |                                                                                |                          | 4.21                                      | =  <sub>x1</sub>         | /[1/( 1.3 )+                                     | 0.04] =                                      | 5.2                                              |                       |                                                   |                  | (27)                                         |
| Windows Type                                                                                                              | e 3                                                                                                                                  |                                                                                |                          | 3.21                                      | =  <sub>x1</sub>         | /[1/( 1.3 )+                                     | 0.04] =                                      | 3.97                                             | =                     |                                                   |                  | (27)                                         |
| Windows Type                                                                                                              | e 4                                                                                                                                  |                                                                                |                          | 4.37                                      | <b>=</b>   <sub>x1</sub> | /[1/( 1.3 )+                                     | 0.04] =                                      | 5.4                                              | Ħ                     |                                                   |                  | (27)                                         |
| Rooflights                                                                                                                |                                                                                                                                      |                                                                                |                          | 1.61                                      | →     x1                 | /[1/(1.6) +                                      | 0.041 =                                      | 2.576                                            | =                     |                                                   |                  | (27)                                         |
| Walls Type1                                                                                                               | 38.95                                                                                                                                | 20.0                                                                           | 15                       | 18.9                                      | <b>=</b>                 | 0.15                                             |                                              | 2.84                                             | =                     |                                                   |                  | (29)                                         |
| Walls Type2                                                                                                               | 45.47                                                                                                                                | 2                                                                              |                          | 43.47                                     |                          | 0.13                                             | ╡┇                                           | 5.81                                             | ╡ ┆                   |                                                   | -                | (29)                                         |
| Roof                                                                                                                      |                                                                                                                                      |                                                                                |                          |                                           | =                        |                                                  |                                              |                                                  | 북 남                   |                                                   | ╣                | =                                            |
| 11001                                                                                                                     | 59.25                                                                                                                                | 1.6                                                                            | ·                        | 57.64                                     | 1 X                      | 0.1                                              |                                              | 5.76                                             |                       |                                                   |                  | (30)                                         |
| Total area of o                                                                                                           | lomonte m²                                                                                                                           |                                                                                |                          | 140.0                                     | 二                        |                                                  |                                              |                                                  |                       |                                                   |                  | (.51                                         |
|                                                                                                                           | elements, m²                                                                                                                         |                                                                                |                          | 143.6                                     | =                        |                                                  |                                              |                                                  |                       |                                                   |                  | ``                                           |
| Party wall                                                                                                                | elements, m²                                                                                                                         |                                                                                |                          | 25.95                                     | x                        | 0                                                | = [                                          | 0                                                | [                     |                                                   |                  | (32)                                         |
| Party wall<br>Party floor                                                                                                 |                                                                                                                                      |                                                                                | todo II                  | 25.95<br>59.25                            | x                        |                                                  |                                              |                                                  | ] [<br>]              |                                                   |                  | (32)                                         |
| Party wall<br>Party floor<br>* for windows and                                                                            | l roof windows, us                                                                                                                   |                                                                                |                          | 25.95<br>59.25<br>alue calcul             | x                        |                                                  |                                              |                                                  | [<br>s given in       | paragrapl                                         | h 3.2            | (32)                                         |
| Party wall Party floor * for windows and *** include the area                                                             | l roof windows, us<br>as on both sides d                                                                                             | of internal wa                                                                 |                          | 25.95<br>59.25<br>alue calcul             | x                        |                                                  |                                              |                                                  | [<br>[<br>s given in  | paragraph                                         | h 3.2            | (32)                                         |
| Party wall Party floor * for windows and ** include the area Fabric heat los                                              | roof windows, us<br>as on both sides o<br>ss, W/K = S (A                                                                             | of internal wa<br>A x U)                                                       |                          | 25.95<br>59.25<br>alue calcul             | x                        | g formula 1                                      | /[(1/U-valu<br>) + (32) =                    |                                                  |                       |                                                   |                  | (32)                                         |
| Total area of e Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity Thermal mass   | l roof windows, us<br>as on both sides o<br>ss, W/K = S (A<br>Cm = S(A x k                                                           | of internal wa<br>A x U)                                                       | lls and par              | 25.95<br>59.25<br>alue calcul<br>titions  | 5 ×                      | g formula 1                                      | ) + (32) =<br>((28)                          | ue)+0.04] a                                      | ?) + (32a).           |                                                   | 44.2             | (32)                                         |
| Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity Thermal mass For design assess | I roof windows, us<br>as on both sides o<br>ss, W/K = S (A<br>Cm = S(A x k<br>parameter (T<br>sments where the                       | of internal wa. A x U) ) TMP = Cm - e details of the                           | lls and par<br>÷ TFA) ir | 25.95<br>59.25<br>alue calcul<br>titions  | X<br>Sated using         | g formula 1<br>(26)(30                           | /[(1/U-valu<br>) + (32) =<br>((28)<br>Indica | (30) + (32<br>tive Value:                        | ?) + (32a).<br>Medium | (32e) =                                           | 44.2<br>15258.06 | (32)                                         |
| Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity                                | roof windows, us<br>as on both sides of<br>ss, W/K = S (A<br>Cm = S(A x k<br>parameter (T<br>sments where the<br>ad of a detailed of | of internal wa<br>A x U)<br>)<br>MP = Cm ·<br>e details of the<br>calculation. | ils and par<br>÷ TFA) in | 25.95 59.25 alue calcul titions  n kJ/m²K | x dated using            | g formula 1<br>(26)(30                           | /[(1/U-valu<br>) + (32) =<br>((28)<br>Indica | (30) + (32<br>tive Value:                        | ?) + (32a).<br>Medium | (32e) =                                           | 44.2<br>15258.06 | (32)<br>(32)<br>(32)<br>(33)<br>(34)<br>(35) |

| Total fabric he                 | nat loce     |                                                  |              |             |             |            |             | (33) +                | (36) =      |                        |         | 50.77   | 7(27) |
|---------------------------------|--------------|--------------------------------------------------|--------------|-------------|-------------|------------|-------------|-----------------------|-------------|------------------------|---------|---------|-------|
| Ventilation he                  |              | alculated                                        | d monthly    | V           |             |            |             | . ,                   | = 0.33 × (  | 25)m x (5)             |         | 58.77   | (37)  |
| Jan                             | Feb          | Mar                                              | Apr          | May         | Jun         | Jul        | Aug         | Sep                   | Oct         | Nov                    | Dec     |         |       |
| (38)m= 14.25                    | 14.1         | 13.95                                            | 13.18        | 13.02       | 12.26       | 12.26      | 12.1        | 12.56                 | 13.02       | 13.33                  | 13.64   |         | (38)  |
| Heat transfer                   | coefficie    | nt. W/K                                          | 1            | ļ           | 1           | 1          |             | (39)m                 | = (37) + (3 | <br>38)m               |         |         |       |
| (39)m= 73.02                    | 72.86        | 72.71                                            | 71.94        | 71.79       | 71.02       | 71.02      | 70.87       | 71.33                 | 71.79       | 72.1                   | 72.4    |         |       |
|                                 | 1            | !                                                |              | !           | !           |            | •           |                       | Average =   | Sum(39) <sub>1</sub>   | 12 /12= | 71.91   | (39)  |
| Heat loss para                  | <del></del>  | <del>-                                    </del> |              |             |             |            |             |                       | = (39)m ÷   |                        |         | l       |       |
| (40)m= 1.23                     | 1.23         | 1.23                                             | 1.21         | 1.21        | 1.2         | 1.2        | 1.2         | 1.2                   | 1.21        | 1.22                   | 1.22    | 1.01    | 7(40) |
| Number of da                    | ys in mo     | nth (Tab                                         | le 1a)       |             |             |            |             | •                     | Average =   | Sum(40) <sub>1.</sub>  | 12 /12= | 1.21    | (40)  |
| Jan                             | Feb          | Mar                                              | Apr          | May         | Jun         | Jul        | Aug         | Sep                   | Oct         | Nov                    | Dec     |         |       |
| (41)m= 31                       | 28           | 31                                               | 30           | 31          | 30          | 31         | 31          | 30                    | 31          | 30                     | 31      |         | (41)  |
|                                 | •            |                                                  |              |             |             |            |             |                       |             |                        |         | •       |       |
| 4. Water hea                    | ating ene    | rgy requ                                         | irement:     |             |             |            |             |                       |             |                        | kWh/ye  | ear:    |       |
| A                               |              |                                                  |              |             |             |            |             |                       |             |                        |         | 1       |       |
| Assumed occ<br>if TFA > 13.     |              |                                                  | (1 - exp     | (-0.0003    | 349 x (TF   | FA -13.9   | )2)] + 0.0  | 0013 x ( <sup>-</sup> | TFA -13.    |                        | 96      |         | (42)  |
| if TFA £ 13.                    |              | -                                                |              | ,           | •           |            | , ,1        | ,                     |             |                        |         |         |       |
| Annual average                  | _            | ,                                                | _            | •           | •           | _          | ` ,         |                       | torast -    |                        | .76     |         | (43)  |
| Reduce the annu                 | _            |                                                  | • .          |             | -           | -          | io acriieve | a water us            | se largel o | 1                      |         |         |       |
| Jan                             | Feb          | Mar                                              | Apr          | May         | Jun         | Jul        | Aug         | Sep                   | Oct         | Nov                    | Dec     |         |       |
| Hot water usage                 |              |                                                  |              |             |             |            |             | ОСР                   | 001         | 1101                   | DCC     |         |       |
| (44)m= 88.83                    | 85.6         | 82.37                                            | 79.14        | 75.91       | 72.68       | 72.68      | 75.91       | 79.14                 | 82.37       | 85.6                   | 88.83   |         |       |
|                                 | 1            | <u> </u>                                         | <u> </u>     | l           | <u> </u>    | <u> </u>   | 1           |                       | Total = Su  | m(44) <sub>112</sub> = |         | 969.1   | (44)  |
| Energy content o                | of hot water | used - cal                                       | lculated mo  | onthly = 4. | 190 x Vd,r  | n x nm x L | OTm / 3600  | kWh/mor               | nth (see Ta | ıbles 1b, 1            | c, 1d)  |         |       |
| (45)m= 131.74                   | 115.22       | 118.9                                            | 103.66       | 99.46       | 85.83       | 79.53      | 91.26       | 92.35                 | 107.63      | 117.49                 | 127.58  |         | _     |
| If instantaneous                | water heati  | na at point                                      | t of use (no | o hot water | r storage). | enter 0 in | boxes (46   |                       | Total = Su  | m(45) <sub>112</sub> = | =       | 1270.64 | (45)  |
| (46)m= 19.76                    | 17.28        | 17.83                                            | 15.55        | 14.92       | 12.87       | 11.93      | 13.69       | 13.85                 | 16.14       | 17.62                  | 19.14   |         | (46)  |
| Water storage                   | 1            | 17.03                                            | 10.00        | 14.32       | 12.07       | 11.95      | 13.09       | 13.03                 | 10.14       | 17.02                  | 13.14   |         | (10)  |
| Storage volun                   | ne (litres   | ) includir                                       | ng any so    | olar or W   | WHRS        | storage    | within sa   | ame ves               | sel         |                        | 0       |         | (47)  |
| If community                    | heating a    | and no ta                                        | ank in dw    | elling, e   | nter 110    | litres in  | (47)        |                       |             |                        |         | •       |       |
| Otherwise if n                  |              | hot wate                                         | er (this ir  | ncludes i   | nstantar    | neous co   | mbi boil    | ers) ente             | er '0' in ( | 47)                    |         |         |       |
| Water storage                   |              |                                                  | <b>ft</b>    | :-          | (1.) \ / /  | - /-l\ .   |             |                       |             |                        |         | ı       |       |
| a) If manufac                   |              |                                                  |              | or is kno   | WII (KVVI   | i/day).    |             |                       |             |                        | 0       |         | (48)  |
| Temperature                     |              |                                                  |              |             |             |            | (40) + (40) |                       |             |                        | 0       |         | (49)  |
| Energy lost from b) If manufact |              | -                                                | -            |             | or is not   | known:     | (48) x (49) | ) =                   |             | 1                      | 10      |         | (50)  |
| Hot water stor                  |              |                                                  | -            |             |             |            |             |                       |             | 0.                     | 02      |         | (51)  |
| If community                    | •            |                                                  | on 4.3       |             |             |            |             |                       |             |                        |         |         |       |
| Volume factor                   |              |                                                  |              |             |             |            |             |                       |             | 1.                     | 03      |         | (52)  |
| Temperature                     |              |                                                  |              |             |             |            |             |                       |             | 0                      | .6      |         | (53)  |
| Energy lost fro                 |              | _                                                | e, kWh/ye    | ear         |             |            | (47) x (51) | ) x (52) x (          | 53) =       |                        | 03      |         | (54)  |
| Enter (50) or                   | (54) IN (    | )<br>(CO                                         |              |             |             |            |             |                       |             | 1.                     | 03      |         | (55)  |
|                                 |              |                                                  |              |             |             |            |             |                       |             |                        |         |         |       |

|                                                                                                                                                                                                    | je loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | culated f                                                                                                                 | or each                                                                                         | month                                                                                          |                                                                     |                                                                           | ((56)m = (                                                                 | 55) × (41)r                                                | m                                              |                                                          |                                                |               |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|---------------|--------------------------------------|
| (56)m= 32.0°                                                                                                                                                                                       | 28.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.01                                                                                                                     | 30.98                                                                                           | 32.01                                                                                          | 30.98                                                               | 32.01                                                                     | 32.01                                                                      | 30.98                                                      | 32.01                                          | 30.98                                                    | 32.01                                          |               | (56)                                 |
| If cylinder conta                                                                                                                                                                                  | ins dedicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d solar sto                                                                                                               | rage, (57)ı                                                                                     | m = (56)m                                                                                      | x [(50) – (                                                         | H11)] ÷ (5                                                                | 0), else (5                                                                | 7)m = (56)                                                 | m where (                                      | H11) is fro                                              | m Append                                       | ix H          |                                      |
| (57)m= 32.0°                                                                                                                                                                                       | 28.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.01                                                                                                                     | 30.98                                                                                           | 32.01                                                                                          | 30.98                                                               | 32.01                                                                     | 32.01                                                                      | 30.98                                                      | 32.01                                          | 30.98                                                    | 32.01                                          |               | (57)                                 |
| Primary circu                                                                                                                                                                                      | uit loss (ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nual) fro                                                                                                                 | m Table                                                                                         | 3                                                                                              |                                                                     |                                                                           |                                                                            |                                                            |                                                |                                                          | 0                                              |               | (58)                                 |
| Primary circ                                                                                                                                                                                       | uit loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | culated t                                                                                                                 | for each                                                                                        | month (                                                                                        | 59)m = (                                                            | (58) ÷ 36                                                                 | 65 × (41)                                                                  | m                                                          |                                                |                                                          |                                                | •             |                                      |
| (modified                                                                                                                                                                                          | by factor f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rom Tab                                                                                                                   | le H5 if t                                                                                      | here is s                                                                                      | solar wat                                                           | er heatir                                                                 | ng and a                                                                   | cylinde                                                    | r thermo                                       | stat)                                                    |                                                |               |                                      |
| (59)m= 23.26                                                                                                                                                                                       | 3 21.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.26                                                                                                                     | 22.51                                                                                           | 23.26                                                                                          | 22.51                                                               | 23.26                                                                     | 23.26                                                                      | 22.51                                                      | 23.26                                          | 22.51                                                    | 23.26                                          |               | (59)                                 |
| Combi loss                                                                                                                                                                                         | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                                                  | month (                                                                                         | 61)m =                                                                                         | (60) ÷ 36                                                           | 65 × (41)                                                                 | )m                                                                         |                                                            |                                                |                                                          |                                                |               |                                      |
| (61)m= 0                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                         | 0                                                                                               | 0                                                                                              | 0                                                                   | 0                                                                         | 0                                                                          | 0                                                          | 0                                              | 0                                                        | 0                                              |               | (61)                                 |
| Total heat re                                                                                                                                                                                      | quired for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | water he                                                                                                                  | eating ca                                                                                       | alculated                                                                                      | for eac                                                             | h month                                                                   | (62)m =                                                                    | 0.85 × (                                                   | (45)m +                                        | (46)m +                                                  | (57)m +                                        | (59)m + (61)m |                                      |
| (62)m= 187.0                                                                                                                                                                                       | 2 165.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 174.17                                                                                                                    | 157.15                                                                                          | 154.74                                                                                         | 139.32                                                              | 134.81                                                                    | 146.54                                                                     | 145.85                                                     | 162.91                                         | 170.98                                                   | 182.86                                         |               | (62)                                 |
| Solar DHW inpu                                                                                                                                                                                     | ıt calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | using App                                                                                                                 | endix G or                                                                                      | Appendix                                                                                       | H (negati                                                           | ve quantity                                                               | /) (enter '0                                                               | if no sola                                                 | r contribut                                    | ion to wate                                              | er heating)                                    | •             |                                      |
| (add addition                                                                                                                                                                                      | nal lines if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FGHRS                                                                                                                     | and/or V                                                                                        | VWHRS                                                                                          | applies                                                             | , see Ap                                                                  | pendix (                                                                   | 3)                                                         |                                                |                                                          |                                                |               |                                      |
| (63)m= 0                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                         | 0                                                                                               | 0                                                                                              | 0                                                                   | 0                                                                         | 0                                                                          | 0                                                          | 0                                              | 0                                                        | 0                                              |               | (63)                                 |
| Output from                                                                                                                                                                                        | water hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ter                                                                                                                       |                                                                                                 |                                                                                                | •                                                                   |                                                                           |                                                                            |                                                            |                                                | •                                                        | •                                              | '             |                                      |
| (64)m= 187.0                                                                                                                                                                                       | 2 165.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 174.17                                                                                                                    | 157.15                                                                                          | 154.74                                                                                         | 139.32                                                              | 134.81                                                                    | 146.54                                                                     | 145.85                                                     | 162.91                                         | 170.98                                                   | 182.86                                         |               |                                      |
|                                                                                                                                                                                                    | _!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                  |                                                                                                 |                                                                                                | <u> </u>                                                            |                                                                           | Outp                                                                       | out from wa                                                | ater heate                                     | r (annual)₁                                              | 12                                             | 1921.48       | (64)                                 |
| Heat gains f                                                                                                                                                                                       | om water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | heating.                                                                                                                  | kWh/mo                                                                                          | onth 0.2                                                                                       | 5 ′ [0.85                                                           | × (45)m                                                                   | + (61)m                                                                    | n1 + 0.8 x                                                 | ( [(46)m                                       | + (57)m                                                  | + (59)m                                        | 1             | -                                    |
| (65)m= 88.02                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.75                                                                                                                     | 77.26                                                                                           | 77.29                                                                                          | 71.33                                                               | 70.67                                                                     | 74.57                                                                      | 73.5                                                       | 80.01                                          | 81.86                                                    | 86.64                                          | ,             | (65)                                 |
| include (5                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | culation (                                                                                                                | of (65)m                                                                                        | only if c                                                                                      | vlinder i                                                           | s in the o                                                                | lwellina<br>Iwellina                                                       | or hot w                                                   | ater is fr                                     | om com                                                   | munity h                                       | l<br>eating   |                                      |
| · ·                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           | 31 (33)                                                                                         | oy o                                                                                           | yao                                                                 |                                                                           |                                                                            | 0                                                          | ato: 10 11                                     | o oo                                                     |                                                | Joanna        |                                      |
|                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Lahla 5                                                                                                                 | and 5a                                                                                          | ١-                                                                                             |                                                                     |                                                                           |                                                                            |                                                            |                                                |                                                          |                                                |               |                                      |
|                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | and 5a                                                                                          | ):                                                                                             |                                                                     |                                                                           |                                                                            |                                                            |                                                |                                                          |                                                |               |                                      |
| Metabolic ga                                                                                                                                                                                       | ins (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5), Wat                                                                                                                   | ts                                                                                              |                                                                                                | lun                                                                 | 1, ,1                                                                     | Aug                                                                        | Son                                                        | Oct                                            | Nov                                                      | Doo                                            |               |                                      |
| Metabolic ga                                                                                                                                                                                       | ins (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5), Wat<br>Mar                                                                                                            | ts<br>Apr                                                                                       | May                                                                                            | Jun                                                                 | Jul                                                                       | Aug                                                                        | Sep                                                        | Oct                                            | Nov                                                      | Dec                                            |               | (66)                                 |
| Metabolic ga  Jar  (66)m= 98.02                                                                                                                                                                    | ins (Table<br>Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5), Wat<br>Mar<br>98.02                                                                                                   | ts<br>Apr<br>98.02                                                                              | May<br>98.02                                                                                   | 98.02                                                               | 98.02                                                                     | 98.02                                                                      | 98.02                                                      | Oct 98.02                                      | Nov<br>98.02                                             | Dec 98.02                                      |               | (66)                                 |
| Metabolic ga  Jar  (66)m= 98.02  Lighting gair                                                                                                                                                     | Feb 98.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.02<br>ted in Ap                                                                                                        | Apr<br>98.02<br>opendix                                                                         | May<br>98.02<br>., equat                                                                       | 98.02<br>ion L9 o                                                   | 98.02<br>r L9a), a                                                        | 98.02<br>Iso see                                                           | 98.02<br>Table 5                                           | 98.02                                          | 98.02                                                    | 98.02                                          |               | , ,                                  |
| Metabolic ga  Jan  (66)m= 98.02  Lighting gair  (67)m= 15.25                                                                                                                                       | Feb 98.02 s (calcula 13.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98.02<br>ted in Ap                                                                                                        | Apr<br>98.02<br>opendix<br>8.34                                                                 | May<br>98.02<br>_, equati<br>6.23                                                              | 98.02<br>ion L9 o<br>5.26                                           | 98.02<br>r L9a), a<br>5.69                                                | 98.02<br>Iso see 7.39                                                      | 98.02<br>Table 5<br>9.92                                   | 98.02                                          |                                                          |                                                |               | (66)<br>(67)                         |
| Metabolic ga  Jar  (66)m= 98.02  Lighting gair  (67)m= 15.29  Appliances g                                                                                                                         | reb 98.02 s (calcula 13.54 gains (calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.02<br>ted in Ap                                                                                                        | Apr<br>98.02<br>ppendix<br>8.34<br>Append                                                       | May<br>98.02<br>_, equati<br>6.23                                                              | 98.02<br>ion L9 o<br>5.26<br>uation L                               | 98.02<br>r L9a), a<br>5.69<br>13 or L1                                    | 98.02<br>Iso see<br>7.39<br>3a), also                                      | 98.02<br>Table 5<br>9.92<br>see Tal                        | 98.02<br>12.6<br>ble 5                         | 98.02                                                    | 98.02<br>15.67                                 |               | (67)                                 |
| Metabolic ga  Jan  (66)m= 98.02  Lighting gain  (67)m= 15.29  Appliances (68)m= 171.0                                                                                                              | Feb 98.02 s (calcula 13.54 gains (calc 5 172.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.02<br>ted in Ap<br>11.02<br>ulated in<br>168.35                                                                        | Apr<br>98.02<br>ppendix<br>8.34<br>Append<br>158.83                                             | May<br>98.02<br>L, equati<br>6.23<br>dix L, equati                                             | 98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51                    | 98.02<br>r L9a), a<br>5.69<br>13 or L1                                    | 98.02<br>Iso see 7.39<br>3a), also                                         | 98.02<br>Table 5<br>9.92<br>see Tal                        | 98.02<br>12.6<br>ble 5<br>140.19               | 98.02                                                    | 98.02                                          |               | , ,                                  |
| Metabolic ga  Jar  (66)m= 98.02  Lighting gair  (67)m= 15.29  Appliances g                                                                                                                         | Feb 98.02 s (calcula 13.54 gains (calc 5 172.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.02<br>ted in Ap<br>11.02<br>ulated in<br>168.35                                                                        | Apr<br>98.02<br>ppendix<br>8.34<br>Append<br>158.83                                             | May<br>98.02<br>L, equati<br>6.23<br>dix L, equati                                             | 98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51                    | 98.02<br>r L9a), a<br>5.69<br>13 or L1                                    | 98.02<br>Iso see 7.39<br>3a), also                                         | 98.02<br>Table 5<br>9.92<br>see Tal                        | 98.02<br>12.6<br>ble 5<br>140.19               | 98.02                                                    | 98.02<br>15.67                                 |               | (67)<br>(68)                         |
| Metabolic ga  Jan  (66)m= 98.02  Lighting gain  (67)m= 15.29  Appliances (68)m= 171.0                                                                                                              | reb 98.02 s (calcula 13.54 gains (calcula 172.83 ns (calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98.02<br>ted in Ap<br>11.02<br>ulated in<br>168.35                                                                        | Apr<br>98.02<br>ppendix<br>8.34<br>Append<br>158.83                                             | May<br>98.02<br>L, equati<br>6.23<br>dix L, equati                                             | 98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51                    | 98.02<br>r L9a), a<br>5.69<br>13 or L1                                    | 98.02<br>Iso see 7.39<br>3a), also                                         | 98.02<br>Table 5<br>9.92<br>see Tal                        | 98.02<br>12.6<br>ble 5<br>140.19               | 98.02                                                    | 98.02<br>15.67                                 |               | (67)                                 |
| Metabolic ga  Jar  (66)m= 98.02  Lighting gair  (67)m= 15.29  Appliances G  (68)m= 171.0  Cooking gair                                                                                             | reb 98.02 s (calcula 13.54 gains (calcula 172.83 ns (calcula 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.02<br>ted in Ap<br>11.02<br>ulated in<br>168.35<br>ated in A                                                           | Apr<br>98.02<br>opendix<br>8.34<br>Append<br>158.83<br>opendix<br>32.8                          | May<br>98.02<br>L, equati<br>6.23<br>dix L, equat<br>146.81<br>L, equat                        | 98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15         | 98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)              | 98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                            | 98.02  Table 5 9.92 9 see Tal 130.66 ee Table              | 98.02<br>12.6<br>ble 5<br>140.19               | 98.02<br>14.7<br>152.21                                  | 98.02<br>15.67<br>163.5                        |               | (67)<br>(68)                         |
| Metabolic ga  Jar  (66)m= 98.02  Lighting gair  (67)m= 15.29  Appliances g  (68)m= 171.0  Cooking gair  (69)m= 32.8                                                                                | reb 98.02 s (calcula 13.54 gains (calcula 172.83 ns (calcula 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.02<br>ted in Ap<br>11.02<br>ulated in<br>168.35<br>ated in A                                                           | Apr<br>98.02<br>opendix<br>8.34<br>Append<br>158.83<br>opendix<br>32.8                          | May<br>98.02<br>L, equati<br>6.23<br>dix L, equat<br>146.81<br>L, equat                        | 98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15         | 98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)              | 98.02<br>Iso see<br>7.39<br>3a), also<br>126.19                            | 98.02  Table 5 9.92 9 see Tal 130.66 ee Table              | 98.02<br>12.6<br>ble 5<br>140.19               | 98.02<br>14.7<br>152.21                                  | 98.02<br>15.67<br>163.5                        |               | (67)<br>(68)                         |
| Metabolic ga  Jan  (66)m= 98.02  Lighting gair  (67)m= 15.29  Appliances g  (68)m= 171.0  Cooking gair  (69)m= 32.8  Pumps and                                                                     | reb 98.02 s (calcula 13.54 gains (calcula 32.8 fans gains 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98.02 ted in Ap 11.02 ulated in 168.35 ted in Ap 32.8 (Table 5                                                            | Apr<br>98.02<br>opendix<br>8.34<br>Append<br>158.83<br>opendix<br>32.8<br>5a)                   | May<br>98.02<br>L, equati<br>6.23<br>dix L, equ<br>146.81<br>L, equat<br>32.8                  | 98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8 | 98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8      | 98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | 98.02 Table 5 9.92 see Tal 130.66 ee Table 32.8            | 98.02<br>12.6<br>ble 5<br>140.19<br>5<br>32.8  | 98.02<br>14.7<br>152.21<br>32.8                          | 98.02<br>15.67<br>163.5                        |               | (67)<br>(68)<br>(69)                 |
| Metabolic ga  [66]m= 98.02  Lighting gair (67)m= 15.25  Appliances (68)m= 171.0  Cooking gair (69)m= 32.8  Pumps and (70)m= 0                                                                      | reb service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service se | 98.02 ted in Ap 11.02 ulated in 168.35 ted in Ap 32.8 (Table 5                                                            | Apr<br>98.02<br>opendix<br>8.34<br>Append<br>158.83<br>opendix<br>32.8<br>5a)                   | May<br>98.02<br>L, equati<br>6.23<br>dix L, equ<br>146.81<br>L, equat<br>32.8                  | 98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8 | 98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8      | 98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>), also se<br>32.8      | 98.02 Table 5 9.92 see Tal 130.66 ee Table 32.8            | 98.02<br>12.6<br>ble 5<br>140.19<br>5<br>32.8  | 98.02<br>14.7<br>152.21<br>32.8                          | 98.02<br>15.67<br>163.5                        |               | (67)<br>(68)<br>(69)                 |
| Metabolic gas  Jar  (66)m= 98.02  Lighting gair  (67)m= 15.29  Appliances g  (68)m= 171.0  Cooking gair  (69)m= 32.8  Pumps and f  (70)m= 0  Losses e.g.                                           | Feb   98.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98.02 ted in Ap 11.02 ulated in 168.35 ated in A 32.8 (Table 5 0 on (negating 1-78.41                                     | Apr<br>98.02<br>ppendix<br>8.34<br>Append<br>158.83<br>ppendix<br>32.8<br>5a)<br>0              | May 98.02  L, equati 6.23  dix L, equati 146.81  L, equati 32.8  0  es) (Tab                   | 98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8 | 98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8      | 98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>0, also se<br>32.8      | 98.02 Table 5 9.92 see Tal 130.66 ee Table 32.8            | 98.02  12.6  ble 5  140.19  5  32.8            | 98.02<br>14.7<br>152.21<br>32.8                          | 98.02<br>15.67<br>163.5<br>32.8                |               | (67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gas  [66]m= 98.02  Lighting gair [67]m= 15.29  Appliances (68)m= 171.0  Cooking gair [69]m= 32.8  Pumps and from the cooking gair [70]m= 0  Losses e.g. [71]m= -78.4                     | revaporation of the page 1 of the page 1 of the page 2 of the page 2 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of the page 3 of  | 98.02 ted in Ap 11.02 ulated in 168.35 ated in A 32.8 (Table 5 0 on (negating 1-78.41                                     | Apr<br>98.02<br>ppendix<br>8.34<br>Append<br>158.83<br>ppendix<br>32.8<br>5a)<br>0              | May 98.02  L, equati 6.23  dix L, equati 146.81  L, equati 32.8  0  es) (Tab                   | 98.02<br>ion L9 of<br>5.26<br>uation L<br>135.51<br>ion L15<br>32.8 | 98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8      | 98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>0, also se<br>32.8      | 98.02 Table 5 9.92 see Tal 130.66 ee Table 32.8            | 98.02  12.6  ble 5  140.19  5  32.8            | 98.02<br>14.7<br>152.21<br>32.8                          | 98.02<br>15.67<br>163.5<br>32.8                |               | (67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gas  Jar  (66)m= 98.02  Lighting gair  (67)m= 15.29  Appliances g  (68)m= 171.0  Cooking gair  (69)m= 32.8  Pumps and f  (70)m= 0  Losses e.g.  (71)m= -78.4  Water heatir  (72)m= 118.3 | Table   Feb   98.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98.02  ted in Ap 11.02  ulated in 168.35  ted in Ap 32.8  (Table 5 0  n (negation of the context) -78.41  able 5)  112.57 | Apr<br>98.02<br>ppendix<br>8.34<br>Append<br>158.83<br>opendix<br>32.8<br>5a)<br>0<br>tive valu | May<br>98.02<br>L, equati<br>6.23<br>dix L, equ<br>146.81<br>L, equat<br>32.8<br>0<br>es) (Tab | 98.02 ion L9 of 5.26 uation L 135.51 ion L15 32.8  0 le 5) -78.41   | 98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8<br>0 | 98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>0, also se<br>32.8<br>0 | 98.02 Table 5 9.92 see Tal 130.66 ee Table 32.8 0 -78.41   | 98.02  12.6  ble 5  140.19  5  32.8  0  -78.41 | 98.02<br>14.7<br>152.21<br>32.8<br>0<br>-78.41<br>113.69 | 98.02<br>15.67<br>163.5<br>32.8<br>0<br>-78.41 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Metabolic ga  Jar  (66)m= 98.02  Lighting gair  (67)m= 15.29  Appliances G  (68)m= 171.0  Cooking gair  (69)m= 32.8  Pumps and G  (70)m= 0  Losses e.g.  (71)m= -78.4  Water heatin                | Table   Feb   98.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98.02  ted in Ap 11.02  ulated in 168.35  ted in Ap 32.8  (Table 5 0  n (negation of the context) -78.41  able 5)  112.57 | Apr<br>98.02<br>ppendix<br>8.34<br>Append<br>158.83<br>opendix<br>32.8<br>5a)<br>0<br>tive valu | May<br>98.02<br>L, equati<br>6.23<br>dix L, equ<br>146.81<br>L, equat<br>32.8<br>0<br>es) (Tab | 98.02 ion L9 of 5.26 uation L 135.51 ion L15 32.8  0 le 5) -78.41   | 98.02<br>r L9a), a<br>5.69<br>13 or L1<br>127.97<br>or L15a)<br>32.8<br>0 | 98.02<br>Iso see<br>7.39<br>3a), also<br>126.19<br>0, also se<br>32.8<br>0 | 98.02 Table 5 9.92 see Tal 130.66 ee Table 32.8  0  -78.41 | 98.02  12.6  ble 5  140.19  5  32.8  0  -78.41 | 98.02<br>14.7<br>152.21<br>32.8<br>0<br>-78.41<br>113.69 | 98.02<br>15.67<br>163.5<br>32.8<br>0<br>-78.41 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Fact<br>Table 6d | tor | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|--------------------------------------|-----|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                  | X   | 4.21       | x | 11.28            | x | 0.55           | x | 0.7            | =        | 12.67        | (75) |
| Northeast <sub>0.9x</sub> 0.77       | ×   | 4.21       | x | 22.97            | x | 0.55           | x | 0.7            | =        | 25.8         | (75) |
| Northeast 0.9x 0.77                  | ×   | 4.21       | x | 41.38            | x | 0.55           | x | 0.7            | ] =      | 46.48        | (75) |
| Northeast 0.9x 0.77                  | ×   | 4.21       | x | 67.96            | x | 0.55           | x | 0.7            | ] =      | 76.33        | (75) |
| Northeast 0.9x 0.77                  | X   | 4.21       | x | 91.35            | x | 0.55           | x | 0.7            | =        | 102.6        | (75) |
| Northeast 0.9x 0.77                  | x   | 4.21       | x | 97.38            | x | 0.55           | x | 0.7            | ] =      | 109.39       | (75) |
| Northeast 0.9x 0.77                  | X   | 4.21       | x | 91.1             | X | 0.55           | x | 0.7            | =        | 102.33       | (75) |
| Northeast 0.9x 0.77                  | x   | 4.21       | x | 72.63            | x | 0.55           | x | 0.7            | <b>=</b> | 81.58        | (75) |
| Northeast <sub>0.9x</sub> 0.77       | ×   | 4.21       | x | 50.42            | x | 0.55           | x | 0.7            | ] =      | 56.63        | (75) |
| Northeast 0.9x 0.77                  | x   | 4.21       | x | 28.07            | x | 0.55           | x | 0.7            | <b>=</b> | 31.53        | (75) |
| Northeast <sub>0.9x</sub> 0.77       | X   | 4.21       | x | 14.2             | x | 0.55           | x | 0.7            | <b>=</b> | 15.95        | (75) |
| Northeast 0.9x 0.77                  | X   | 4.21       | x | 9.21             | x | 0.55           | x | 0.7            | ] =      | 10.35        | (75) |
| Northwest 0.9x 0.77                  | x   | 8.26       | x | 11.28            | x | 0.55           | x | 0.7            | <b>=</b> | 24.87        | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 11.28            | x | 0.55           | x | 0.7            | <b>=</b> | 9.66         | (81) |
| Northwest 0.9x 0.77                  | ×   | 4.37       | x | 11.28            | x | 0.55           | x | 0.7            | <b>=</b> | 13.16        | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 22.97            | x | 0.55           | x | 0.7            | <b>=</b> | 50.61        | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 22.97            | x | 0.55           | x | 0.7            | <b>=</b> | 19.67        | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | x | 22.97            | x | 0.55           | x | 0.7            | <b>=</b> | 26.78        | (81) |
| Northwest 0.9x 0.77                  | x   | 8.26       | x | 41.38            | X | 0.55           | X | 0.7            | <b>=</b> | 91.19        | (81) |
| Northwest 0.9x 0.77                  | x   | 3.21       | x | 41.38            | X | 0.55           | x | 0.7            | ] =      | 35.44        | (81) |
| Northwest 0.9x 0.77                  | x   | 4.37       | x | 41.38            | x | 0.55           | x | 0.7            | ] =      | 48.25        | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 67.96            | x | 0.55           | x | 0.7            | <b>=</b> | 149.76       | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 58.2         | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 79.23        | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 91.35            | X | 0.55           | X | 0.7            | =        | 201.31       | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 91.35            | X | 0.55           | X | 0.7            | =        | 78.23        | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | X | 91.35            | X | 0.55           | X | 0.7            | =        | 106.5        | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 97.38            | X | 0.55           | X | 0.7            | <b>=</b> | 214.62       | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 97.38            | X | 0.55           | X | 0.7            | <b>=</b> | 83.4         | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | x | 97.38            | X | 0.55           | X | 0.7            | <b>=</b> | 113.54       | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 91.1             | X | 0.55           | X | 0.7            | <b>=</b> | 200.77       | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 91.1             | X | 0.55           | X | 0.7            | <b>=</b> | 78.02        | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | X | 91.1             | X | 0.55           | X | 0.7            | =        | 106.22       | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 72.63            | X | 0.55           | X | 0.7            | =        | 160.06       | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 72.63            | x | 0.55           | x | 0.7            | =        | 62.2         | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | x | 72.63            | x | 0.55           | x | 0.7            | =        | 84.68        | (81) |
| Northwest 0.9x 0.77                  | X   | 8.26       | x | 50.42            | x | 0.55           | x | 0.7            | =        | 111.12       | (81) |
| Northwest 0.9x 0.77                  | X   | 3.21       | x | 50.42            | x | 0.55           | x | 0.7            | ] =      | 43.18        | (81) |
| Northwest 0.9x 0.77                  | X   | 4.37       | × | 50.42            | x | 0.55           | X | 0.7            | =        | 58.79        | (81) |

| Northwest 0.9x             | 0.77         | ×                 | 8.26                                             |              | , [        | 28.07         | 7 x        | 0.55           | ×        | 0.7           |              | 61.85  | (81) |
|----------------------------|--------------|-------------------|--------------------------------------------------|--------------|------------|---------------|------------|----------------|----------|---------------|--------------|--------|------|
| Northwest 0.9x             | 0.77         | $=$ $\frac{1}{x}$ | 3.21                                             | <del></del>  | <u>`</u>   | 28.07         | 」 ^<br>] x | 0.55           | -        | 0.7           | <del>-</del> | 24.04  | (81) |
| Northwest 0.9x             | 0.77         | $=$ $\frac{1}{x}$ | 4.37                                             | <del> </del> | <u>`</u>   | 28.07         | 」 ^<br>] x | 0.55           | ^<br>  x | 0.7           | ╡ .          | 32.72  | (81) |
| Northwest <sub>0.9x</sub>  | 0.77         | ×                 | 8.26                                             | <del></del>  | ` <u> </u> | 14.2          | ]          | 0.55           | i x      | 0.7           | = =          | 31.29  | (81) |
| Northwest <sub>0.9x</sub>  | 0.77         | ×                 | 3.21                                             | <del></del>  | , <u> </u> | 14.2          | ] x        | 0.55           | →     ×  | 0.7           | ╡ .          | 12.16  | (81) |
| Northwest 0.9x             | 0.77         | ×                 | 4.37                                             | <del> </del> | ,          | 14.2          | ]<br>]     | 0.55           | ×        | 0.7           | = =          | 16.55  | (81) |
| Northwest 0.9x             | 0.77         | X                 | 8.26                                             | <del></del>  | ,          | 9.21          | ]<br>]     | 0.55           | →   ×    | 0.7           | = =          | 20.31  | (81) |
| Northwest <sub>0.9x</sub>  | 0.77         | ×                 | 3.21                                             | $\dashv$     | ,          | 9.21          | X          | 0.55           | →     ×  | 0.7           | _ =          | 7.89   | (81) |
| Northwest <sub>0.9x</sub>  | 0.77         | x                 | 4.37                                             |              | , 🗀        | 9.21          | X          | 0.55           | ×        | 0.7           | =            | 10.74  | (81) |
| Rooflights 0.9x            | 1            | ×                 | 1.61                                             |              | , <u> </u> | 26            | j x        | 0.55           | ×        | 0.8           |              | 16.58  | (82) |
| Rooflights <sub>0.9x</sub> | 1            | ×                 | 1.61                                             |              | , <u> </u> | 54            | X          | 0.55           | ×        | 0.8           | _            | 34.43  | (82) |
| Rooflights 0.9x            | 1            | x                 | 1.61                                             |              | , <u> </u> | 96            | X          | 0.55           | ×        | 0.8           | =            | 61.21  | (82) |
| Rooflights 0.9x            | 1            | x                 | 1.61                                             | =            | ·          | 150           | X          | 0.55           | x        | 0.8           | =            | 95.63  | (82) |
| Rooflights <sub>0.9x</sub> | 1            | ×                 | 1.61                                             |              | ⟨ 🗀        | 192           | X          | 0.55           | ×        | 0.8           | =            | 122.41 | (82) |
| Rooflights <sub>0.9x</sub> | 1            | x                 | 1.61                                             |              | · _        | 200           | X          | 0.55           | x        | 0.8           | =            | 127.51 | (82) |
| Rooflights <sub>0.9x</sub> | 1            | x                 | 1.61                                             |              | <b>(</b>   | 189           | X          | 0.55           | x        | 0.8           | =            | 120.5  | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X                 | 1.61                                             |              | (          | 157           | X          | 0.55           | X        | 0.8           | =            | 100.1  | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X                 | 1.61                                             |              | (          | 115           | X          | 0.55           | x        | 0.8           | =            | 73.32  | (82) |
| Rooflights <sub>0.9x</sub> | 1            | X                 | 1.61                                             |              | ·          | 66            | X          | 0.55           | X        | 0.8           | =            | 42.08  | (82) |
| Rooflights 0.9x            | 1            | X                 | 1.61                                             |              | (          | 33            | X          | 0.55           | X        | 0.8           | =            | 21.04  | (82) |
| Rooflights 0.9x            | 1            | X                 | 1.61                                             |              | <b>(</b>   | 21            | X          | 0.55           | X        | 0.8           | =            | 13.39  | (82) |
|                            |              |                   |                                                  |              |            |               |            |                |          |               |              |        |      |
| Solar gains in             |              |                   |                                                  |              |            |               | T T        | n = Sum(74)m . |          |               | I            | 1      | (22) |
| (83)m= 76.93               |              | 82.56             |                                                  | 11.06        | 648.4      |               | 488        | .61 343.04     | 192.2    | 96.98         | 62.68        |        | (83) |
| Total gains – ii           |              |                   | <del>`                                    </del> | <del>'</del> | • •        |               | 1          | 00 000 40      | 504.0    | - 1 400 00    | 140.70       | I      | (94) |
| (84)m= 433.95              | LL_          | 26.91             |                                                  | 20.4         | 940.7      | 2 888.88      | 774        | .82 638.12     | 504.9    | 429.99        | 410.72       |        | (84) |
| 7. Mean inter              |              |                   |                                                  | ·            |            |               |            |                |          |               |              |        | _    |
| Temperature                | •            | •                 |                                                  |              | -          |               | ble 9      | , Th1 (°C)     |          |               |              | 21     | (85) |
| Utilisation fac            |              | - 1               |                                                  |              | <u> </u>   | <del></del>   |            | -              |          | T             | _            | Ī      |      |
| Jan                        |              | Mar               | <del></del>                                      | May          | Jur        | +             | +          | ug Sep         | Oct      | +             | Dec          |        |      |
| (86)m= 1                   | 0.99         | 0.96              | 0.87                                             | 0.68         | 0.48       | 0.35          | 0.4        | 0.71           | 0.95     | 0.99          | 1            |        | (86) |
| Mean interna               |              |                   | <del>_</del>                                     | <del>`</del> |            | <del>-i</del> | _          | <u> </u>       |          |               | 1            | 1      |      |
| (87)m= 19.77               | 19.96        | 20.3              | 20.7 2                                           | 0.93         | 20.99      | 21            | 2          | 1 20.94        | 20.58    | 20.1          | 19.74        |        | (87) |
| Temperature                | during hea   | iting pe          | eriods in re                                     | est of o     | dwellii    | ng from Ta    | able 9     | 9, Th2 (°C)    |          |               |              |        |      |
| (88)m= 19.89               | 19.9         | 19.9              | 19.91 1                                          | 9.91         | 19.92      | 19.92         | 19.        | 92 19.92       | 19.91    | 19.91         | 19.9         |        | (88) |
| Utilisation fac            | tor for gain | s for r           | est of dwe                                       | lling, h     | 2,m (      | see Table     | 9a)        |                |          |               |              |        |      |
| (89)m= 0.99                | 0.99         | 0.95              | 0.83                                             | 0.61         | 0.4        | 0.27          | 0.3        | 0.62           | 0.92     | 0.99          | 1            |        | (89) |
| Mean interna               | I temperatu  | ıre in t          | he rest of                                       | dwelli       | ng T2      | (follow ste   | eps 3      | to 7 in Tabl   | e 9c)    |               |              |        |      |
| (90)m= 18.28               |              | 19.04             |                                                  | 9.85         | 19.91      | <del>`</del>  | 19.        |                | 19.44    | 18.76         | 18.23        |        | (90) |
|                            |              |                   |                                                  |              |            | •             | •          | ·              | LA = Liv | ving area ÷ ( | 4) =         | 0.47   | (91) |
|                            |              |                   |                                                  |              |            |               |            |                |          |               |              |        |      |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18.97 19.21 19.63 20.11 20.35                                                                                                                                                                                                                                                                                                                                                                            | 20.42                                      | 20.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.42                                | 20.37                                 | 19.97                         | 19.39                           | 18.94                  |                                                             | (92)                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------|---------------------------------|------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|
| Apply adjustment to the mean internal temperate                                                                                                                                                                                                                                                                                                                                                                 | ture fror                                  | n Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4e, whe                              | ere appro                             | priate                        |                                 |                        |                                                             |                                                                         |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                             | 20.42                                      | 20.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.42                                | 20.37                                 | 19.97                         | 19.39                           | 18.94                  |                                                             | (93)                                                                    |
| 8. Space heating requirement                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                               |                                 |                        |                                                             |                                                                         |
| Set Ti to the mean internal temperature obtaine the utilisation factor for gains using Table 9a                                                                                                                                                                                                                                                                                                                 | ed at ste                                  | p 11 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l able 9                             | o, so tha                             | t li,m=(                      | 76)m an                         | d re-calc              | ulate                                                       |                                                                         |
| Jan Feb Mar Apr May                                                                                                                                                                                                                                                                                                                                                                                             | Jun                                        | Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug                                  | Sep                                   | Oct                           | Nov                             | Dec                    |                                                             |                                                                         |
| Utilisation factor for gains, hm:                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                               |                                 |                        |                                                             |                                                                         |
| (94)m= 0.99 0.98 0.95 0.84 0.64                                                                                                                                                                                                                                                                                                                                                                                 | 0.43                                       | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.37                                 | 0.66                                  | 0.92                          | 0.98                            | 0.99                   |                                                             | (94)                                                                    |
| Useful gains, hmGm , W = (94)m x (84)m                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                               |                                 |                        |                                                             |                                                                         |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                             | 408.88                                     | 271.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 283.77                               | 419.88                                | 466.08                        | 423.02                          | 408.09                 |                                                             | (95)                                                                    |
| Monthly average external temperature from Tab                                                                                                                                                                                                                                                                                                                                                                   |                                            | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.4                                 | 14.1                                  | 10.6                          | 7.1                             | 40                     |                                                             | (06)                                                                    |
| (96)m= 4.3 4.9 6.5 8.9 11.7 Heat loss rate for mean internal temperature, Li                                                                                                                                                                                                                                                                                                                                    | 14.6 m                                     | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.4                                 | 14.1                                  | 10.6                          | 7.1                             | 4.2                    |                                                             | (96)                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | 413.15                                     | 271.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 285.16                               | 447.19                                | 672.98                        | 885.79                          | 1067                   |                                                             | (97)                                                                    |
| Space heating requirement for each month, kW                                                                                                                                                                                                                                                                                                                                                                    | l<br>/h/montl                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | I<br>)m – (95                         | )m] x (4                      | 1)m                             |                        |                                                             |                                                                         |
| (98)m= 476.97 362.3 267.25 106.21 25.13                                                                                                                                                                                                                                                                                                                                                                         | 0                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                    | 0                                     | 153.93                        | 333.2                           | 490.22                 |                                                             |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tota                                 | l per year                            | (kWh/year                     | ) = Sum(9                       | 8) <sub>15,912</sub> = | 2215.21                                                     | (98)                                                                    |
| Space heating requirement in kWh/m²/year                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                               |                                 | ĺ                      | 37.39                                                       | (99)                                                                    |
| 9b. Energy requirements – Community heating s                                                                                                                                                                                                                                                                                                                                                                   | cheme                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                               |                                 |                        |                                                             |                                                                         |
| This part is used for space heating, space coolin                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                               | unity sch                       | neme.                  |                                                             | _                                                                       |
| Fraction of space heat from secondary/supplement                                                                                                                                                                                                                                                                                                                                                                | entary h                                   | eating (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 1                              | 1) '0' if n                           | one                           |                                 |                        | 0                                                           | (301)                                                                   |
| Fraction of space heat from community system 1                                                                                                                                                                                                                                                                                                                                                                  | 1 – (301                                   | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                       |                               |                                 |                        | 1                                                           | (302)                                                                   |
| The community scheme may obtain heat from several source                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | allows for                           | CHP and t                             | up to four o                  | other heat                      | sources: tl            |                                                             |                                                                         |
| includes boilers, heat pumps, geothermal and waste heat fro<br>Fraction of heat from Community heat pump                                                                                                                                                                                                                                                                                                        | om power                                   | stations !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                       |                               |                                 |                        | ne latter                                                   |                                                                         |
| Fraction of heat from Community heat pump (Wa                                                                                                                                                                                                                                                                                                                                                                   |                                            | olaliono. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See Appei                            | ndix C.                               |                               |                                 |                        |                                                             | (303a)                                                                  |
| reaction of neat norm Community neat pump (vva                                                                                                                                                                                                                                                                                                                                                                  | ator)                                      | otatione.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See Appei                            | ndix C.                               |                               |                                 | <br> <br>              | 1                                                           | (303a)                                                                  |
| Erection of community heat from heat course 2 (                                                                                                                                                                                                                                                                                                                                                                 | ,                                          | olano no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See Appei                            | ndix C.                               |                               |                                 |                        | 0.7                                                         | (303a)                                                                  |
| Fraction of community heat from heat source 2 (                                                                                                                                                                                                                                                                                                                                                                 | Water)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See Appei                            | ndix C.                               | (0)                           | 00) (000                        | [                      | 0.7                                                         | (303a)<br>(303b)                                                        |
| Fraction of total space heat from Community hea                                                                                                                                                                                                                                                                                                                                                                 | Water)<br>at pump                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                               | 02) x (303                      | [                      | 0.7                                                         | (303a)<br>(303b)<br>(304a)                                              |
| ·                                                                                                                                                                                                                                                                                                                                                                                                               | Water)<br>at pump                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                               | 02) x (303                      | [                      | 0.7                                                         | (303a)<br>(303b)                                                        |
| Fraction of total space heat from Community hea                                                                                                                                                                                                                                                                                                                                                                 | Water) at pump c(3)) for                   | commu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inity hea                            |                                       |                               | 02) x (303.                     | [                      | 1<br>0.7<br>0.3                                             | (303a)<br>(303b)<br>(304a)                                              |
| Fraction of total space heat from Community hear Factor for control and charging method (Table 4d                                                                                                                                                                                                                                                                                                               | Water) at pump c(3)) for y heatin          | commu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inity hea                            | ating sys                             |                               | 02) x (303                      | [                      | 1<br>0.7<br>0.3<br>1                                        | (303a)<br>(303b)<br>(304a)<br>(305)                                     |
| Fraction of total space heat from Community heat Factor for control and charging method (Table 4d Distribution loss factor (Table 12c) for community                                                                                                                                                                                                                                                            | Water) at pump c(3)) for y heatin          | commu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inity hea                            | ating sys                             |                               | 02) x (303                      | [                      | 1<br>0.7<br>0.3<br>1<br>1<br>1.05                           | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of total space heat from Community heat Factor for control and charging method (Table 4d Distribution loss factor (Table 12c) for community Distribution loss factor (Table 12c) for community                                                                                                                                                                                                         | Water) at pump c(3)) for y heatin          | commu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inity hea                            | ating sys                             |                               | 02) x (303                      | [                      | 1<br>0.7<br>0.3<br>1<br>1<br>1.05                           | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of total space heat from Community heat Factor for control and charging method (Table 4d Distribution loss factor (Table 12c) for community Distribution loss factor (Table 12c) for community Space heating                                                                                                                                                                                           | Water) at pump c(3)) for y heatin          | commu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inity hea                            | ating sys<br>er)                      |                               |                                 | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 kWh/year                            | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of total space heat from Community heat Factor for control and charging method (Table 4d Distribution loss factor (Table 12c) for community Distribution loss factor (Table 12c) for community Space heating Annual space heating requirement                                                                                                                                                          | Water) at pump c(3)) for y heatin y heatin | commu<br>ng syster<br>ng syster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inity hea<br>n<br>n (Wate            | ating sys<br>er)<br>(98) x (30        | tem<br>04a) x (305            | 5) x (306) =                    | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 kWh/year 2215.21                    | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of total space heat from Community heat Factor for control and charging method (Table 4d Distribution loss factor (Table 12c) for community Distribution loss factor (Table 12c) for community Space heating Annual space heating requirement Space heat from Community heat pump                                                                                                                      | Water) at pump c(3)) for y heatin y heatin | commung systering systering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inity hea<br>n<br>n (Wate<br>m Table | er)<br>(98) x (30<br>e 4a or A        | tem<br>04a) x (305            | 5) x (306) =<br>E)              | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 2215.21 2325.97     | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of total space heat from Community heat Factor for control and charging method (Table 4d Distribution loss factor (Table 12c) for community Distribution loss factor (Table 12c) for community Space heating Annual space heating requirement Space heat from Community heat pump Efficiency of secondary/supplementary heating s Space heating requirement from secondary/supplementary               | Water) at pump c(3)) for y heatin y heatin | commung systering systering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inity hea<br>n<br>n (Wate<br>m Table | er)<br>(98) x (30<br>e 4a or A        | tem<br>04a) x (308<br>ppendix | 5) x (306) =<br>E)              | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 2215.21 2325.97 0   | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)<br>(307a)<br>(308 |
| Fraction of total space heat from Community heat Factor for control and charging method (Table 4d Distribution loss factor (Table 12c) for community Distribution loss factor (Table 12c) for community Space heating Annual space heating requirement Space heat from Community heat pump Efficiency of secondary/supplementary heating s                                                                      | Water) at pump c(3)) for y heatin y heatin | commung systering systering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inity hea<br>n<br>n (Wate<br>m Table | er)<br>(98) x (30<br>e 4a or A        | tem<br>04a) x (308<br>ppendix | 5) x (306) =<br>E)              | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 2215.21 2325.97 0   | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)<br>(307a)<br>(308 |
| Fraction of total space heat from Community heat Factor for control and charging method (Table 4d Distribution loss factor (Table 12c) for community Distribution loss factor (Table 12c) for community Space heating Annual space heating requirement Space heat from Community heat pump Efficiency of secondary/supplementary heating s Space heating requirement from secondary/supplementary Water heating | Water) at pump c(3)) for y heatin y heatin | commung systeming systeming systeming systeming materials and the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the communication of the commun | inity hea<br>n<br>n (Wate<br>m Table | (98) x (30<br>e 4a or A<br>(98) x (30 | tem<br>04a) x (308<br>ppendix | 5) x (306) =<br>E)<br>- (308) = | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 2215.21 2325.97 0 0 | (303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)<br>(307a)<br>(308 |

| Motor boot from boot course 2 (Motor)                                             |                             | (64) v (2020) v          | (205) × (206) =               | 005.07                | (310b)    |
|-----------------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------|-----------------------|-----------|
| Water heat from heat source 2 (Water)                                             |                             |                          | (305) x (306) =               | 605.27                | ╡`        |
| Electricity used for heat distribution                                            |                             | -, , ,                   | 'e) + (310a)(310e)] =         | 23.26                 | (313)     |
| Electricity used for heat distribution (Wa                                        | ,                           | 0.01 × [(307a)(307       | 'e) + (310a)(310e)] =         | 20.18                 | (313)     |
| Cooling System Energy Efficiency Ratio                                            |                             |                          |                               | 0                     | (314)     |
| Space cooling (if there is a fixed cooling                                        | ,                           | = (107) ÷ (314)          | ) <b>=</b>                    | 0                     | (315)     |
| Electricity for pumps and fans within dw mechanical ventilation - balanced, extra | • · · · · · ·               | utside                   |                               | 129.3                 | (330a)    |
| warm air heating system fans                                                      |                             |                          |                               | 0                     | (330b)    |
| pump for solar water heating                                                      |                             |                          |                               | 0                     | (330g)    |
| Total electricity for the above, kWh/yea                                          | r                           | =(330a) + (330           | b) + (330g) =                 | 129.3                 | (331)     |
| Energy for lighting (calculated in Appen                                          | dix L)                      |                          |                               | 269.31                | (332)     |
| Electricity generated by PVs (Appendix                                            | M) (negative quantity)      |                          |                               | -684.44               | (333)     |
| Electricity generated by wind turbine (A                                          | ppendix M) (negative quar   | ntity)                   |                               | 0                     | (334)     |
| 12b. CO2 Emissions – Community hea                                                | ting scheme                 |                          |                               |                       |           |
|                                                                                   |                             | Energy<br>kWh/year       | Emission factor<br>kg CO2/kWh | Emissions kg CO2/year |           |
| CO2 from other sources of space and v                                             |                             |                          |                               |                       |           |
| Efficiency of heat source 1 (%)                                                   | If there is CHP using t     | wo fuels repeat (363) to | (366) for the second fue      | 300                   | (367a)    |
| CO2 associated with heat source 1                                                 | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0.52                          | 402.39                | (367)     |
| Electrical energy for heat distribution                                           | [(3                         | 313) x                   | 0.52                          | 12.07                 | (372)     |
| Water heating from separate communit                                              | y system                    |                          |                               |                       |           |
| CO2 from other sources of space and Efficiency of heat source 1 (%)               |                             | wo fuels repeat (363) to | (366) for the second fue      | el 300                | (367a)    |
| Efficiency of heat source 2 (%)                                                   | If there is CHP using t     | wo fuels repeat (363) to | (366) for the second fue      | el 100                | (367b)    |
| CO2 associated with heat source 1                                                 | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0                             | 244.33                | (367)     |
| CO2 associated with heat source 2                                                 | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0.52                          | 314.13                | (368)     |
| Electrical energy for heat distribution                                           | [(3                         | 313) x                   | 0.52                          | 10.47                 | (372)     |
| Total CO2 associated with community s                                             | systems (30                 | 63)(366) + (368)(37      | 2)                            | 983.4                 | (373)     |
| CO2 associated with space heating (se                                             | condary) (30                | 09) x                    | 0                             | = 0                   | (374)     |
| CO2 associated with water from immer                                              | sion heater or instantaneo  | us heater (312) x        | 0.52                          | 0                     | (375)     |
| Total CO2 associated with space and v                                             | vater heating (3            | 73) + (374) + (375) =    |                               | 983.4                 | (376)     |
| CO2 associated with electricity for pum                                           | ps and fans within dwelling | g (331)) x               | 0.52                          | 67.11                 | (378)     |
| CO2 associated with electricity for light                                         | ing (3                      | 32))) x                  | 0.52                          | 139.77                | (379)     |
| Energy saving/generation technologies Item 1                                      | (333) to (334) as applicab  | le                       | 0.52 x 0.01 =                 | -355.23               | (380)     |
| Total CO2, kg/year                                                                | sum of (376)(382) =         | L                        |                               | 835.05                | (383)     |
| Dwelling CO2 Emission Rate                                                        | (383) ÷ (4) =               |                          |                               | 14.09                 | (384)     |
| <b>3</b>                                                                          |                             |                          |                               |                       | <b></b> ' |

El rating (section 14)

89.27 (385)

|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | User [       | Details:     |              |            |          |           |              |      |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|------------|----------|-----------|--------------|------|
| Assessor Name:                                              | Chris Hocknell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Strom        | a Num        | ber:       |          | STRO      | 016363       |      |
| Software Name:                                              | Stroma FSAP 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Softwa       | -            |            |          |           | n: 1.0.4.16  |      |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Property     | Address      | : Apartm     | ent 3      |          |           |              |      |
| Address :                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |            |          |           |              |      |
| 1. Overall dwelling dime                                    | ensions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |              |              |            |          |           |              |      |
| Ground floor                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | a(m²)        | (40) v       |            | ight(m)  | 7(20) -   | Volume(m³)   | _    |
|                                                             | N. (41 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 N. (4 |              |              | (1a) x       |            | 2.7      | (2a) =    | 196.69       | (3a) |
|                                                             | a)+(1b)+(1c)+(1d)+(1e)+(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1n)          | 72.85        | (4)          |            |          |           |              | _    |
| Dwelling volume                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | (3a)+(3b     | )+(3c)+(3c | d)+(3e)+ | (3n) =    | 196.69       | (5)  |
| 2. Ventilation rate:                                        | main accord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | a Alba y     |              | total      |          |           | ma3 may bay  |      |
|                                                             | main second<br>heating heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | other        |              | total      |          |           | m³ per hou   | _    |
| Number of chimneys                                          | 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +            | 0            | _ = [        | 0          | X        | 40 =      | 0            | (6a) |
| Number of open flues                                        | 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +            | 0            | ] = [        | 0          | X :      | 20 =      | 0            | (6b) |
| Number of intermittent fa                                   | ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |              | 0          | X        | 10 =      | 0            | (7a) |
| Number of passive vents                                     | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |              | Ī            | 0          | x '      | 10 =      | 0            | (7b) |
| Number of flueless gas fi                                   | ires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              | Ī            | 0          | x -      | 40 =      | 0            | (7c) |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | <u> </u>     |            |          |           |              |      |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |            |          | Air ch    | anges per ho | ur   |
|                                                             | ys, flues and fans = (6a)+(6b)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              | 0          |          | ÷ (5) =   | 0            | (8)  |
| If a pressurisation test has be<br>Number of storeys in the | peen carried out or is intended, proc<br>he dwelling (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eed to (17), | otherwise (  | continue fr  | om (9) to  | (16)     |           | 0            | (9)  |
| Additional infiltration                                     | ne aweiling (113)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |              |            | [(9)     | -1]x0.1 = | 0            | (10) |
|                                                             | .25 for steel or timber frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or 0.35 fo   | r masoni     | ry constr    | uction     | L(°)     | •         | 0            | (11) |
|                                                             | resent, use the value corresponding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to the grea  | ter wall are | a (after     |            |          |           |              | _    |
| deducting areas of openii                                   | <sub>ngs); if equal user 0.35</sub><br>floor, enter 0.2 (unsealed) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1 (seale   | ed) else     | enter 0      |            |          |           | 0            | (12) |
| If no draught lobby, en                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1 (00an    | ou), 0.00    | Oritor o     |            |          |           | 0            | (13) |
| •                                                           | s and doors draught stripped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              |              |            |          |           | 0            | (14) |
| Window infiltration                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 0.25 - [0.2  | 2 x (14) ÷ 1 | 00] =      |          |           | 0            | (15) |
| Infiltration rate                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (8) + (10)   | + (11) + (1  | 12) + (13) | + (15) = |           | 0            | (16) |
| •                                                           | q50, expressed in cubic met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •            | •            | •            | etre of e  | envelope | area      | 3            | (17) |
| ·                                                           | lity value, then $(18) = [(17) \div 20]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |              |              |            |          |           | 0.15         | (18) |
| Number of sides sheltere                                    | es if a pressurisation test has been o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | one or a de  | gree air pe  | rmeability   | is being u | sed      |           | 3            | (19) |
| Shelter factor                                              | ,u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | (20) = 1 -   | [0.075 x (   | 19)] =     |          |           | 0.78         | (20) |
| Infiltration rate incorporate                               | ting shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | (21) = (18   | ) x (20) =   |            |          |           | 0.12         | (21) |
| Infiltration rate modified f                                | or monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |              |            |          |           |              | _    |
| Jan Feb                                                     | Mar Apr May Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul          | Aug          | Sep          | Oct        | Nov      | Dec       |              |      |
| Monthly average wind sp                                     | peed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |              |            |          |           |              |      |
| (22)m= 5.1 5                                                | 4.9 4.4 4.3 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8          | 3.7          | 4            | 4.3        | 4.5      | 4.7       |              |      |
| Wind Factor (22a)m = (2.                                    | 2)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |              |              |            |          |           |              |      |
|                                                             | 1.23 1.1 1.08 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.95         | 0.92         | 1            | 1.08       | 1.12     | 1.18      |              |      |
| ,                                                           | 1 1111 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1            | <u> </u>     |            |          | 1         | I            |      |

| Adjusted infilti                                                            | ration rat                | e (allowi                              | ing for sh                 | nelter an | ıd wind s      | speed) =          | : (21a) x                | (22a)m       |                                                  |                           |                  |          |               |
|-----------------------------------------------------------------------------|---------------------------|----------------------------------------|----------------------------|-----------|----------------|-------------------|--------------------------|--------------|--------------------------------------------------|---------------------------|------------------|----------|---------------|
| 0.15                                                                        | 0.15                      | 0.14                                   | 0.13                       | 0.12      | 0.11           | 0.11              | 0.11                     | 0.12         | 0.12                                             | 0.13                      | 0.14             | ]        |               |
| Calculate effe                                                              |                           | _                                      | rate for t                 | he appli  | cable ca       | se                |                          |              |                                                  |                           |                  |          |               |
| If mechanic                                                                 |                           |                                        |                            |           |                |                   |                          |              |                                                  |                           |                  | 0.5      | (23           |
| If exhaust air h                                                            |                           | 0                                      |                            | , ,       | ,              | . `               | ,, .                     | `            | o) = (23a)                                       |                           |                  | 0.5      | (23)          |
| If balanced wit                                                             |                           | -                                      |                            | _         |                |                   |                          |              |                                                  |                           |                  | 75.65    | (23           |
| a) If balance                                                               |                           |                                        | 1                          |           | 1              | <del>- ` ` </del> | <del>- ^ ` -</del>       | ŕ            | <del>-                                    </del> | <del></del>               | <del>- ` `</del> | ) ÷ 100] |               |
| (24a)m= 0.27                                                                | 0.27                      | 0.26                                   | 0.25                       | 0.25      | 0.23           | 0.23              | 0.23                     | 0.24         | 0.25                                             | 0.25                      | 0.26             | ]        | (24           |
| b) If balance                                                               | 1                         | anical ve                              | entilation                 |           | heat red       | covery (I         | MV) (24k                 | o)m = (22    | 2b)m + (2                                        | 23b)                      |                  | 7        |               |
| (24b)m= 0                                                                   | 0                         | 0                                      | 0                          | 0         | 0              | 0                 | 0                        | 0            | 0                                                | 0                         | 0                |          | (24           |
| c) If whole h                                                               | nouse ex<br>m < 0.5 ×     |                                        |                            | •         | •              |                   |                          |              | .5 × (23b                                        | )                         |                  | _        |               |
| (24c)m= 0                                                                   | 0                         | 0                                      | 0                          | 0         | 0              | 0                 | 0                        | 0            | 0                                                | 0                         | 0                |          | (24           |
| d) If natural<br>if (22b)r                                                  | ventilation<br>m = 1, the |                                        |                            |           |                |                   |                          |              | 0.5]                                             |                           |                  |          |               |
| (24d)m= 0                                                                   | 0                         | 0                                      | 0                          | 0         | 0              | 0                 | 0                        | 0            | 0                                                | 0                         | 0                | ]        | (24           |
| Effective air                                                               | r change                  | rate - er                              | nter (24a                  | ) or (24b | o) or (24      | c) or (24         | ld) in bo                | x (25)       |                                                  |                           | •                | -        |               |
| (25)m= 0.27                                                                 | 0.27                      | 0.26                                   | 0.25                       | 0.25      | 0.23           | 0.23              | 0.23                     | 0.24         | 0.25                                             | 0.25                      | 0.26             | ]        | (25           |
| 3. Heat losse                                                               | e and he                  | at loss i                              | naramet                    | or.       | •              | •                 |                          | •            | ,                                                |                           | •                |          |               |
| ELEMENT                                                                     | Gros<br>area              | ss                                     | Openin<br>m                | ıgs       | Net Ar<br>A ,r |                   | U-val<br>W/m2            |              | A X U<br>(W/ł                                    | <b>〈</b> )                | k-value          |          | A X k<br>kJ/K |
| Doors                                                                       |                           | ,                                      |                            |           | 2              | x                 | 1.3                      | =            | 2.6                                              | $\stackrel{\prime}{\Box}$ |                  |          | (26           |
| Windows Type                                                                | e 1                       |                                        |                            |           | 7.1            | x1                | <br> /[1/( 1.3 )+        | 0.04] =      | 8.77                                             |                           |                  |          | (27           |
| Windows Type                                                                | e 2                       |                                        |                            |           | 9.86           | x1                | /[1/( 1.3 )+             | 0.04] =      | 12.18                                            |                           |                  |          | (27           |
| Windows Type                                                                | e 3                       |                                        |                            |           | 7.48           | x1                | /[1/( 1.3 )+             | 0.04] =      | 9.24                                             |                           |                  |          | (27           |
| Windows Type                                                                |                           |                                        |                            |           | 1.53           | <u> </u>          | /[1/( 1.3 ) <del>+</del> | 0.04] =      | 1.89                                             |                           |                  |          | (27           |
| Rooflights                                                                  |                           |                                        |                            |           | 1.14           | =                 | ·                        |              | 1.824                                            | =                         |                  |          | (27           |
| Walls Type1                                                                 | 40.5                      | ; <u>o</u>                             | 25.9                       | 7         | 14.6           | =                 | 0.15                     |              | 2.19                                             | =                         |                  |          | (29           |
| Walls Type1                                                                 | 56.9                      |                                        |                            | <u>′</u>  |                | =                 |                          | <b>-</b>     |                                                  | ᆿ 片                       |                  | ╡        | (29           |
| Roof                                                                        |                           |                                        | 2                          |           | 54.98          | =                 | 0.13                     | _            | 7.34                                             | ᆿ ¦                       |                  | _        | =             |
|                                                                             | 72.8                      |                                        | 1.14                       | ·         | 71.7           |                   | 0.1                      | =            | 7.17                                             |                           |                  |          | (30           |
| Total area of                                                               | elements                  | , 111-                                 |                            |           | 170.4          | =                 |                          |              |                                                  |                           |                  |          | (31           |
| Party wall                                                                  |                           |                                        |                            |           | 23.2           | =                 | 0                        | =            | 0                                                |                           |                  | _        | (32           |
| Party floor                                                                 |                           |                                        |                            |           | 72.85          |                   |                          |              |                                                  | L L                       |                  |          | (32           |
| * for windows and<br>** include the are                                     |                           |                                        |                            |           |                | ated using        | g formula 1              | 1/[(1/U-valu | ue)+0.04] a                                      | ıs given in               | paragrapi        | n 3.2    |               |
| abric heat lo                                                               |                           |                                        |                            |           |                |                   | (26)(30                  | ) + (32) =   |                                                  |                           |                  | 53.11    | (33           |
|                                                                             |                           | ,                                      | •                          |           |                |                   |                          | ((28).       | (30) + (32                                       | 2) + (32a).               | (32e) =          | 17245.49 | ===           |
|                                                                             | CIII - S(                 | $\neg \land \land )$                   |                            |           |                |                   |                          |              | -                                                |                           |                  |          | <b>,</b> ,    |
| Heat capacity                                                               |                           | ,                                      | P = Cm ÷                   | ÷ TFA) ir | า kJ/m²K       | ,                 |                          | Indica       | ative Value:                                     | Medium                    |                  | 250      | (35           |
| Heat capacity<br>Thermal mass<br>For design asses                           | s parame                  | ter (TMF                               | etails of the              | ,         |                |                   | recisely the             |              |                                                  |                           | able 1f          | 250      | (35           |
| Heat capacity Thermal mass For design asses can be used inste Thermal bridg | s parame<br>sments wh     | eter (TMF<br>ere the de<br>tailed calc | etails of the<br>rulation. | construct | ion are no     | t known p         | recisely the             |              |                                                  |                           | able 1f          | 250      | (35           |

| Total fabric heat loss                                                                                                                       |                   |                       | (33) +       | (36) =                 |                        | İ       | 69.42   | (37)                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--------------|------------------------|------------------------|---------|---------|------------------------------|
| Ventilation heat loss calculated monthly                                                                                                     |                   |                       | . ,          | ` /                    | 25)m x (5)             |         | 09.42   | (01)                         |
| Jan Feb Mar Apr May Jun                                                                                                                      | Jul               | Aug                   | Sep          | Oct                    | Nov                    | Dec     |         |                              |
| (38)m= 17.52 17.33 17.15 16.2 16.01 15.07                                                                                                    | 15.07             | 14.88                 | 15.45        | 16.01                  | 16.39                  | 16.77   |         | (38)                         |
| Heat transfer coefficient, W/K                                                                                                               | 1                 | 1                     | (39)m        | = (37) + (37)          | 38)m                   |         | l       |                              |
| (39)m= 86.94 86.76 86.57 85.62 85.43 84.49                                                                                                   | 84.49             | 84.3                  | 84.87        | 85.43                  | 85.81                  | 86.19   |         |                              |
| Heat loss parameter (HLP), W/m²K                                                                                                             | •                 | •                     |              | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub>  | 12 /12= | 85.58   | (39)                         |
| (40)m= 1.19 1.19 1.18 1.17 1.16                                                                                                              | 1.16              | 1.16                  | 1.16         | 1.17                   | 1.18                   | 1.18    |         |                              |
| Number of days in month (Table 1a)                                                                                                           | •                 | •                     | ,            | Average =              | Sum(40) <sub>1</sub> . | 12 /12= | 1.17    | (40)                         |
| Jan Feb Mar Apr May Jun                                                                                                                      | Jul               | Aug                   | Sep          | Oct                    | Nov                    | Dec     |         |                              |
| (41)m= 31 28 31 30 31 30                                                                                                                     | 31                | 31                    | 30           | 31                     | 30                     | 31      |         | (41)                         |
|                                                                                                                                              | •                 |                       |              |                        |                        |         | l       |                              |
| 4. Water heating energy requirement:                                                                                                         |                   |                       |              |                        |                        | kWh/ye  | ear:    |                              |
|                                                                                                                                              |                   |                       |              |                        |                        |         |         |                              |
| Assumed occupancy, N<br>if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (T                                                                | FΔ -13 9          | 1)2)1 + 0 (           | 0013 x (     | ΓFΔ -13                |                        | 31      |         | (42)                         |
| if TFA £ 13.9, N = 1                                                                                                                         | 1 A - 10.5        | <i>,,,</i> 2,,, . 0.0 | ) X 010 X (  | 1174-10.               | 3)                     |         |         |                              |
| Annual average hot water usage in litres per day Vd,av                                                                                       |                   |                       |              |                        |                        | .14     |         | (43)                         |
| Reduce the annual average hot water usage by 5% if the dwelling is<br>not more that 125 litres per person per day (all water use, hot and or | _                 | to achieve            | a water us   | se target o            | f                      |         |         |                              |
|                                                                                                                                              | ·                 | ۸                     | Con          | Oat                    | Nov                    | Daa     |         |                              |
| Jan Feb Mar Apr May Jun  Hot water usage in litres per day for each month Vd,m = factor from                                                 | Jul<br>Table 1c x | Aug<br>(43)           | Sep          | Oct                    | Nov                    | Dec     |         |                              |
| (44)m= 98.05 94.49 90.92 87.36 83.79 80.23                                                                                                   | 80.23             | 83.79                 | 87.36        | 90.92                  | 94.49                  | 98.05   |         |                              |
| (17)                                                                                                                                         | 1 00.20           | 30.73                 |              |                        | m(44) <sub>112</sub> = |         | 1069.69 | (44)                         |
| Energy content of hot water used - calculated monthly = 4.190 x Vd,                                                                          | m x nm x L        | DTm / 3600            |              |                        | . ,                    |         |         | `                            |
| (45)m= 145.41 127.18 131.24 114.42 109.78 94.74                                                                                              | 87.79             | 100.74                | 101.94       | 118.8                  | 129.68                 | 140.82  |         |                              |
|                                                                                                                                              |                   |                       |              | Total = Su             | m(45) <sub>112</sub> = |         | 1402.53 | (45)                         |
| If instantaneous water heating at point of use (no hot water storage)                                                                        | , enter 0 in      | boxes (46,            | ) to (61)    |                        | Г                      | ı       | ı       |                              |
| (46)m= 21.81 19.08 19.69 17.16 16.47 14.21                                                                                                   | 13.17             | 15.11                 | 15.29        | 17.82                  | 19.45                  | 21.12   |         | (46)                         |
| Water storage loss: Storage volume (litres) including any solar or WWHRS                                                                     | storage           | within sa             | ame ves      | sel                    |                        | 0       |         | (47)                         |
| If community heating and no tank in dwelling, enter 11                                                                                       | •                 |                       | arric voo    | 501                    |                        | 0       |         | (47)                         |
| Otherwise if no stored hot water (this includes instanta                                                                                     |                   | • •                   | ers) ente    | er '0' in <i>(</i>     | 47)                    |         |         |                              |
| Water storage loss:                                                                                                                          |                   |                       | ,            | `                      | ,                      |         |         |                              |
| a) If manufacturer's declared loss factor is known (kW                                                                                       | h/day):           |                       |              |                        |                        | 0       |         | (48)                         |
| Temperature factor from Table 2b                                                                                                             |                   |                       |              |                        |                        | 0       |         | (49)                         |
| Energy lost from water storage, kWh/year                                                                                                     |                   | (48) x (49)           | ) =          |                        | 1                      | 10      |         | (50)                         |
| b) If manufacturer's declared cylinder loss factor is no                                                                                     |                   |                       |              |                        |                        |         | 1       | <i>(</i> <b>-</b> <i>(</i> ) |
| Hot water storage loss factor from Table 2 (kWh/litre/d If community heating see section 4.3                                                 | ay)               |                       |              |                        | 0.                     | 02      |         | (51)                         |
| Volume factor from Table 2a                                                                                                                  |                   |                       |              |                        | 1                      | 03      |         | (52)                         |
| Temperature factor from Table 2b                                                                                                             |                   |                       |              |                        | <b>—</b>               | .6      |         | (53)                         |
| Energy lost from water storage, kWh/year                                                                                                     |                   | (47) x (51)           | ) x (52) x ( | 53) =                  | 1.                     | 03      |         | (54)                         |
| Enter (50) or (54) in (55)                                                                                                                   |                   |                       |              |                        |                        | 03      |         | (55)                         |
|                                                                                                                                              |                   |                       |              |                        |                        |         | •       |                              |

| Water                                                                                                 | storage                                                                                                     | loss cal                                                                                                            | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                        | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |                                                                               | ((56)m = (                                                                          | 55) × (41)                                                                      | m                                              |                                               |                                 |               |                                              |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------|---------------|----------------------------------------------|
| (56)m=                                                                                                | 32.01                                                                                                       | 28.92                                                                                                               | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                                           | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                  | 32.01                                                                         | 32.01                                                                               | 30.98                                                                           | 32.01                                          | 30.98                                         | 32.01                           |               | (56)                                         |
| If cylind                                                                                             | er contains                                                                                                 | dedicate                                                                                                            | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)                                                                                      | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                            | H11)] ÷ (5                                                                    | 0), else (5                                                                         | 7)m = (56)                                                                      | m where (                                      | H11) is fro                                   | m Append                        | ix H          |                                              |
| (57)m=                                                                                                | 32.01                                                                                                       | 28.92                                                                                                               | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                                           | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                  | 32.01                                                                         | 32.01                                                                               | 30.98                                                                           | 32.01                                          | 30.98                                         | 32.01                           |               | (57)                                         |
| Prima                                                                                                 | v circuit                                                                                                   | loss (ar                                                                                                            | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m Table                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        |                                                                               |                                                                                     |                                                                                 |                                                |                                               | 0                               |               | (58)                                         |
|                                                                                                       | •                                                                                                           | `                                                                                                                   | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59)m = (                                                               | (58) ÷ 36                                                                     | 65 × (41)                                                                           | m                                                                               |                                                |                                               |                                 | '             |                                              |
| (mo                                                                                                   | dified by                                                                                                   | factor fi                                                                                                           | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                      | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                              | ter heatii                                                                    | ng and a                                                                            | cylinde                                                                         | r thermo                                       | stat)                                         |                                 |               |                                              |
| (59)m=                                                                                                | 23.26                                                                                                       | 21.01                                                                                                               | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.51                                                                                           | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.51                                                                  | 23.26                                                                         | 23.26                                                                               | 22.51                                                                           | 23.26                                          | 22.51                                         | 23.26                           |               | (59)                                         |
| Comb                                                                                                  | i loss ca                                                                                                   | culated                                                                                                             | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                         | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                              | 65 × (41)                                                                     | )m                                                                                  |                                                                                 |                                                |                                               |                                 |               |                                              |
| (61)m=                                                                                                | 0                                                                                                           | 0                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                      | 0                                                                             | 0                                                                                   | 0                                                                               | 0                                              | 0                                             | 0                               |               | (61)                                         |
| Total h                                                                                               | neat requ                                                                                                   | uired for                                                                                                           | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                       | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l for eac                                                              | h month                                                                       | (62)m =                                                                             | 0.85 × (                                                                        | (45)m +                                        | (46)m +                                       | (57)m +                         | (59)m + (61)m |                                              |
| (62)m=                                                                                                | 200.69                                                                                                      | 177.11                                                                                                              | 186.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 167.91                                                                                          | 165.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 148.23                                                                 | 143.06                                                                        | 156.01                                                                              | 155.43                                                                          | 174.08                                         | 183.17                                        | 196.1                           |               | (62)                                         |
| Solar D                                                                                               | HW input of                                                                                                 | alculated                                                                                                           | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                                      | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                              | ve quantity                                                                   | /) (enter '0                                                                        | if no sola                                                                      | r contribut                                    | ion to wate                                   | er heating)                     | •             |                                              |
| (add a                                                                                                | dditiona                                                                                                    | lines if                                                                                                            | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or \                                                                                        | VWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                | , see Ap                                                                      | pendix (                                                                            | €)                                                                              |                                                |                                               |                                 |               |                                              |
| (63)m=                                                                                                | 0                                                                                                           | 0                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                      | 0                                                                             | 0                                                                                   | 0                                                                               | 0                                              | 0                                             | 0                               |               | (63)                                         |
| Outpu                                                                                                 | t from w                                                                                                    | ater hea                                                                                                            | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                      | -                                                                             | -                                                                                   |                                                                                 |                                                | -                                             | -                               |               |                                              |
| (64)m=                                                                                                | 200.69                                                                                                      | 177.11                                                                                                              | 186.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 167.91                                                                                          | 165.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 148.23                                                                 | 143.06                                                                        | 156.01                                                                              | 155.43                                                                          | 174.08                                         | 183.17                                        | 196.1                           |               |                                              |
|                                                                                                       |                                                                                                             |                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                      |                                                                               | Outp                                                                                | out from wa                                                                     | ater heate                                     | r (annual)                                    | 12                              | 2053.37       | (64)                                         |
| Heat o                                                                                                | jains froi                                                                                                  | n water                                                                                                             | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m                                                                                           | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                              | × (45)m                                                                       | + (61)m                                                                             | n] + 0.8 x                                                                      | ((46)m                                         | + (57)m                                       | + (59)m                         | ]             |                                              |
| (65)m=                                                                                                | 92.57                                                                                                       | 82.23                                                                                                               | 87.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.84                                                                                           | 80.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.29                                                                  | 73.41                                                                         | 77.70                                                                               | 70.00                                                                           | 00.70                                          | 05.04                                         | 04.05                           |               | (65)                                         |
|                                                                                                       |                                                                                                             |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.0                                                                                            | 00.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.25                                                                  | 13.41                                                                         | 77.72                                                                               | 76.69                                                                           | 83.72                                          | 85.91                                         | 91.05                           |               | (00)                                         |
| inclu                                                                                                 | ude (57)ı                                                                                                   | m in cald                                                                                                           | culation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l .                                                                    |                                                                               | <u> </u>                                                                            |                                                                                 |                                                | <u> </u>                                      |                                 | eating        | (00)                                         |
|                                                                                                       | . ,                                                                                                         |                                                                                                                     | culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m                                                                                        | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l .                                                                    |                                                                               | <u> </u>                                                                            |                                                                                 |                                                | <u> </u>                                      |                                 | eating        | (00)                                         |
| 5. In                                                                                                 | ternal ga                                                                                                   | ins (see                                                                                                            | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l .                                                                    |                                                                               | <u> </u>                                                                            |                                                                                 |                                                | <u> </u>                                      |                                 | eating        | (00)                                         |
| 5. In                                                                                                 | ternal ga                                                                                                   | ins (see                                                                                                            | culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l .                                                                    |                                                                               | <u> </u>                                                                            |                                                                                 |                                                | <u> </u>                                      |                                 | eating        | (00)                                         |
| 5. In                                                                                                 | ternal ga                                                                                                   | ins (see                                                                                                            | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                              | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                              | s in the o                                                                    | dwelling                                                                            | or hot w                                                                        | ater is fr                                     | om com                                        | munity h                        | eating        | (66)                                         |
| 5. In Metab                                                                                           | olic gain<br>Jan<br>115.66                                                                                  | s (Table<br>Feb<br>115.66                                                                                           | culation of Table 5 (5), Wat Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of (65)m<br>5 and 5a<br>ts<br>Apr<br>115.66                                                     | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | ylinder is<br>Jun<br>115.66                                            | Jul 115.66                                                                    | Aug<br>115.66                                                                       | or hot w<br>Sep<br>115.66                                                       | ater is fr                                     | om com                                        | munity h                        | eating        |                                              |
| 5. In Metab                                                                                           | olic gain<br>Jan<br>115.66                                                                                  | s (Table<br>Feb<br>115.66                                                                                           | e Table 5<br>e 5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m<br>5 and 5a<br>ts<br>Apr<br>115.66                                                     | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | ylinder is<br>Jun<br>115.66                                            | Jul 115.66                                                                    | Aug<br>115.66                                                                       | or hot w<br>Sep<br>115.66                                                       | ater is fr                                     | om com                                        | munity h                        | eating        |                                              |
| 5. In Metab (66)m= Lightir (67)m=                                                                     | olic gain Jan 115.66 ng gains 18.17                                                                         | s (Table<br>Feb<br>115.66<br>(calcula                                                                               | ETable 5 E 5), Wat Mar 115.66 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>6 and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94                                  | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | Jun<br>115.66<br>ion L9 o                                              | Jul<br>115.66<br>r L9a), a                                                    | Aug<br>115.66<br>Iso see                                                            | Sep<br>115.66<br>Table 5                                                        | Oct 115.66                                     | Nov                                           | Dec                             | eating        | (66)                                         |
| 5. In Metab (66)m= Lightir (67)m=                                                                     | olic gain Jan 115.66 ag gains 18.17 nces ga                                                                 | s (Table<br>Feb<br>115.66<br>(calcula                                                                               | ETable 5 E Table 5 E 5), Wat Mar 115.66 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of (65)m<br>6 and 5a<br>ts<br>Apr<br>115.66<br>opendix<br>9.94                                  | only if constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta | Jun<br>115.66<br>ion L9 o                                              | Jul<br>115.66<br>r L9a), a                                                    | Aug<br>115.66<br>Iso see                                                            | Sep<br>115.66<br>Table 5                                                        | Oct 115.66                                     | Nov                                           | Dec                             | eating        | (66)                                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m=                                                      | olic gain Jan 115.66 ng gains 18.17 nces ga                                                                 | s (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>ns (calc                                                          | Example 5 ted in Apulated in Apulated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29                                      | May 115.66 L, equat 7.43 dix L, eq 174.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun 115.66 ion L9 of 6.27 uation L                                     | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51                      | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                       | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta                                     | Oct 115.66 15.01 ble 5 167.07                  | Nov<br>115.66                                 | Dec 115.66                      | eating        | (66)<br>(67)                                 |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m=                                                      | olic gain Jan 115.66 ng gains 18.17 nces ga                                                                 | s (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>ns (calc                                                          | Example 5 ted in April 13.13 ulated in 200.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29                                      | May 115.66 L, equat 7.43 dix L, eq 174.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun 115.66 ion L9 of 6.27 uation L                                     | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51                      | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also                                       | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta                                     | Oct 115.66 15.01 ble 5 167.07                  | Nov<br>115.66                                 | Dec 115.66                      | eating        | (66)<br>(67)                                 |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m=                                        | olic gain Jan 115.66 ag gains 18.17 nces gains 203.86 ag gains                                              | s (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>ns (calc<br>205.97<br>(calcula<br>34.57                           | ted in Apulated in 200.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57                        | only if controls:  May  115.66  L, equat  7.43  dix L, equat  174.97  L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun 115.66 ion L9 o 6.27 uation L 161.5                                | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a           | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39                             | Sep 115.66 Table 5 11.82 see Ta 155.72 ee Table                                 | Oct 115.66  15.01 ble 5 167.07                 | Nov<br>115.66<br>17.52                        | Dec 115.66 18.68                | eating        | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m=                                        | olic gain Jan 115.66 ag gains 18.17 nces gains 203.86 ag gains                                              | s (Table<br>Feb<br>115.66<br>(calcula<br>16.14<br>ns (calc<br>205.97<br>(calcula<br>34.57                           | Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57                        | only if controls:  May  115.66  L, equat  7.43  dix L, equat  174.97  L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun 115.66 ion L9 o 6.27 uation L 161.5                                | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a           | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39                             | Sep 115.66 Table 5 11.82 see Ta 155.72 ee Table                                 | Oct 115.66  15.01 ble 5 167.07                 | Nov<br>115.66<br>17.52                        | Dec 115.66 18.68                | eating        | (66)<br>(67)<br>(68)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m=                           | olic gain Jan 115.66 ag gains 18.17 nces gains 203.86 ag gains 34.57 a and far                              | s (Table Feb 115.66 (calcula 16.14 ns (calc 205.97 (calcula 34.57 ns gains                                          | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29 ppendix 34.57 5a) 0                  | only if controls:  May  115.66  L, equat  7.43  dix L, equat  174.97  L, equat  34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jun 115.66 ion L9 of 6.27 uation L 161.5 cion L15 34.57                | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86         | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m= Pumps (70)m=                           | olic gain Jan 115.66 ag gains 18.17 ances gains 203.86 ag gains 34.57 as and far 0 as e.g. ev               | s (Table Feb 115.66 (calcula 16.14 ns (calc 205.97 (calcula 34.57 ns gains                                          | ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in | of (65)m and 5a ts Apr 115.66 ppendix 9.94 Appendix 189.29 ppendix 34.57 5a) 0                  | only if controls:  May  115.66  L, equat  7.43  dix L, equat  174.97  L, equat  34.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jun 115.66 ion L9 of 6.27 uation L 161.5 cion L15 34.57                | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86         | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookin (69)m= Pumps (70)m= Losse (71)m=              | olic gain Jan 115.66 ag gains 18.17 ances gains 203.86 ag gains 34.57 a and far 0 as e.g. ev                | s (Table Feb 115.66 (calcula 16.14 ns (calcula 34.57 ns gains 0 aporatio -92.53                                     | culation of the Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64 ated in A 34.57 (Table 5 0 on (negation) on (negation) of the table 5 on (negation) of the table 5 on (negation) of the table 5 on (negation) of the table 5 on (negation) of the table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (neg | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0 tive valu        | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 115.66 ion L9 o 6.27 uation L 161.5 ion L15 34.57  0 le 5)         | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86 0       | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookin (69)m= Pumps (70)m= Losse (71)m=              | olic gain Jan 115.66 ag gains 18.17 ances ga 203.86 ag gains 34.57 and far 0 as e.g. ev -92.53 heating      | s (Table Feb 115.66 (calcula 16.14 ns (calcula 34.57 ns gains 0 aporatio -92.53                                     | culation of the Table 5 2 5), Wat Mar 115.66 ted in Ap 13.13 ulated in 200.64 ated in A 34.57 (Table 5 0 on (negation) on (negation) of the table 5 on (negation) of the table 5 on (negation) of the table 5 on (negation) of the table 5 on (negation) of the table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (negation) of table 5 on (neg | of (65)m s and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0 tive valu        | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 115.66 ion L9 o 6.27 uation L 161.5 ion L15 34.57  0 le 5)         | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57      | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57      | Oct 115.66 15.01 ble 5 167.07 5 34.57          | Nov<br>115.66<br>17.52<br>181.4               | Dec 115.66 18.68 194.86 0       | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookin (69)m= Pumps (70)m= Losse (71)m= Water (72)m= | olic gain Jan 115.66 ag gains 18.17 ances ga 203.86 ag gains 34.57 and far 0 as e.g. ev -92.53 heating      | s (Table Feb 115.66 (calcula 16.14 ns (calcula 205.97 (calcula 34.57 ns gains 0 aporatio -92.53 gains (Table 122.36 | culation of the Table 5 (a) Wat Mar 115.66 (b) ted in Apr 13.13 (c) ulated in 200.64 (c) ted in Apr 14.57 (c) Table 5 (c) on (negative of the table 5) (c) 118.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of (65)m c and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0 tive valu -92.53 | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0 le 5) -92.53 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57<br>0 | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57<br>0 | Oct 115.66 15.01 ble 5 167.07 5 34.57 0 -92.53 | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>0 | Dec 115.66 18.68 194.86 34.57 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookin (69)m= Pumpe (70)m= Losse (71)m= Water (72)m= | olic gain Jan 115.66 ag gains 18.17 ances gains 203.86 ag gains 34.57 as and far 0 s e.g. ev -92.53 heating | s (Table Feb 115.66 (calcula 16.14 ns (calcula 205.97 (calcula 34.57 ns gains 0 aporatio -92.53 gains (Table 122.36 | culation of the Table 5 (a) Wat Mar 115.66 (b) ted in Apr 13.13 (c) ulated in 200.64 (c) ted in Apr 14.57 (c) Table 5 (c) on (negative of the table 5) (c) 118.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of (65)m c and 5a ts Apr 115.66 ppendix 9.94 Append 189.29 ppendix 34.57 5a) 0 tive valu -92.53 | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun 115.66 ion L9 of 6.27 uation L 161.5 ion L15 34.57  0 le 5) -92.53 | Jul<br>115.66<br>r L9a), a<br>6.78<br>13 or L1<br>152.51<br>or L15a)<br>34.57 | Aug<br>115.66<br>Iso see<br>8.81<br>3a), also<br>150.39<br>), also se<br>34.57<br>0 | Sep<br>115.66<br>Table 5<br>11.82<br>see Ta<br>155.72<br>ee Table<br>34.57<br>0 | Oct 115.66 15.01 ble 5 167.07 5 34.57 0 -92.53 | Nov<br>115.66<br>17.52<br>181.4<br>34.57<br>0 | Dec 115.66 18.68 194.86 34.57 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x | 0.77                      | X | 1.53       | x | 11.28            | x | 0.55           | x | 0.7            | =   | 4.61         | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 22.97            | X | 0.55           | x | 0.7            | =   | 9.38         | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 41.38            | x | 0.55           | x | 0.7            | =   | 16.89        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 67.96            | x | 0.55           | x | 0.7            | =   | 27.74        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 91.35            | X | 0.55           | x | 0.7            | =   | 37.29        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 97.38            | x | 0.55           | x | 0.7            | =   | 39.75        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 91.1             | x | 0.55           | x | 0.7            | ] = | 37.19        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 72.63            | X | 0.55           | x | 0.7            | =   | 29.65        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 50.42            | x | 0.55           | x | 0.7            | =   | 20.58        | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 28.07            | x | 0.55           | x | 0.7            | =   | 11.46        | (75) |
| Northeast 0.9x | 0.77                      | X | 1.53       | x | 14.2             | X | 0.55           | X | 0.7            | =   | 5.8          | (75) |
| Northeast 0.9x | 0.77                      | x | 1.53       | x | 9.21             | x | 0.55           | x | 0.7            | =   | 3.76         | (75) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 36.79            | x | 0.55           | x | 0.7            | =   | 69.7         | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 36.79            | x | 0.55           | x | 0.7            | =   | 96.79        | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 36.79            | x | 0.55           | x | 0.7            | =   | 73.43        | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 62.67            | x | 0.55           | X | 0.7            | =   | 118.72       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 62.67            | x | 0.55           | x | 0.7            | =   | 164.87       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 62.67            | х | 0.55           | x | 0.7            | =   | 125.08       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 85.75            | x | 0.55           | X | 0.7            | =   | 162.44       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 85.75            | x | 0.55           | x | 0.7            | =   | 225.59       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 85.75            | x | 0.55           | x | 0.7            | =   | 171.14       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 106.25           | x | 0.55           | x | 0.7            | =   | 201.27       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 106.25           | x | 0.55           | x | 0.7            | =   | 279.52       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 106.25           | x | 0.55           | x | 0.7            | =   | 212.05       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 119.01           | X | 0.55           | x | 0.7            | =   | 225.44       | (77) |
| Southeast 0.9x | 0.77                      | X | 9.86       | x | 119.01           | x | 0.55           | X | 0.7            | =   | 313.08       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 119.01           | x | 0.55           | x | 0.7            | =   | 237.51       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.1        | x | 118.15           | x | 0.55           | X | 0.7            | =   | 223.81       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 118.15           | x | 0.55           | X | 0.7            | =   | 310.82       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 118.15           | x | 0.55           | x | 0.7            | =   | 235.79       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 113.91           | X | 0.55           | x | 0.7            | =   | 215.78       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 113.91           | x | 0.55           | x | 0.7            | =   | 299.66       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.48       | x | 113.91           | x | 0.55           | x | 0.7            | ] = | 227.33       | (77) |
| Southeast 0.9x | 0.77                      | x | 7.1        | x | 104.39           | x | 0.55           | x | 0.7            | =   | 197.75       | (77) |
| Southeast 0.9x | 0.77                      | x | 9.86       | x | 104.39           | x | 0.55           | x | 0.7            | =   | 274.62       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.48       | x | 104.39           | x | 0.55           | x | 0.7            | ] = | 208.33       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.1        | x | 92.85            | x | 0.55           | x | 0.7            | ] = | 175.89       | (77) |
| Southeast 0.9x | 0.77                      | X | 9.86       | x | 92.85            | x | 0.55           | x | 0.7            | ] = | 244.27       | (77) |
| Southeast 0.9x | 0.77                      | X | 7.48       | x | 92.85            | x | 0.55           | X | 0.7            | ] = | 185.3        | (77) |
|                |                           |   | ·          |   |                  |   |                |   | ·              |     |              |      |

| Southeast <sub>0.9x</sub>  | 0.77         | X        | 7.1       |          | X        | 69.27          | X            | 0.55           | X        | 0.7           | =      | 131.21 | (77) |
|----------------------------|--------------|----------|-----------|----------|----------|----------------|--------------|----------------|----------|---------------|--------|--------|------|
| Southeast <sub>0.9x</sub>  | 0.77         | X        | 9.86      | 6        | x        | 69.27          | x            | 0.55           | X        | 0.7           | =      | 182.22 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | ×        | 7.48      | 8        | x        | 69.27          | x            | 0.55           | X        | 0.7           | =      | 138.24 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | x        | 7.1       |          | x        | 44.07          | x            | 0.55           | x        | 0.7           |        | 83.48  | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | x        | 9.86      | 6        | x        | 44.07          | x            | 0.55           | x        | 0.7           | =      | 115.94 | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | x        | 7.48      | 8        | x        | 44.07          | x            | 0.55           | x        | 0.7           | =      | 87.95  | (77) |
| Southeast 0.9x             | 0.77         | ×        | 7.1       |          | x        | 31.49          | X            | 0.55           | x        | 0.7           | =      | 59.65  | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | ×        | 9.86      | 6        | x        | 31.49          | x            | 0.55           | ×        | 0.7           | =      | 82.83  | (77) |
| Southeast <sub>0.9x</sub>  | 0.77         | x        | 7.48      | 8        | x        | 31.49          | X            | 0.55           | x        | 0.7           | =      | 62.84  | (77) |
| Rooflights 0.9x            | 1            | x        | 1.14      | 4        | x        | 26             | X            | 0.55           | x        | 0.8           | =      | 11.74  | (82) |
| Rooflights 0.9x            | 1            | x        | 1.14      | 4        | x        | 54             | x            | 0.55           | x        | 0.8           | =      | 24.38  | (82) |
| Rooflights 0.9x            | 1            | ×        | 1.14      | 4        | x        | 96             | x            | 0.55           | x        | 0.8           | =      | 43.34  | (82) |
| Rooflights <sub>0.9x</sub> | 1            | ×        | 1.14      | 4        | x        | 150            | x            | 0.55           | x        | 0.8           | =      | 67.72  | (82) |
| Rooflights 0.9x            | 1            | ×        | 1.14      | 4        | x        | 192            | x            | 0.55           | ×        | 0.8           | =      | 86.68  | (82) |
| Rooflights 0.9x            | 1            | ×        | 1.14      | 4        | x        | 200            | x            | 0.55           | x        | 0.8           | =      | 90.29  | (82) |
| Rooflights 0.9x            | 1            | ×        | 1.14      | 4        | x        | 189            | x            | 0.55           | ×        | 0.8           |        | 85.32  | (82) |
| Rooflights 0.9x            | 1            | ×        | 1.14      | 4        | x        | 157            | x            | 0.55           | ×        | 0.8           | =      | 70.88  | (82) |
| Rooflights 0.9x            | 1            | ×        | 1.14      | 4        | x        | 115            | x            | 0.55           | x        | 0.8           | =      | 51.92  | (82) |
| Rooflights 0.9x            | 1            | ×        | 1.14      | 4        | x        | 66             | x            | 0.55           | ×        | 0.8           |        | 29.8   | (82) |
| Rooflights 0.9x            | 1            | ×        | 1.14      | 4        | x        | 33             | x            | 0.55           | x        | 0.8           | =      | 14.9   | (82) |
| Rooflights 0.9x            | 1            | ×        | 1.14      | 4        | x        | 21             | x            | 0.55           | x        | 0.8           | =      | 9.48   | (82) |
| _                          |              |          |           |          |          |                | •            |                |          |               |        |        |      |
| Solar gains in             | watts, calcu | ılated   | for each  | month    |          |                | (83)m        | n = Sum(74)m . | (82)m    |               |        |        |      |
| (83)m= 256.27              |              | 19.4     | 788.29    | 900      | Т        | 00.46 865.28   | 781          | <u> </u>       | 492.9    | 3 308.06      | 218.56 |        | (83) |
| Total gains – i            | nternal and  | solar    | (84)m =   | (73)m    | + (8     | 33)m , watts   |              | •              |          | •             | •      | •      |      |
| (84)m= 660.42              | 844.6 10     | 08.95    | 1157.5    | 1248.59  | 12       | 29.12 1180.93  | 1102         | 2.58 1009.72   | 845.2    | 4 684.01      | 612.18 |        | (84) |
| 7. Mean inter              | nal tempera  | ature (  | heating   | season   | )        |                |              |                |          |               |        |        |      |
| Temperature                | ·            |          |           |          |          | area from Tal  | ole 9        | , Th1 (°C)     |          |               |        | 21     | (85) |
| Utilisation fac            | tor for gain | s for li | ving are  | a, h1,m  | า (ร     | ee Table 9a)   |              |                |          |               | !      |        |      |
| Jan                        | Feb          | Mar      | Apr       | May      |          | Jun Jul        | Α            | ug Sep         | Oct      | Nov           | Dec    |        |      |
| (86)m= 0.99                | 0.96         | ).91     | 0.78      | 0.61     | (        | 0.31           | 0.3          | 35 0.56        | 0.85     | 0.97          | 0.99   |        | (86) |
| Mean interna               | l temperatu  | re in li | iving are | a T1 (fo | ollo     | w steps 3 to 7 | 7 in T       | able 9c)       |          | -             |        | •      |      |
| (87)m= 19.98               | <del></del>  | 0.56     | 20.83     | 20.96    | _        | 0.99 21        | 2            | <u> </u>       | 20.78    | 20.32         | 19.92  |        | (87) |
| Temperature                | during heat  | tina ne  | eriods in | rest of  | dw       | elling from Ta | hle (        | Th2 (°C)       |          | <b>!</b>      |        | I      |      |
| (88)m= 19.93               | <del></del>  | 9.93     | 19.94     | 19.94    | _        | 9.95 19.95     | 19.          | · · · · ·      | 19.94    | 19.94         | 19.93  |        | (88) |
|                            |              |          |           | م مالا م | L<br>ادم | m (aaa Tabla   | 00)          |                |          |               |        | l      |      |
| Utilisation fac            |              | ).88     | 0.74      | 0.55     | _        | ).37 0.24      | 9a)<br>0.2   | 27 0.48        | 0.81     | 0.96          | 0.99   |        | (89) |
| ` '                        | <u> </u>     |          |           |          |          | <u> </u>       |              | <u> </u>       |          | 0.30          | 0.00   |        | (55) |
| Mean interna               | <del> </del> |          |           |          | Ť        | <u>`</u>       | <del>-</del> |                |          |               |        | 1      | (00) |
| (90)m= 18.6                | 18.99 1      | 9.42     | 19.77     | 19.91    | <u> </u> | 9.95 19.95     | 19.          |                | 19.72    |               | 18.52  |        | (90) |
|                            |              |          |           |          |          |                |              | I              | LA = LI\ | ving area ÷ ( | +) -   | 0.45   | (91) |
|                            |              |          |           |          |          | \ C A T 4      |              | (I A) TO       |          |               |        |        |      |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 19.22 19.56 19.93 20.24 20.38 20.42 20.42 20.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.4                                               | 20.2                                 | 19.65                                          | 19.15                  |                                                               | (92)                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Apply adjustment to the mean internal temperature from Table 4e, w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nere appr                                          | opriate                              |                                                |                        |                                                               |                                                                                   |
| (93)m= 19.22 19.56 19.93 20.24 20.38 20.42 20.42 20.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.4                                               | 20.2                                 | 19.65                                          | 19.15                  |                                                               | (93)                                                                              |
| 8. Space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                      |                                                |                        |                                                               |                                                                                   |
| Set Ti to the mean internal temperature obtained at step 11 of Table the utilisation factor for gains using Table 9a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9b, so tha                                         | at Ii,m=(                            | 76)m an                                        | d re-calc              | ulate                                                         |                                                                                   |
| Jan Feb Mar Apr May Jun Jul Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sep                                                | Oct                                  | Nov                                            | Dec                    |                                                               |                                                                                   |
| Utilisation factor for gains, hm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                      |                                                |                        |                                                               |                                                                                   |
| (94)m= 0.98 0.95 0.88 0.75 0.57 0.4 0.27 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.52                                               | 0.82                                 | 0.96                                           | 0.99                   |                                                               | (94)                                                                              |
| Useful gains, hmGm , W = (94)m x (84)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                                      |                                                |                        |                                                               |                                                                                   |
| (95)m= 648.14 802.43 891.42 869.8 717.4 488.37 322.44 338.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 523.88                                           | 692.27                               | 655.44                                         | 603.78                 |                                                               | (95)                                                                              |
| Monthly average external temperature from Table 8  (96)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.1                                               | 10.6                                 | 7.1                                            | 4.2                    |                                                               | (96)                                                                              |
| Heat loss rate for mean internal temperature, Lm , W = $[(39)$ m x $[(93)$ m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | <u> </u>                             | 7.1                                            | 4.2                    |                                                               | (90)                                                                              |
| (97)m= 1296.82 1271.7 1162.82 971.38 741.31 491.42 322.8 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 534.78                                             | 820.02                               | 1076.86                                        | 1288.54                |                                                               | (97)                                                                              |
| Space heating requirement for each month, kWh/month = 0.024 x [(9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                      |                                                |                        |                                                               | , ,                                                                               |
| (98)m= 482.62 315.35 201.93 73.13 17.79 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                  | 95.05                                | 303.42                                         | 509.46                 |                                                               |                                                                                   |
| Тс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tal per year                                       | (kWh/year                            | ·) = Sum(9                                     | 8) <sub>15,912</sub> = | 1998.75                                                       | (98)                                                                              |
| Space heating requirement in kWh/m²/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                      |                                                |                        | 27.44                                                         | (99)                                                                              |
| 9b. Energy requirements – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                      |                                                |                        |                                                               |                                                                                   |
| This part is used for space heating, space cooling or water heating pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vided by                                           | a comm                               | unity sch                                      | neme.                  |                                                               |                                                                                   |
| Fraction of space heat from secondary/supplementary heating (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11) '0' if n                                       | one                                  |                                                |                        | 0                                                             | (301)                                                                             |
| Fraction of space heat from community system 1 – (301) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                      |                                                | 1                      |                                                               |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                      |                                                |                        | 1                                                             | (302)                                                                             |
| The community scheme may obtain heat from several sources. The procedure allows for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | up to four                           | other heat                                     | sources; ti            |                                                               | (302)                                                                             |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | up to four                           | other heat                                     | sources; ti            | he latter                                                     |                                                                                   |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See App<br>Fraction of heat from Community heat pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | up to four                           | other heat                                     | sources; ti            | he latter                                                     | (303a)                                                                            |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See App<br>Fraction of heat from Community heat pump<br>Fraction of heat from Community heat pump (Water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | up to four                           | other heat                                     | sources; ti            | ne latter 1 0.7                                               | (303a)<br>(303a)                                                                  |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See Apper Fraction of heat from Community heat pump  Fraction of heat from Community heat pump (Water)  Fraction of community heat from heat source 2 (Water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |                                      |                                                |                        | 1 0.7 0.3                                                     | (303a)<br>(303a)<br>(303b)                                                        |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See Apper Fraction of heat from Community heat pump  Fraction of heat from Community heat pump (Water)  Fraction of community heat from heat source 2 (Water)  Fraction of total space heat from Community heat pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | endix C.                                           | (3                                   | other heat<br>02) x (303                       |                        | 1 0.7 0.3                                                     | (303a)<br>(303a)<br>(303b)<br>(304a)                                              |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See Apper Fraction of heat from Community heat pump  Fraction of heat from Community heat pump (Water)  Fraction of community heat from heat source 2 (Water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | endix C.                                           | (3                                   |                                                |                        | 1 0.7 0.3                                                     | (303a)<br>(303a)<br>(303b)                                                        |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See Apper Fraction of heat from Community heat pump  Fraction of heat from Community heat pump (Water)  Fraction of community heat from heat source 2 (Water)  Fraction of total space heat from Community heat pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | endix C.                                           | (3                                   |                                                |                        | 1 0.7 0.3                                                     | (303a)<br>(303a)<br>(303b)<br>(304a)                                              |
| Fraction of heat from Community heat pump (Water)  Fraction of community heat from heat source 2 (Water)  Fraction of total space heat from Community heat pump  Fractor for control and charging method (Table 4c(3)) for community heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eating sys                                         | (3                                   |                                                |                        | 1 0.7 0.3 1 1                                                 | (303a)<br>(303a)<br>(303b)<br>(304a)<br>(305)                                     |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See Apperentation of heat from Community heat pump  Fraction of heat from Community heat pump (Water)  Fraction of community heat from heat source 2 (Water)  Fraction of total space heat from Community heat pump  Factor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system (Water)  Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eating sys                                         | (3                                   |                                                |                        | 1 0.7 0.3 1 1 1.05                                            | (303a)<br>(303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See App. Fraction of heat from Community heat pump Fraction of heat from Community heat pump (Water) Fraction of community heat from heat source 2 (Water) Fraction of total space heat from Community heat pump Factor for control and charging method (Table 4c(3)) for community he Distribution loss factor (Table 12c) for community heating system Distribution loss factor (Table 12c) for community heating system (Water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eating sys                                         | (3                                   |                                                |                        | 1 0.7 0.3 1 1 1.05 1.05                                       | (303a)<br>(303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See Apperentation of heat from Community heat pump  Fraction of heat from Community heat pump (Water)  Fraction of community heat from heat source 2 (Water)  Fraction of total space heat from Community heat pump  Factor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system (Water)  Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eating sys                                         | (3                                   | 02) x (303                                     | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 kWh/year                              | (303a)<br>(303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of heat from Community heat pump (Water) Fraction of heat from Community heat pump (Water) Fraction of community heat from heat source 2 (Water) Fraction of total space heat from Community heat pump Factor for control and charging method (Table 4c(3)) for community heat pump Distribution loss factor (Table 12c) for community heating system Distribution loss factor (Table 12c) for community heating system (Water) Space heating Annual space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eating syster)                                     | (3<br>stem<br>04a) x (30             | 02) x (303<br>5) x (306) :                     | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 1998.75               | (303a)<br>(303a)<br>(303b)<br>(304a)<br>(305)<br>(306)                            |
| Fraction of heat from Community heat pump (Water) Fraction of heat from Community heat pump (Water) Fraction of community heat from heat source 2 (Water) Fraction of total space heat from Community heat pump Factor for control and charging method (Table 4c(3)) for community heating system Distribution loss factor (Table 12c) for community heating system (Water)  Space heating Annual space heating requirement Space heat from Community heat pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eating syster)  (98) × (3                          | (3<br>stem<br>04a) x (30             | 02) x (303<br>5) x (306) a<br>E)               | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 1998.75 2098.69       | (303a)<br>(303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)                   |
| Fraction of heat from Community heat pump (Water) Fraction of heat from Community heat pump (Water) Fraction of community heat from heat source 2 (Water) Fraction of total space heat from Community heat pump Factor for control and charging method (Table 4c(3)) for community heat pump Distribution loss factor (Table 12c) for community heating system Distribution loss factor (Table 12c) for community heating system (Water) Space heating Annual space heating requirement Space heat from Community heat pump Efficiency of secondary/supplementary heating system in % (from Table 12c) for community system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Table 12c) for community heating system in % (from Tab | eating syster)  (98) × (3                          | (3<br>stem<br>04a) x (30<br>Appendix | 02) x (303<br>5) x (306) a<br>E)               | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 1998.75 2098.69 0     | (303a)<br>(303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)<br>(307a)<br>(308 |
| Fraction of heat from Community heat pump Fraction of heat from Community heat pump Fraction of heat from Community heat pump (Water) Fraction of community heat from heat source 2 (Water) Fraction of total space heat from Community heat pump Factor for control and charging method (Table 4c(3)) for community he Distribution loss factor (Table 12c) for community heating system Distribution loss factor (Table 12c) for community heating system (Water heating) Annual space heating requirement Space heat from Community heat pump Efficiency of secondary/supplementary heating system in % (from Table Space heating) Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eating syster)  (98) × (3                          | (3<br>stem<br>04a) x (30<br>Appendix | 02) x (303<br>5) x (306) a<br>E)               | a) =                   | 1 0.7 0.3 1 1 1.05 1.05 <b>kWh/year</b> 1998.75 2098.69 0     | (303a)<br>(303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)<br>(307a)<br>(308 |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See App. Fraction of heat from Community heat pump  Fraction of heat from Community heat pump (Water)  Fraction of community heat from heat source 2 (Water)  Fraction of total space heat from Community heat pump  Factor for control and charging method (Table 4c(3)) for community heating system  Distribution loss factor (Table 12c) for community heating system (Water heating)  Annual space heating requirement  Space heat from Community heat pump  Efficiency of secondary/supplementary heating system in % (from Table Space heating)  Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eating syster)  (98) × (3)  le 4a or A  (98) × (3) | (3<br>stem<br>04a) x (30<br>Appendix | 02) x (303)<br>5) x (306) :<br>E)<br>÷ (308) = | a) =                   | 1 0.7 0.3 1 1 1 1.05 1.05 <b>kWh/year</b> 1998.75 2098.69 0 0 | (303a)<br>(303a)<br>(303b)<br>(304a)<br>(305)<br>(306)<br>(306)<br>(307a)<br>(308 |

| Motor boot from boot course 2 (Motor)                                             |                             | (64) v (2020) v          | (205) × (206) =            | 040.04                | (240b) |
|-----------------------------------------------------------------------------------|-----------------------------|--------------------------|----------------------------|-----------------------|--------|
| Water heat from heat source 2 (Water)                                             |                             |                          | (305) x (306) =            | 646.81                | (310b) |
| Electricity used for heat distribution                                            |                             | -, , ,                   | 'e) + (310a)(310e)] =      | 20.99                 | (313)  |
| Electricity used for heat distribution (Wa                                        | ,                           | 0.01 × [(307a)(307       | 'e) + (310a)(310e)] =      | 21.56                 | (313)  |
| Cooling System Energy Efficiency Ratio                                            |                             |                          |                            | 0                     | (314)  |
| Space cooling (if there is a fixed cooling                                        |                             | = (107) ÷ (314)          | ı <b>=</b>                 | 0                     | (315)  |
| Electricity for pumps and fans within dw mechanical ventilation - balanced, extra | • ,                         | utside                   |                            | 158.98                | (330a) |
| warm air heating system fans                                                      |                             |                          |                            | 0                     | (330b) |
| pump for solar water heating                                                      |                             |                          |                            | 0                     | (330g) |
| Total electricity for the above, kWh/yea                                          | r                           | =(330a) + (330           | b) + (330g) =              | 158.98                | (331)  |
| Energy for lighting (calculated in Appen                                          | dix L)                      |                          |                            | 320.96                | (332)  |
| Electricity generated by PVs (Appendix                                            | M) (negative quantity)      |                          |                            | -684.44               | (333)  |
| Electricity generated by wind turbine (A                                          | ppendix M) (negative quar   | ntity)                   |                            | 0                     | (334)  |
| 12b. CO2 Emissions – Community hea                                                | ting scheme                 |                          |                            |                       |        |
|                                                                                   |                             | Energy<br>kWh/year       | Emission factor kg CO2/kWh | Emissions kg CO2/year |        |
| CO2 from other sources of space and v                                             | vater heating (not CHP)     |                          |                            |                       |        |
| Efficiency of heat source 1 (%)                                                   | If there is CHP using t     | wo fuels repeat (363) to | (366) for the second fue   | 300                   | (367a) |
| CO2 associated with heat source 1                                                 | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0.52                       | 363.07                | (367)  |
| Electrical energy for heat distribution                                           | [(3                         | 313) x                   | 0.52                       | 10.89                 | (372)  |
| Water heating from separate communit                                              | y system                    |                          |                            |                       |        |
| CO2 from other sources of space and Efficiency of heat source 1 (%)               |                             | wo fuels repeat (363) to | (366) for the second fue   | el 300                | (367a) |
| Efficiency of heat source 2 (%)                                                   | If there is CHP using t     | wo fuels repeat (363) to | (366) for the second fue   | 100                   | (367b) |
| CO2 associated with heat source 1                                                 | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0                          | 261.1                 | (367)  |
| CO2 associated with heat source 2                                                 | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0.52                       | 335.69                | (368)  |
| Electrical energy for heat distribution                                           | [(3                         | 313) x                   | 0.52                       | 11.19                 | (372)  |
| Total CO2 associated with community s                                             | systems (30                 | 63)(366) + (368)(37      | 2)                         | 981.95                | (373)  |
| CO2 associated with space heating (se                                             | condary) (30                | 09) x                    | 0                          | 0                     | (374)  |
| CO2 associated with water from immer                                              | sion heater or instantaneo  | us heater (312) x        | 0.52                       | = 0                   | (375)  |
| Total CO2 associated with space and w                                             | vater heating (3            | 73) + (374) + (375) =    |                            | 981.95                | (376)  |
| CO2 associated with electricity for pum                                           | ps and fans within dwelling | g (331)) x               | 0.52                       | 82.51                 | (378)  |
| CO2 associated with electricity for lighting                                      | ng (3                       | 32))) x                  | 0.52                       | 166.58                | (379)  |
| Energy saving/generation technologies Item 1                                      | (333) to (334) as applicab  | le                       | 0.52 x 0.01 =              | -355.23               | (380)  |
| Total CO2, kg/year                                                                | sum of (376)(382) =         | <u> </u>                 |                            | 875.81                | (383)  |
| Dwelling CO2 Emission Rate                                                        | (383) ÷ (4) =               |                          |                            | 12.02                 | (384)  |
| 3                                                                                 |                             |                          |                            |                       |        |

El rating (section 14)

90.04 (385)

| Stroma Number: STRO016363   Software Name: Stroma FSAP 2012   Software Version: Version: 1.0.4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Software Version: Version: 1.0.4.16           Property Address: Apartment 4           Address: Apartment 4           Address: Apartment 4           Address: Apartment 4           Address: Apartment 4           Address: Apartment 4           Av. Height(m) Volume(m³)           Ground floor         61.4 (1a) x 2.7 (2a) = 165.78 (3a)           Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) 61.4 (4)           Dwelling volume           2. Ventilation rate:         main heating heating         secondary heating         other total         m³ per hour heating           Number of chimneys         0 + 0 + 0 = 0 x 40 = 0 (6a)         0 (6a)           Number of open flues         0 + 0 + 0 = 0 x 20 = 0 (6b)           Number of intermittent fans         0 x 10 = 0 (7a) |
| Address:  1. Overall dwelling dimensions:  Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1. Overall dwelling dimensions:  Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Area(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ground floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dwelling volume $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. Ventilation rate:    main heating secondary heating other heating total m³ per hour   Number of chimneys 0 + 0 + 0 = 0 x 40 = 0 (6a)   Number of open flues 0 + 0 + 0 = 0 x 20 = 0 (6b)   Number of intermittent fans 0 x 10 = 0 (7a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2. Ventilation rate:    main heating secondary heating other heating total m³ per hour   Number of chimneys 0 + 0 + 0 = 0 × 40 = 0 (6a)   Number of open flues 0 + 0 + 0 = 0 × 20 = 0 (6b)   Number of intermittent fans 0 × 10 = 0 (7a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Number of chimneys  0 + 0 + 0 = 0 x40 = 0 (6a)  Number of open flues  0 + 0 + 0 = 0 x20 = 0 (6b)  Number of intermittent fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number of chimneys       0       +       0       +       0       =       0       x 40 =       0       (6a)         Number of open flues       0       +       0       +       0       =       0       x 20 =       0       (6b)         Number of intermittent fans       0       x 10 =       0       (7a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of intermittent fans $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of flueless gas fires $0 \times 40 = 0$ (7c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Air changes per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ $\div (5) = 0$ (8)  If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Number of storeys in the dwelling (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Additional infiltration $[(9)-1] \times 0.1 = 0 $ (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction  o (11)  if both types of wall are present, use the value corresponding to the greater wall area (after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| deducting areas of openings); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| If no draught lobby, enter 0.05, else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Percentage of windows and doors draught stripped $ 0 (14) $ Window infiltration $ 0.25 - [0.2 \times (14) \div 100] = 0 $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Window infiltration $0.25 - [0.2 \times (14) \div 100] = 0$ (15)  Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.15 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of sides sheltered $2 	mtext{(19)}$ Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.85 	mtext{(20)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.13$ $(21)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Infiltration rate modified for monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Monthly average wind speed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Adjusted infiltr                                                                                                             | ation rate (allo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wing for sl                                                                       | nelter an              | nd wind s                                        | peed) =                                          | (21a) x                                          | (22a)m                                     |                                         |                           |                                                   |                  |                                              |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------|---------------------------|---------------------------------------------------|------------------|----------------------------------------------|
| 0.16                                                                                                                         | 0.16 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.14                                                                              | 0.14                   | 0.12                                             | 0.12                                             | 0.12                                             | 0.13                                       | 0.14                                    | 0.14                      | 0.15                                              |                  |                                              |
| Calculate effec                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e rate for t                                                                      | he appli               | cable ca                                         | se                                               | !                                                | •                                          | •                                       |                           | •                                                 | •                | _                                            |
|                                                                                                                              | al ventilation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   | 201-) (00.             | - \ <b>-</b> \ ( -                               |                                                  | \  <b> </b>                                      |                                            | ) (00 -)                                |                           |                                                   | 0.5              | (238                                         |
|                                                                                                                              | eat pump using A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |                        |                                                  |                                                  |                                                  |                                            | ) = (23a)                               |                           |                                                   | 0.5              | (23h                                         |
|                                                                                                                              | n heat recovery: e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                 | _                      |                                                  |                                                  |                                                  |                                            |                                         |                           |                                                   | 75.65            | (230                                         |
|                                                                                                                              | ed mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                   | 1                      | 1                                                | <u> </u>                                         | <del>-                                    </del> | <del>í `</del>                             | <del>r `</del>                          |                           | <del>- `                                   </del> | ) ÷ 100]<br>1    | (24)                                         |
| (24a)m= 0.28                                                                                                                 | 0.28 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ļ                                                                                 | 0.26                   | 0.24                                             | 0.24                                             | 0.24                                             | 0.25                                       | 0.26                                    | 0.27                      | 0.27                                              |                  | (248                                         |
| · -                                                                                                                          | ed mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                   | 1                      | r                                                | <del>-                                    </del> | <del>,                                    </del> | <del>´`</del>                              | <del>r Ó</del>                          |                           |                                                   | 1                | (0.4)                                        |
| (24b)m= 0                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                 | 0                      | 0                                                | 0                                                | 0                                                | 0                                          | 0                                       | 0                         | 0                                                 | ]                | (24t                                         |
| •                                                                                                                            | ouse extract v<br>n < 0.5 × (23b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   | •                      | •                                                |                                                  |                                                  |                                            | .5 × (23b                               | )                         |                                                   |                  |                                              |
| (24c)m= 0                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                 | 0                      | 0                                                | 0                                                | 0                                                | 0                                          | 0                                       | 0                         | 0                                                 |                  | (240                                         |
| ,                                                                                                                            | ventilation or v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   | •                      | •                                                |                                                  |                                                  |                                            | 0.5]                                    |                           |                                                   |                  |                                              |
| (24d)m= 0                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                 | 0                      | 0                                                | 0                                                | 0                                                | 0                                          | 0                                       | 0                         | 0                                                 | ]                | (240                                         |
| Effective air                                                                                                                | change rate -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | enter (24a                                                                        | a) or (24h             | o) or (24                                        | c) or (24                                        | d) in bo                                         | x (25)                                     | •                                       |                           | •                                                 | •                |                                              |
| (25)m= 0.28                                                                                                                  | 0.28 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.26                                                                              | 0.26                   | 0.24                                             | 0.24                                             | 0.24                                             | 0.25                                       | 0.26                                    | 0.27                      | 0.27                                              | ]                | (25)                                         |
| 3. Heat losse                                                                                                                | s and heat los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s paramet                                                                         | er:                    | •                                                |                                                  | •                                                | •                                          |                                         |                           |                                                   |                  |                                              |
| ELEMENT                                                                                                                      | Gross<br>area (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Openir<br>m                                                                       | ngs<br>1²              | Net Ar<br>A ,r                                   |                                                  | U-val<br>W/m2                                    |                                            | A X U<br>(W/ł                           | ۲)                        | k-value<br>kJ/m²·                                 |                  | X k<br>J/K                                   |
| Doors                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                        | 2                                                | X                                                | 1.3                                              | = [                                        | 2.6                                     |                           |                                                   |                  | (26)                                         |
| Windows Type                                                                                                                 | <del>)</del> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                   |                        | 3.7                                              | x1                                               | /[1/( 1.3 )+                                     | 0.04] =                                    | 4.57                                    | $\overline{}$             |                                                   |                  | (27)                                         |
| Windows Type                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   |                        | 0.91                                             | x1                                               | /[1/( 1.3 )+                                     | 0.04] =                                    | 1.12                                    |                           |                                                   |                  | (27)                                         |
| Windows Type                                                                                                                 | e 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                        | 6.29                                             | = x1                                             | /[1/( 1.3 )+                                     | 0.04] =                                    | 7.77                                    | =                         |                                                   |                  | (27)                                         |
| Windows Type                                                                                                                 | e 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                        | 8.37                                             | = x1                                             | /[1/( 1.3 )+                                     | 0.04] =                                    | 10.34                                   |                           |                                                   |                  | (27)                                         |
| Windows Type                                                                                                                 | e 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                        | 6.29                                             | $=$ $_{x^1}$                                     | /[1/( 1.3 )+                                     | · 0.04] =                                  | 7.77                                    | Ħ                         |                                                   |                  | (27                                          |
| Walls Type1                                                                                                                  | 51.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.2                                                                              | 6                      | 22.17                                            | =                                                | 0.15                                             |                                            | 3.33                                    | <b>=</b>                  |                                                   | $\neg \vdash$    | (29)                                         |
| Walls Type2                                                                                                                  | 35.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                 | $\stackrel{\smile}{=}$ | 33.95                                            | _                                                | 0.13                                             | ╡┇                                         | 4.53                                    | <b>=</b>                  |                                                   | ╡                | (29)                                         |
| , , , , , , , , , , , , , , , ,                                                                                              | ] 55.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                        | 33.30                                            | ^                                                | 0.13                                             |                                            | 4.55                                    |                           |                                                   |                  | (30)                                         |
| • •                                                                                                                          | 61.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |                        | 61.4                                             |                                                  | 0.1                                              |                                            | 6 1 4                                   |                           |                                                   | I I              | 1130                                         |
| Roof                                                                                                                         | 61.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                 |                        | 61.4                                             | _                                                | 0.1                                              | = [                                        | 6.14                                    |                           |                                                   |                  |                                              |
| Roof<br>Total area of e                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                 |                        | 148.7                                            | 8                                                |                                                  |                                            |                                         |                           |                                                   |                  | (31)                                         |
| Roof<br>Total area of e<br>Party wall                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                 |                        | 148.7                                            | 8 x                                              | 0.1                                              | = [                                        | 6.14                                    |                           |                                                   |                  | (31)                                         |
| Roof<br>Total area of e<br>Party wall<br>Party floor                                                                         | elements, m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   | indow II w             | 148.7<br>17.92<br>61.4                           | 8 x                                              | 0                                                | = [                                        | 0                                       |                           | naragraph                                         |                  | (31)                                         |
| Roof<br>Total area of e<br>Party wall<br>Party floor<br>* for windows and                                                    | elements, m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | se effective w                                                                    |                        | 148.7<br>17.92<br>61.4                           | 8 x                                              | 0                                                | = [                                        | 0                                       | [<br>]<br>[<br>s given in | paragraph                                         | n 3.2            | (31)                                         |
| Roof Total area of e Party wall Party floor * for windows and ** include the area                                            | elements, m² I roof windows, us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | se effective w                                                                    |                        | 148.7<br>17.92<br>61.4                           | 8 x                                              | 0                                                | = [<br>]/[(1/U-valu                        | 0                                       | s given in                | paragraph                                         | 13.2<br>52.76    | (31)                                         |
| Roof Total area of e Party wall Party floor * for windows and ** include the area Fabric heat los                            | elements, m²  I roof windows, us as on both sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides on sides of sides on sides on sides on sides of sides on sides of sides on sides of sides on sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of sides of side          | se effective wi<br>of internal wai<br>( x U)                                      |                        | 148.7<br>17.92<br>61.4                           | 8 x                                              | 0<br>g formula 1                                 | = [<br>/[(1/U-valu<br>) + (32) =           | 0                                       |                           |                                                   |                  | (31)                                         |
| Roof Total area of e Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity Thermal mass | elements, m²  I roof windows, us as on both sides of as, W/K = S (A Cm = S(A x k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | se effective w<br>of internal wai<br>( x U)                                       | lls and par            | 148.7<br>17.92<br>61.4<br>alue calcul<br>titions | 8 x                                              | 0<br>g formula 1                                 | = [<br>                                    | 0<br>ue)+0.04] a                        | ?) + (32a).               |                                                   | 52.76            | (31)<br>(32)<br>(32)<br>(32)<br>(33)<br>(34) |
| Roof Total area of e Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity Thermal mass | elements, m <sup>2</sup> I roof windows, us as on both sides on ss, W/K = S (A compared or S)  Cm = S(A x kompared or S)  I roof windows, us as on both sides of second or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sides or sid | se effective w.<br>of internal wal<br>(x x U)<br>)<br>MP = Cm -<br>details of the | lls and pan            | 148.7 17.92 61.4 alue calcul titions             | 8 x                                              | 0 formula 1 (26)(30                              | = [<br>//[(1/U-valu<br>) + (32) =<br>((28) | 0  ie)+0.04] a (30) + (32)  tive Value: | ?) + (32a).<br>Medium     | (32e) =                                           | 52.76<br>14029.8 | (31)<br>(32)<br>(32)<br>(32)<br>(33)<br>(34) |
| Roof Total area of e Party wall Party floor * for windows and ** include the area Fabric heat los Heat capacity              | elements, m <sup>2</sup> I roof windows, us as on both sides of ss, W/K = S (A x k)  Cm = S(A x k)  parameter (T)  sments where the sad of a detailed of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | se effective was to internal was a X U)  MP = Cm - details of the alculation.     | e construct            | 148.7 17.92 61.4 alue calcultitions  n kJ/m²K    | 8 x Sated using                                  | 0 formula 1 (26)(30                              | = [<br>//[(1/U-valu<br>) + (32) =<br>((28) | 0  ie)+0.04] a (30) + (32)  tive Value: | ?) + (32a).<br>Medium     | (32e) =                                           | 52.76<br>14029.8 | (31)                                         |

| Total fabric heat loss                       |               |                   |               |             |             |             | (33) +       | (36) =                 |                        | İ             | 68.55   | (37)         |
|----------------------------------------------|---------------|-------------------|---------------|-------------|-------------|-------------|--------------|------------------------|------------------------|---------------|---------|--------------|
| Ventilation heat loss                        | calculated    | d monthl          | V             |             |             |             | • ,          | = 0.33 × (             | 25)m x (5)             |               | 00.00   | (07)         |
| Jan Feb                                      |               | Apr               | May           | Jun         | Jul         | Aug         | Sep          | Oct                    | Nov                    | Dec           |         |              |
| (38)m= 15.55 15.38                           | 15.21         | 14.33             | 14.16         | 13.29       | 13.29       | 13.11       | 13.64        | 14.16                  | 14.51                  | 14.86         |         | (38)         |
| Heat transfer coeffici                       | ent, W/K      | !                 | l             | <u> </u>    | <b>!</b>    |             | (39)m        | = (37) + (37)          | <br>38)m               |               |         |              |
| (39)m= 84.11 83.93                           | <del></del>   | 82.89             | 82.71         | 81.84       | 81.84       | 81.67       | 82.19        | 82.71                  | 83.06                  | 83.41         |         |              |
| Heat loss parameter                          | <br>(HLP), W  | /m²K              | I.            |             | I.          |             |              | Average =<br>= (39)m ÷ |                        | 12 /12=       | 82.84   | (39)         |
| (40)m= 1.37 1.37                             | 1.36          | 1.35              | 1.35          | 1.33        | 1.33        | 1.33        | 1.34         | 1.35                   | 1.35                   | 1.36          |         |              |
| Number of days in m                          | onth (Tab     | le 1a)            | !             |             | !           | •           | ,            | Average =              | Sum(40) <sub>1.</sub>  | 12 /12=       | 1.35    | (40)         |
| Jan Feb                                      | <u> </u>      | Apr               | May           | Jun         | Jul         | Aug         | Sep          | Oct                    | Nov                    | Dec           |         |              |
| (41)m= 31 28                                 | 31            | 30                | 31            | 30          | 31          | 31          | 30           | 31                     | 30                     | 31            |         | (41)         |
| <u> </u>                                     |               |                   | •             |             |             |             |              | •                      |                        |               | l       |              |
| 4. Water heating en                          | erav reau     | irement           |               |             |             |             |              |                        |                        | kWh/ye        | ear.    |              |
| n. Water nearing on                          | 519y 15qa     |                   |               |             |             |             |              |                        |                        | ice vi ii y c |         |              |
| Assumed occupancy                            |               | F.4               |               | . 40 (T     | - 400       | \0\1 · 0 (  | 2040 (       | TEA 40                 |                        | 02            |         | (42)         |
| if TFA > 13.9, N = if TFA £ 13.9, N =        |               | ([1 - exp         | 0.0003        | 349 X (11   | -A -13.9    | )2)] + 0.0  | )013 x (     | IFA -13.               | 9)                     |               |         |              |
| Annual average hot                           |               | ae in litre       | es per da     | av Vd.av    | erage =     | (25 x N)    | + 36         |                        | 83                     | 2.2           |         | (43)         |
| Reduce the annual averag                     | ge hot water  | usage by          | 5% if the $a$ | lwelling is | designed i  |             |              | se target o            |                        | 2             |         | (10)         |
| not more that 125 litres pe                  | r person pe   | r day (all w      | /ater use, l  | hot and co  | ld)         |             |              |                        |                        |               |         |              |
| Jan Feb                                      | Mar           | Apr               | May           | Jun         | Jul         | Aug         | Sep          | Oct                    | Nov                    | Dec           |         |              |
| Hot water usage in litres p                  | er day for e  | ach month         | Vd,m = fa     | ctor from   | Table 1c x  | (43)        |              |                        |                        |               |         |              |
| (44)m= 90.42 87.13                           | 83.84         | 80.55             | 77.27         | 73.98       | 73.98       | 77.27       | 80.55        | 83.84                  | 87.13                  | 90.42         |         |              |
| Coordinate of hot wat                        | ar wood oo    | laulatad m        | anthly 1      | 100 × 1/d = |             | Tm / 2600   |              | Total = Su             | . ,                    |               | 986.36  | (44)         |
| Energy content of hot wat                    | -             |                   | -             |             |             |             |              |                        |                        |               | 1       |              |
| (45)m= 134.09 117.2                          | 7 121.01      | 105.5             | 101.23        | 87.36       | 80.95       | 92.89       | 94           | 109.55                 | 119.58                 | 129.85        |         | 7(45)        |
| If instantaneous water hea                   | ating at poin | t of use (no      | o hot water   | storage).   | enter 0 in  | boxes (46   |              | Total = Su             | m(45) <sub>112</sub> = |               | 1293.28 | (45)         |
| (46)m= 20.11 17.59                           | 18.15         | 15.83             | 15.18         | 13.1        | 12.14       | 13.93       | 14.1         | 16.43                  | 17.94                  | 19.48         |         | (46)         |
| Water storage loss:                          | 10.13         | 10.00             | 13.10         | 10.1        | 12.14       | 13.93       | 14.1         | 10.43                  | 17.94                  | 19.40         |         | (10)         |
| Storage volume (litre                        | s) includir   | ng any s          | olar or W     | /WHRS       | storage     | within sa   | ame ves      | sel                    |                        | 0             |         | (47)         |
| If community heating                         | and no ta     | ank in dw         | velling, e    | nter 110    | ) litres in | (47)        |              |                        |                        |               |         |              |
| Otherwise if no store                        | d hot wate    | er (this ir       | ncludes i     | nstantar    | neous co    | ombi boil   | ers) ente    | er '0' in (            | 47)                    |               |         |              |
| Water storage loss:                          |               |                   |               |             |             |             |              |                        |                        |               |         |              |
| a) If manufacturer's                         | declared      | loss fact         | or is kno     | wn (kWł     | n/day):     |             |              |                        |                        | 0             |         | (48)         |
| Temperature factor f                         | om Table      | 2b                |               |             |             |             |              |                        |                        | 0             |         | (49)         |
| Energy lost from wat                         | _             | -                 |               |             |             | (48) x (49) | ) =          |                        | 1                      | 10            |         | (50)         |
| b) If manufacturer's                         |               | -                 |               |             |             |             |              |                        |                        |               | '<br>   |              |
| Hot water storage los                        |               |                   | ie 2 (kw      | n/litre/da  | ay)         |             |              |                        | 0.                     | 02            |         | (51)         |
| If community heating<br>Volume factor from T |               | 011 4.3           |               |             |             |             |              |                        |                        | 02            |         | (52)         |
| Temperature factor f                         |               | 2b                |               |             |             |             |              |                        |                        | .6            |         | (52)<br>(53) |
| Energy lost from wat                         |               |                   | ear           |             |             | (47) x (51) | ) v (52) v ( | 53) =                  |                        |               |         | . ,          |
| Enter (50) or (54) in                        | _             | , 1. v v i i/ y i | Cui           |             |             | (TI) X (OI) | , A (OZ) A ( | <del></del>            | -                      | 03<br>03      |         | (54)<br>(55) |
| (, (,                                        | ` '           |                   |               |             |             |             |              |                        | <u>''</u>              |               |         | (-2)         |

| Water                                                                                                               | storage                                                                                                                                                         | loss cal                                                                                                                 | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                      | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                                                              | ((56)m = (                                                                         | 55) × (41)                                                                     | m                                                              |                                                                                 |                                |               |                                              |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|---------------|----------------------------------------------|
| (56)m=                                                                                                              | 32.01                                                                                                                                                           | 28.92                                                                                                                    | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                                         | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                      | 32.01                                                                        | 32.01                                                                              | 30.98                                                                          | 32.01                                                          | 30.98                                                                           | 32.01                          |               | (56)                                         |
| If cylinde                                                                                                          | er contains                                                                                                                                                     | dedicate                                                                                                                 | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)                                                                                    | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                | H11)] ÷ (5                                                                   | 0), else (5                                                                        | 7)m = (56)                                                                     | m where (                                                      | H11) is fro                                                                     | m Append                       | ix H          |                                              |
| (57)m=                                                                                                              | 32.01                                                                                                                                                           | 28.92                                                                                                                    | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                                         | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.98                                                                      | 32.01                                                                        | 32.01                                                                              | 30.98                                                                          | 32.01                                                          | 30.98                                                                           | 32.01                          |               | (57)                                         |
| Primar                                                                                                              | y circuit                                                                                                                                                       | loss (an                                                                                                                 | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m Table                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                                              |                                                                                    |                                                                                |                                                                |                                                                                 | 0                              |               | (58)                                         |
| Primar                                                                                                              | y circuit                                                                                                                                                       | loss cal                                                                                                                 | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                      | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                   | (58) ÷ 36                                                                    | 65 × (41)                                                                          | m                                                                              |                                                                |                                                                                 |                                |               |                                              |
| (mod                                                                                                                | dified by                                                                                                                                                       | factor fr                                                                                                                | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                    | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olar wat                                                                   | ter heatii                                                                   | ng and a                                                                           | cylinde                                                                        | r thermo                                                       | stat)                                                                           | _                              |               |                                              |
| (59)m=                                                                                                              | 23.26                                                                                                                                                           | 21.01                                                                                                                    | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.51                                                                                         | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.51                                                                      | 23.26                                                                        | 23.26                                                                              | 22.51                                                                          | 23.26                                                          | 22.51                                                                           | 23.26                          |               | (59)                                         |
| Combi                                                                                                               | loss cal                                                                                                                                                        | culated                                                                                                                  | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                       | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                  | 65 × (41)                                                                    | )m                                                                                 |                                                                                |                                                                |                                                                                 |                                |               |                                              |
| (61)m=                                                                                                              | 0                                                                                                                                                               | 0                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                          | 0                                                                            | 0                                                                                  | 0                                                                              | 0                                                              | 0                                                                               | 0                              |               | (61)                                         |
| Total h                                                                                                             | eat requ                                                                                                                                                        | uired for                                                                                                                | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                     | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I for eacl                                                                 | h month                                                                      | (62)m =                                                                            | 0.85 × (                                                                       | (45)m +                                                        | (46)m +                                                                         | (57)m +                        | (59)m + (61)m |                                              |
| (62)m=                                                                                                              | 189.36                                                                                                                                                          | 167.2                                                                                                                    | 176.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 159                                                                                           | 156.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140.85                                                                     | 136.23                                                                       | 148.17                                                                             | 147.49                                                                         | 164.82                                                         | 173.07                                                                          | 185.13                         |               | (62)                                         |
| Solar DF                                                                                                            | HW input o                                                                                                                                                      | alculated                                                                                                                | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                                    | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                  | ve quantity                                                                  | /) (enter '0                                                                       | ' if no sola                                                                   | r contribut                                                    | ion to wate                                                                     | er heating)                    |               |                                              |
| (add ad                                                                                                             | dditiona                                                                                                                                                        | l lines if                                                                                                               | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or \                                                                                      | VWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                    | , see Ap                                                                     | pendix (                                                                           | 3)                                                                             |                                                                | _                                                                               | _                              |               |                                              |
| (63)m=                                                                                                              | 0                                                                                                                                                               | 0                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                          | 0                                                                            | 0                                                                                  | 0                                                                              | 0                                                              | 0                                                                               | 0                              |               | (63)                                         |
| Output                                                                                                              | from wa                                                                                                                                                         | ater hea                                                                                                                 | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                              |                                                                                    |                                                                                |                                                                |                                                                                 |                                |               |                                              |
| (64)m=                                                                                                              | 189.36                                                                                                                                                          | 167.2                                                                                                                    | 176.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 159                                                                                           | 156.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140.85                                                                     | 136.23                                                                       | 148.17                                                                             | 147.49                                                                         | 164.82                                                         | 173.07                                                                          | 185.13                         |               | _                                            |
|                                                                                                                     |                                                                                                                                                                 |                                                                                                                          | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                          | -                                                                            | Outp                                                                               | out from wa                                                                    | ater heate                                                     | r (annual) <sub>1</sub>                                                         | 12                             | 1944.12       | (64)                                         |
| Heat g                                                                                                              | ains froi                                                                                                                                                       | n water                                                                                                                  | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m                                                                                         | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ′ [0.85                                                                  | × (45)m                                                                      | + (61)m                                                                            | n] + 0.8 x                                                                     | ((46)m                                                         | + (57)m                                                                         | + (59)m                        | ]             |                                              |
| (65)m=                                                                                                              | 88.8                                                                                                                                                            | 78.93                                                                                                                    | 84.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.87                                                                                         | 77.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71.84                                                                      | 71.14                                                                        | 75.11                                                                              | 74.05                                                                          | 80.65                                                          | 82.55                                                                           | 07.4                           |               | (65)                                         |
|                                                                                                                     |                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ' ''                                                                       | ' ''-                                                                        | 75.11                                                                              | 74.05                                                                          | 60.05                                                          | 02.55                                                                           | 87.4                           |               | (00)                                         |
| inclu                                                                                                               | de (57)ı                                                                                                                                                        | m in calc                                                                                                                | ulation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                   | <u> </u>                                                                     | <u> </u>                                                                           |                                                                                |                                                                |                                                                                 | munity h                       | eating        | (55)                                         |
|                                                                                                                     | ` ′                                                                                                                                                             |                                                                                                                          | culation of the Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m                                                                                      | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                   | <u> </u>                                                                     | <u> </u>                                                                           |                                                                                |                                                                |                                                                                 |                                | eating        | (00)                                         |
| 5. Int                                                                                                              | ernal ga                                                                                                                                                        | ains (see                                                                                                                | e Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of (65)m<br>and 5a                                                                            | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                   | <u> </u>                                                                     | <u> </u>                                                                           |                                                                                |                                                                |                                                                                 |                                | eating        |                                              |
| 5. Int                                                                                                              | ernal ga                                                                                                                                                        | ains (see                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m<br>and 5a                                                                            | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                   | <u> </u>                                                                     | <u> </u>                                                                           |                                                                                |                                                                |                                                                                 |                                | eating        |                                              |
| 5. Int                                                                                                              | ernal ga                                                                                                                                                        | ins (see                                                                                                                 | Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>and 5a                                                                            | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                  | s in the o                                                                   | dwelling                                                                           | or hot w                                                                       | ater is fr                                                     | rom com                                                                         | munity h                       | eating        | (66)                                         |
| 5. Int Metabo (66)m=                                                                                                | ernal gain<br>Jan<br>101.05                                                                                                                                     | s (Table<br>Feb<br>101.05                                                                                                | E Table 5<br>E 5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (65)m<br>5 and 5a<br>ts<br>Apr<br>101.05                                                   | only if c ):  May 101.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ylinder is<br>Jun<br>101.05                                                | Jul 101.05                                                                   | Aug<br>101.05                                                                      | or hot w<br>Sep<br>101.05                                                      | ater is fr                                                     | om com                                                                          | munity h                       | eating        |                                              |
| 5. Int Metabo (66)m=                                                                                                | ernal gain<br>Jan<br>101.05                                                                                                                                     | s (Table<br>Feb<br>101.05                                                                                                | 2 5), Wat<br>Mar<br>101.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>5 and 5a<br>ts<br>Apr<br>101.05                                                   | only if c ):  May 101.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ylinder is<br>Jun<br>101.05                                                | Jul 101.05                                                                   | Aug<br>101.05                                                                      | or hot w<br>Sep<br>101.05                                                      | ater is fr                                                     | om com                                                                          | munity h                       | eating        |                                              |
| 5. Int Metabo (66)m= Lighting (67)m=                                                                                | ernal gan<br>Dlic gain<br>Jan<br>101.05<br>g gains                                                                                                              | s (Table<br>Feb<br>101.05<br>(calcula                                                                                    | E Table 5<br>E 5), Wat<br>Mar<br>101.05<br>ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m<br>6 and 5a<br>ts<br>Apr<br>101.05<br>opendix<br>8.6                                 | May 101.05 L, equati 6.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun<br>101.05<br>ion L9 o                                                  | Jul<br>101.05<br>r L9a), a                                                   | Aug<br>101.05<br>Iso see                                                           | Sep<br>101.05<br>Table 5                                                       | Oct 101.05                                                     | Nov                                                                             | Dec                            | eating        | (66)                                         |
| 5. Int Metabo (66)m= Lighting (67)m=                                                                                | ernal gan<br>Dlic gain<br>Jan<br>101.05<br>g gains                                                                                                              | s (Table<br>Feb<br>101.05<br>(calcula                                                                                    | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of (65)m<br>6 and 5a<br>ts<br>Apr<br>101.05<br>opendix<br>8.6                                 | May 101.05 L, equati 6.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun<br>101.05<br>ion L9 o                                                  | Jul<br>101.05<br>r L9a), a                                                   | Aug<br>101.05<br>Iso see                                                           | Sep<br>101.05<br>Table 5                                                       | Oct 101.05                                                     | Nov                                                                             | Dec                            | eating        | (66)                                         |
| 5. Int Metabo (66)m= Lighting (67)m= Appliar (68)m=                                                                 | ernal gain Jan 101.05 g gains 15.73 nces gai                                                                                                                    | s (Table<br>Feb<br>101.05<br>(calcula<br>13.97<br>ins (calc                                                              | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.36 ulated in 173.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (65)m and 5a ts Apr 101.05 ppendix 8.6 Appendix 163.86                                     | only if c  May  101.05  L, equati  6.43  dix L, eq  151.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L                             | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02                     | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also                                      | Sep 101.05 Table 5 10.23 see Ta 134.8                                          | Oct 101.05 13 ble 5 144.62                                     | Nov<br>101.05                                                                   | Dec 101.05                     | eating        | (66)<br>(67)                                 |
| 5. Int Metabo (66)m= Lighting (67)m= Appliar (68)m=                                                                 | ernal gain Jan 101.05 g gains 15.73 nces gai                                                                                                                    | s (Table<br>Feb<br>101.05<br>(calcula<br>13.97<br>ins (calc                                                              | Mar<br>101.05<br>ted in Ap<br>11.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m and 5a ts Apr 101.05 ppendix 8.6 Appendix 163.86                                     | only if c  May  101.05  L, equati  6.43  dix L, eq  151.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L                             | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02                     | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also                                      | Sep 101.05 Table 5 10.23 see Ta 134.8                                          | Oct 101.05 13 ble 5 144.62                                     | Nov<br>101.05                                                                   | Dec 101.05                     | eating        | (66)<br>(67)                                 |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cooking (69)m=                                                 | ernal gain Jan 101.05 g gains 15.73 nces gain 176.46 ng gains 33.1                                                                                              | s (Table<br>Feb<br>101.05<br>(calcula<br>13.97<br>ins (calcula<br>178.29<br>(calcula<br>33.1                             | Mar 101.05 ted in Ap 11.36 ulated in 173.68 tted in A 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m s and 5a ts Apr 101.05 opendix 8.6 Appendix 163.86 oppendix 33.1                     | May 101.05 L, equati 6.43 dix L, equat 151.46 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15         | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a          | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18                            | Sep 101.05 Table 5 10.23 See Ta 134.8 ee Table                                 | Oct 101.05 13 ble 5 144.62 5                                   | Nov<br>101.05<br>15.17                                                          | Dec 101.05 16.17               | eating        | (66)<br>(67)<br>(68)                         |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cooking (69)m=                                                 | ernal gain Jan 101.05 g gains 15.73 nces gain 176.46 ng gains 33.1                                                                                              | s (Table<br>Feb<br>101.05<br>(calcula<br>13.97<br>ins (calcula<br>178.29<br>(calcula<br>33.1                             | Mar 101.05 ted in Ap 11.36 ulated in Ap 173.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of (65)m s and 5a ts Apr 101.05 opendix 8.6 Appendix 163.86 oppendix 33.1                     | May 101.05 L, equati 6.43 dix L, equat 151.46 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15         | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a          | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18                            | Sep 101.05 Table 5 10.23 See Ta 134.8 ee Table                                 | Oct 101.05 13 ble 5 144.62 5                                   | Nov<br>101.05<br>15.17                                                          | Dec 101.05 16.17               | eating        | (66)<br>(67)<br>(68)                         |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cooking (69)m= Pumps (70)m=                                    | ernal gar<br>Jan<br>101.05<br>g gains<br>15.73<br>nces gar<br>176.46<br>ng gains<br>33.1<br>and far                                                             | s (Table Feb 101.05 (calcula 13.97 ins (calcula 178.29 (calcula 33.1 ns gains                                            | 101.05 ted in Ap 11.36 ulated in Ap 173.68 ted in Ap 173.68 ted in Ap 174.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of (65)m and 5a ts Apr 101.05 ppendix 8.6 Appendix 163.86 ppendix 33.1 5a) 0                  | only if controls:  May  101.05  L, equation 6.43  dix L, equation 151.46  L, equation 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jun 101.05 ion L9 of 5.43 uation L 139.8 ion L15 33.1                      | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1      | Sep<br>101.05<br>Table 5<br>10.23<br>see Ta<br>134.8<br>ee Table<br>33.1       | Oct 101.05  13 ble 5 144.62 5 33.1                             | Nov<br>101.05<br>15.17<br>157.02                                                | Dec 101.05 16.17 168.68 33.1   | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cooking (69)m= Pumps (70)m= Losses                             | ernal gain Jan 101.05 g gains 15.73 nces gai 176.46 ng gains 33.1 and far 0 s e.g. ev                                                                           | s (Table Feb 101.05 (calcular 13.97 Ins (calcular 178.29 (calcular 33.1 Ins gains 0 aporatio                             | ted in Apulated in 173.68 ted in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated in Apulated  | of (65)m and 5a ts Apr 101.05 ppendix 8.6 Append 163.86 ppendix 33.1 5a) 0 tive valu          | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1 | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1      | Sep 101.05 Table 5 10.23 see Ta 134.8 ee Table 33.1                            | Oct 101.05  13 ble 5 144.62 5 33.1                             | Nov<br>101.05<br>15.17<br>157.02                                                | Dec 101.05 168.68 33.1         | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m=                       | ernal gar<br>Jan<br>101.05<br>g gains<br>15.73<br>nces gains<br>176.46<br>ng gains<br>33.1<br>and far<br>0<br>s e.g. ev                                         | s (Table Feb 101.05 (calcula 13.97 ins (calc 178.29 (calcula 33.1 ns gains 0 aporatio -80.84                             | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.36 ulated in 173.68 ated in A 33.1 (Table 5 0 on (negat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m and 5a ts Apr 101.05 ppendix 8.6 Appendix 163.86 ppendix 33.1 5a) 0                  | only if controls:  May  101.05  L, equation 6.43  dix L, equation 151.46  L, equation 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jun 101.05 ion L9 of 5.43 uation L 139.8 ion L15 33.1                      | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1      | Sep<br>101.05<br>Table 5<br>10.23<br>see Ta<br>134.8<br>ee Table<br>33.1       | Oct 101.05  13 ble 5 144.62 5 33.1                             | Nov<br>101.05<br>15.17<br>157.02                                                | Dec 101.05 16.17 168.68 33.1   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m=                       | ernal gar<br>Jan<br>101.05<br>g gains<br>15.73<br>nces gains<br>176.46<br>ng gains<br>33.1<br>and far<br>0<br>s e.g. ev                                         | s (Table Feb 101.05 (calcular 13.97 Ins (calcular 178.29 (calcular 33.1 Ins gains 0 aporatio                             | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.36 ulated in 173.68 ated in A 33.1 (Table 5 0 on (negat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m and 5a ts Apr 101.05 ppendix 8.6 Append 163.86 ppendix 33.1 5a) 0 tive valu          | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun<br>101.05<br>ion L9 of<br>5.43<br>uation L<br>139.8<br>ion L15<br>33.1 | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1      | Sep 101.05 Table 5 10.23 see Ta 134.8 ee Table 33.1                            | Oct 101.05  13 ble 5 144.62 5 33.1                             | Nov<br>101.05<br>15.17<br>157.02                                                | Dec 101.05 168.68 33.1         | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cooking (69)m= Pumps (70)m= Losses (71)m= Water (72)m=         | ernal gar<br>Jan<br>101.05<br>g gains<br>15.73<br>nces gar<br>176.46<br>ng gains<br>33.1<br>and far<br>0<br>s e.g. ev<br>-80.84<br>heating<br>119.36            | s (Table Feb 101.05) (calcular 13.97) (calcular 178.29) (calcular 33.1) as gains 0 aporation -80.84 gains (Table 117.46) | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.36 ulated in 173.68 ited in Ap 33.1 (Table 5 0 in (negation 10.84) Table 5) 113.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of (65)m s and 5a ts Apr 101.05 opendix 8.6 Appendix 33.1 5a) 0 tive valu -80.84              | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun 101.05 ion L9 of 5.43 uation L 139.8 ion L15 33.1  0 le 5) -80.84      | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1      | Sep 101.05 Table 5 10.23 See Ta 134.8 See Table 33.1  0  -80.84                | Oct 101.05  13 ble 5 144.62 5 33.1  0 -80.84                   | Nov<br>101.05<br>15.17<br>157.02<br>33.1<br>0                                   | Dec 101.05 16.17 168.68 33.1 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cooking (69)m= Pumps (70)m= Losses (71)m= Water (72)m= Total i | ernal gar<br>Jan<br>101.05<br>g gains<br>15.73<br>nces gar<br>176.46<br>ng gains<br>33.1<br>and far<br>0<br>s e.g. ev<br>-80.84<br>heating<br>119.36<br>nternal | s (Table Feb 101.05 (calcula 13.97 ins (calcula 33.1 ins gains 0 aporatio -80.84 gains (T 117.46 gains =                 | E Table 5 E 5), Wat Mar 101.05 Ited in Ap 11.36 ulated in 173.68 Ited in A 33.1 (Table 5 0 In (negation of the context) able 5) 113.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of (65)m and 5a ts Apr 101.05 ppendix 8.6 Appendix 163.86 ppendix 33.1 5a) 0 tive valu -80.84 | only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if construction only if c | Jun 101.05 ion L9 of 5.43 uation L 139.8 ion L15 33.1  0 le 5) -80.84      | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1<br>0 | Sep<br>101.05<br>Table 5<br>10.23<br>See Ta<br>134.8<br>See Table<br>33.1<br>0 | Oct 101.05  13 ble 5 144.62 5 33.1  0 -80.84  108.39 70)m + (7 | Nov<br>101.05<br>15.17<br>157.02<br>33.1<br>0<br>-80.84<br>114.66<br>1)m + (72) | Dec 101.05 16.17 168.68 33.1 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m= Water                 | ernal gain Jan 101.05 g gains 15.73 nces gain 176.46 g gains 33.1 s and far 0 s e.g. ev -80.84 heating                                                          | s (Table Feb 101.05 (calcula 13.97 ins (calcula 178.29 (calcula 33.1 ns gains 0 aporatio -80.84 gains (T                 | e Table 5 e 5), Wat Mar 101.05 ted in Ap 11.36 ulated in 173.68 ted in A 33.1 (Table 5 0 on (negation of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the co | of (65)m s and 5a ts Apr 101.05 opendix 8.6 Appendix 33.1 5a) 0 tive valu -80.84              | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun 101.05 ion L9 of 5.43 uation L 139.8 ion L15 33.1  0 le 5) -80.84      | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1      | Sep<br>101.05<br>Table 5<br>10.23<br>See Ta<br>134.8<br>See Table<br>33.1      | Oct 101.05  13 ble 5 144.62 5 33.1 0                           | Nov<br>101.05<br>15.17<br>157.02<br>33.1                                        | Dec 101.05 16.17 168.68 33.1 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| 5. Int Metabo  (66)m= Lighting (67)m= Appliar (68)m= Cooking (69)m= Pumps (70)m= Losses (71)m= Water (72)m=         | ernal gar<br>Jan<br>101.05<br>g gains<br>15.73<br>nces gar<br>176.46<br>ng gains<br>33.1<br>and far<br>0<br>s e.g. ev<br>-80.84<br>heating<br>119.36            | s (Table Feb 101.05) (calcular 13.97) (calcular 178.29) (calcular 33.1) as gains 0 aporation -80.84 gains (Table 117.46) | E Table 5 E 5), Wat Mar 101.05 ted in Ap 11.36 ulated in 173.68 ited in Ap 33.1 (Table 5 0 in (negation 10.84) Table 5) 113.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of (65)m s and 5a ts Apr 101.05 opendix 8.6 Appendix 33.1 5a) 0 tive valu -80.84              | only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if contro | Jun 101.05 ion L9 of 5.43 uation L 139.8 ion L15 33.1  0 le 5) -80.84      | Jul<br>101.05<br>r L9a), a<br>5.87<br>13 or L1<br>132.02<br>or L15a)<br>33.1 | Aug<br>101.05<br>Iso see<br>7.63<br>3a), also<br>130.18<br>), also se<br>33.1      | Sep 101.05 Table 5 10.23 See Ta 134.8 See Table 33.1  0  -80.84                | Oct 101.05  13 ble 5 144.62 5 33.1  0 -80.84                   | Nov<br>101.05<br>15.17<br>157.02<br>33.1<br>0                                   | Dec 101.05 16.17 168.68 33.1 0 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

|                           | Access Factor<br>Fable 6d | • | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|---------------------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 36.79            |   | 0.55           | x | 0.7            | =        | 82.17        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 36.79            |   | 0.55           | x | 0.7            | =        | 61.75        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 62.67            |   | 0.55           | x | 0.7            | =        | 139.96       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 62.67            |   | 0.55           | x | 0.7            | ] =      | 105.18       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 85.75            |   | 0.55           | x | 0.7            | =        | 191.5        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 85.75            |   | 0.55           | x | 0.7            | =        | 143.91       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | X | 106.25           |   | 0.55           | x | 0.7            | =        | 237.28       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 106.25           |   | 0.55           | x | 0.7            | =        | 178.31       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 119.01           |   | 0.55           | x | 0.7            | =        | 265.77       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 119.01           |   | 0.55           | x | 0.7            | <b>=</b> | 199.72       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 118.15           |   | 0.55           | x | 0.7            | =        | 263.85       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 118.15           |   | 0.55           | x | 0.7            | =        | 198.28       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 113.91           |   | 0.55           | x | 0.7            | =        | 254.38       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 6.29       | x | 113.91           |   | 0.55           | x | 0.7            | =        | 191.16       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 104.39           |   | 0.55           | x | 0.7            | =        | 233.12       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 104.39           |   | 0.55           | x | 0.7            | =        | 175.19       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 92.85            |   | 0.55           | x | 0.7            | =        | 207.35       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 92.85            |   | 0.55           | x | 0.7            | =        | 155.82       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 8.37       | x | 69.27            |   | 0.55           | x | 0.7            | =        | 154.69       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | x | 69.27            |   | 0.55           | x | 0.7            | =        | 116.25       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | x | 44.07            |   | 0.55           | x | 0.7            | =        | 98.42        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | X | 44.07            |   | 0.55           | x | 0.7            | =        | 73.96        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 8.37       | X | 31.49            |   | 0.55           | X | 0.7            | =        | 70.32        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | X | 31.49            |   | 0.55           | X | 0.7            | =        | 52.84        | (79) |
| Northwest 0.9x            | 0.77                      | X | 3.7        | X | 11.28            | X | 0.55           | X | 0.7            | =        | 22.28        | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.91       | X | 11.28            | X | 0.55           | X | 0.7            | =        | 2.74         | (81) |
| Northwest 0.9x            | 0.77                      | X | 6.29       | X | 11.28            | X | 0.55           | X | 0.7            | =        | 18.94        | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 3.7        | X | 22.97            | X | 0.55           | X | 0.7            | =        | 45.34        | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.91       | X | 22.97            | X | 0.55           | X | 0.7            | =        | 5.58         | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | X | 22.97            | X | 0.55           | X | 0.7            | =        | 38.54        | (81) |
| Northwest 0.9x            | 0.77                      | X | 3.7        | X | 41.38            | X | 0.55           | X | 0.7            | =        | 81.7         | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.91       | x | 41.38            | X | 0.55           | X | 0.7            | =        | 10.05        | (81) |
| Northwest 0.9x            | 0.77                      | X | 6.29       | X | 41.38            | X | 0.55           | X | 0.7            | =        | 69.44        | (81) |
| Northwest 0.9x            | 0.77                      | X | 3.7        | X | 67.96            | X | 0.55           | X | 0.7            | =        | 134.17       | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.91       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 16.5         | (81) |
| Northwest 0.9x            | 0.77                      | X | 6.29       | x | 67.96            | x | 0.55           | x | 0.7            | =        | 114.04       | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 3.7        | x | 91.35            | x | 0.55           | x | 0.7            | =        | 180.35       | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.91       | x | 91.35            | x | 0.55           | x | 0.7            | =        | 22.18        | (81) |
| Northwest <sub>0.9x</sub> | 0.77                      | X | 6.29       | X | 91.35            | x | 0.55           | X | 0.7            | =        | 153.3        | (81) |

| N41                       |             |             |           |          |               |               | _            |              | _        |               |          | <u> </u> | <b>–</b> |
|---------------------------|-------------|-------------|-----------|----------|---------------|---------------|--------------|--------------|----------|---------------|----------|----------|----------|
| Northwest 0.9x            | 0.77        | X           | 3.7       | 7        | X             | 97.38         | ×            | 0.55         | X        | 0.7           | =        | 192.27   | (81)     |
| Northwest 0.9x            | 0.77        | X           | 0.9       | 1        | X             | 97.38         | X            | 0.55         | X        | 0.7           | =        | 23.64    | (81)     |
| Northwest 0.9x            | 0.77        | X           | 6.2       | 9        | X             | 97.38         | ×            | 0.55         | X        | 0.7           | =        | 163.43   | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | X           | 3.7       | 7        | X             | 91.1          | ×            | 0.55         | X        | 0.7           | =        | 179.87   | (81)     |
| Northwest 0.9x            | 0.77        | X           | 0.9       | 1        | X             | 91.1          | X            | 0.55         | X        | 0.7           | =        | 22.12    | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | X           | 6.2       | 9        | X             | 91.1          | X            | 0.55         | X        | 0.7           | =        | 152.89   | (81)     |
| Northwest 0.9x            | 0.77        | X           | 3.7       | 7        | X             | 72.63         | x            | 0.55         | X        | 0.7           | =        | 143.39   | (81)     |
| Northwest 0.9x            | 0.77        | X           | 0.9       | 1        | X             | 72.63         | x            | 0.55         | X        | 0.7           | =        | 17.63    | (81)     |
| Northwest 0.9x            | 0.77        | X           | 6.2       | .9       | X             | 72.63         | ×            | 0.55         | X        | 0.7           | =        | 121.88   | (81)     |
| Northwest 0.9x            | 0.77        | X           | 3.7       | 7        | X             | 50.42         | ×            | 0.55         | х        | 0.7           | =        | 99.55    | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | x           | 0.9       | 1        | X             | 50.42         | ×            | 0.55         | x        | 0.7           | =        | 12.24    | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | X           | 6.2       | 9        | X             | 50.42         | ×            | 0.55         | x        | 0.7           | =        | 84.62    | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | X           | 3.7       | 7        | X             | 28.07         | ₹ ×          | 0.55         | X        | 0.7           | =        | 55.41    | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | x           | 0.9       | 1        | X             | 28.07         | T x          | 0.55         | x        | 0.7           | =        | 6.81     | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | X           | 6.2       | 9        | X             | 28.07         | ×            | 0.55         | x        | 0.7           | =        | 47.1     | (81)     |
| Northwest 0.9x            | 0.77        | x           | 3.7       | 7        | X             | 14.2          | T x          | 0.55         | x        | 0.7           | =        | 28.03    | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | x           | 0.9       | 1        | X             | 14.2          | T x          | 0.55         | X        | 0.7           | =        | 3.45     | (81)     |
| Northwest 0.9x            | 0.77        | X           | 6.2       | 9        | X             | 14.2          | i x          | 0.55         | x        | 0.7           | =        | 23.83    | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | x           | 3.7       | 7        | X             | 9.21          | i x          | 0.55         | ×        | 0.7           | _ =      | 18.19    | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | X           | 0.9       | 1        | X             | 9.21          | ۲<br>×       | 0.55         | x        | 0.7           | = =      | 2.24     | (81)     |
| Northwest <sub>0.9x</sub> | 0.77        | X           | 6.2       | 9        | X             | 9.21          | ۲<br>×       | 0.55         | X        | 0.7           |          | 15.46    | (81)     |
|                           |             |             |           |          |               |               | _            |              |          |               |          |          | _        |
| Solar gains in            | watts cal   | culated     | for each  | n month  | 1             |               | (83)n        | n = Sum(74)m | (82)m    |               |          |          |          |
| (83)m= 187.86             |             | 496.59      | 680.3     | 821.32   | $\overline{}$ | 41.47 800.41  | <del>`</del> | <del></del>  | 380.2    |               | 159.05   |          | (83)     |
| Total gains – ii          | nternal an  | ıd solar    | (84)m =   | (73)m    | + (           | B3)m , watts  | <u> </u>     |              | !        |               | <u> </u> |          |          |
| (84)m= 552.74             | 697.65      | 848.47      | 1014.23   | 1137.2   | 1             | 139.8 1087.22 | 2 983        | .29 860.78   | 699.5    | 9 567.84      | 514.68   |          | (84)     |
| 7. Mean inter             | nal tempe   | erature (   | heating   | seasor   | n)            | ,             |              | <u> </u>     |          |               |          |          |          |
| Temperature               |             |             |           |          |               | area from Ta  | able 9       | Th1 (°C)     |          |               |          | 21       | (85)     |
| Utilisation fac           | •           | •           |           |          | _             |               |              | , ( 0)       |          |               |          |          |          |
| Jan                       | Feb         | Mar         | Apr       | May      | Ť             | Jun Jul       | $\neg$       | ug Sep       | Oct      | Nov           | Dec      |          |          |
| (86)m= 0.99               | 0.97        | 0.93        | 0.81      | 0.63     | +             | 0.45 0.33     | 0.3          |              | 0.89     |               | 0.99     |          | (86)     |
| , ,                       |             | !           |           |          |               |               | -            |              | ı        |               |          |          | . ,      |
| Mean interna (87)m= 19.74 |             | 20.37       | 1VING are | 20.93    | _             | w steps 3 to  | / IN         | <del></del>  | 20.65    | 5 20.12       | 19.69    |          | (87)     |
| ` '                       |             | !           |           |          |               |               | <u> </u>     |              | 20.00    | 20.12         | 19.09    |          | (07)     |
| Temperature               |             | <del></del> |           |          | _             | <del>_ </del> | 1            | <del></del>  | T        |               |          | 1        | (00)     |
| (88)m= 19.79              | 19.79       | 19.79       | 19.8      | 19.8     | 1             | 9.82 19.82    | 19.          | 82 19.81     | 19.8     | 19.8          | 19.8     |          | (88)     |
| Utilisation fac           | tor for gai | ins for r   | est of d  | welling, | h2            | m (see Tabl   | e 9a)        |              |          |               |          |          |          |
| (89)m= 0.99               | 0.96        | 0.91        | 0.77      | 0.56     |               | 0.37 0.24     | 0.2          | 28 0.53      | 0.85     | 0.97          | 0.99     |          | (89)     |
| Mean interna              | I tempera   | ture in t   | he rest   | of dwel  | ling          | T2 (follow st | teps 3       | to 7 in Tab  | le 9c)   |               |          |          |          |
| (90)m= 18.16              | 18.55       | 19.05       | 19.53     | 19.74    | Ť             | 9.81 19.81    | 19.          |              | 19.44    | 18.71         | 18.09    |          | (90)     |
|                           | ·           | ٠           |           |          | •             |               | •            | •            | fLA = Li | ving area ÷ ( | 4) =     | 0.5      | (91)     |
|                           |             |             |           |          |               |               |              | (1 A ) —-    |          |               |          |          | _        |

Mean internal temperature (for the whole dwelling) =  $fLA \times T1 + (1 - fLA) \times T2$ 

| (92)m= 18.94 19.27 19.71 20.13 20.33 20.39 20.4 20.4                                                                               | 20.36 20.                               | .04 19.41       | 18.88       |           | (92)   |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|-------------|-----------|--------|
| Apply adjustment to the mean internal temperature from Table 4e, wh                                                                | ere appropria                           | ate             |             |           |        |
| (93)m= 18.94 19.27 19.71 20.13 20.33 20.39 20.4 20.4                                                                               | 20.36 20.                               | .04 19.41       | 18.88       |           | (93)   |
| 8. Space heating requirement                                                                                                       |                                         |                 |             |           |        |
| Set Ti to the mean internal temperature obtained at step 11 of Table 9 the utilisation factor for gains using Table 9a             | 9b, so that Ti,r                        | m=(76)m an      | d re-calc   | ulate     |        |
| Jan Feb Mar Apr May Jun Jul Aug                                                                                                    | Sep O                                   | Oct Nov         | Dec         |           |        |
| Utilisation factor for gains, hm:                                                                                                  | <u> </u>                                |                 |             |           |        |
| (94)m= 0.98 0.96 0.9 0.78 0.6 0.41 0.29 0.33                                                                                       | 0.57 0.8                                | 86 0.97         | 0.99        |           | (94)   |
| Useful gains, hmGm , W = (94)m x (84)m                                                                                             |                                         |                 |             |           |        |
| (95)m= 543.49 669.56 767.46 790.22 677.4 468.72 310.44 325.33                                                                      | 492.43 600                              | ).24 548.3      | 508.09      |           | (95)   |
| Monthly average external temperature from Table 8                                                                                  | 1 444 1 40                              | 7.4             | 10          |           | (06)   |
| (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4<br>Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)r                | 14.1 10                                 | 7.1             | 4.2         |           | (96)   |
| (97)m= 1231.64 1206.5 1106.16 930.68 714.01 474.25 311.26 326.91                                                                   | 514.66 781                              | 1.02 1022.45    | 1224.79     |           | (97)   |
| Space heating requirement for each month, kWh/month = $0.024 \times [(9)]$                                                         | <u> </u>                                |                 | 1221.70     |           | (- )   |
| (98)m= 511.98 360.82 251.99 101.13 27.24 0 0 0                                                                                     | 0 134                                   |                 | 533.23      |           |        |
| Tol                                                                                                                                | al per year (kWh                        | /year) = Sum(9  | 8)15,912 =  | 2262.29   | (98)   |
| Space heating requirement in kWh/m²/year                                                                                           |                                         |                 | İ           | 36.85     | (99)   |
| 9b. Energy requirements – Community heating scheme                                                                                 |                                         |                 | L           |           |        |
| This part is used for space heating, space cooling or water heating pro                                                            | vided by a co                           | mmunity sch     | neme.       |           | _      |
| Fraction of space heat from secondary/supplementary heating (Table 7                                                               | 11) '0' if none                         |                 |             | 0         | (301)  |
| Fraction of space heat from community system 1 – (301) =                                                                           |                                         |                 |             | 1         | (302)  |
| The community scheme may obtain heat from several sources. The procedure allows fo                                                 |                                         | four other heat | sources; tl | ne latter |        |
| includes boilers, heat pumps, geothermal and waste heat from power stations. See Appl<br>Fraction of heat from Community heat pump | endix C.                                |                 | I           | 1         | (303a) |
| Fraction of heat from Community heat pump (Water)                                                                                  |                                         |                 |             | 0.7       | (303a) |
| Fraction of community heat from heat source 2 (Water)                                                                              |                                         |                 |             | 0.3       | (303b) |
| Fraction of total space heat from Community heat pump                                                                              |                                         | (302) x (303    | a) =        | 1         | (304a) |
| Factor for control and charging method (Table 4c(3)) for community he                                                              | ating system                            |                 |             | 1         | (305)  |
| Distribution loss factor (Table 12c) for community heating system                                                                  | 3 7                                     |                 |             | 1.05      | (306)  |
| Distribution loss factor (Table 12c) for community heating system (Wat                                                             | er)                                     |                 | [           | 1.05      | (306)  |
| Space heating                                                                                                                      | ,                                       |                 | l           | kWh/yea   |        |
| Annual space heating requirement                                                                                                   |                                         |                 |             | 2262.29   | 7      |
| Space heat from Community heat pump                                                                                                | (98) x (304a) x                         | x (305) x (306) | <b>-</b>    | 2375.4    | (307a) |
| Efficiency of secondary/supplementary heating system in % (from Table                                                              | e 4a or Apper                           | ndix E)         |             | 0         | (308   |
| Space heating requirement from secondary/supplementary system                                                                      | (98) x (301) x                          | 100 ÷ (308) =   | İ           | 0         | (309)  |
| Water heating                                                                                                                      |                                         |                 | •           |           | _      |
| Annual water heating requirement                                                                                                   |                                         |                 |             | 1944.12   |        |
| If DHW from community scheme: Water heat from CHP (Water)                                                                          | (64) x (303a) x                         | x (305) x (306) | <b>=</b> [  | 1428.93   | (310a) |
|                                                                                                                                    | . , , , , , , , , , , , , , , , , , , , | ()              |             | 0.00      | 1, 17, |

| Motor hoot from hoot course 2 (Motor)                                              |                             | (64) v (202a) v          | (305) x (306) =               | 040.4                 | (310b) |
|------------------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------|-----------------------|--------|
| Water heat from heat source 2 (Water)                                              |                             |                          |                               | 612.4                 | = '    |
| Electricity used for heat distribution  Electricity used for heat distribution (Wa | ator)                       |                          | 7e) + (310a)(310e)] =         | 23.75                 | (313)  |
| ,                                                                                  | ,                           | 0.01 ^ [(307a)(307       | 7e) + (310a)(310e)] =         | 20.41                 | (313)  |
| Cooling System Energy Efficiency Ratio                                             |                             | = (107) ÷ (314           | \ <b>-</b>                    | 0                     | (314)  |
| Space cooling (if there is a fixed cooling                                         | ,                           | - (107) ÷ (314)          | ) –                           | 0                     | (315)  |
| Electricity for pumps and fans within dw mechanical ventilation - balanced, extra  | · ,                         | utside                   |                               | 133.99                | (330a) |
| warm air heating system fans                                                       |                             |                          |                               | 0                     | (330b) |
| pump for solar water heating                                                       |                             |                          |                               | 0                     | (330g) |
| Total electricity for the above, kWh/yea                                           | r                           | =(330a) + (330           | 0b) + (330g) =                | 133.99                | (331)  |
| Energy for lighting (calculated in Appen                                           | dix L)                      |                          |                               | 277.83                | (332)  |
| Electricity generated by PVs (Appendix                                             | M) (negative quantity)      |                          |                               | -684.44               | (333)  |
| Electricity generated by wind turbine (A                                           | ppendix M) (negative quai   | ntity)                   |                               | 0                     | (334)  |
| 12b. CO2 Emissions – Community hea                                                 | ting scheme                 |                          |                               |                       |        |
|                                                                                    |                             | Energy<br>kWh/year       | Emission factor<br>kg CO2/kWh | Emissions kg CO2/year |        |
| CO2 from other sources of space and v                                              |                             |                          |                               |                       |        |
| Efficiency of heat source 1 (%)                                                    | If there is CHP using t     | wo fuels repeat (363) to | (366) for the second fue      | el 300                | (367a) |
| CO2 associated with heat source 1                                                  | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0.52                          | 410.94                | (367)  |
| Electrical energy for heat distribution                                            | [(3                         | 313) x                   | 0.52                          | 12.33                 | (372)  |
| Water heating from separate communit                                               | y system                    |                          |                               |                       |        |
| CO2 from other sources of space and Efficiency of heat source 1 (%)                |                             | wo fuels repeat (363) to | (366) for the second fue      | el 300                | (367a) |
| Efficiency of heat source 2 (%)                                                    | If there is CHP using t     | wo fuels repeat (363) to | (366) for the second fue      | el 100                | (367b) |
| CO2 associated with heat source 1                                                  | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0                             | 247.2                 | (367)  |
| CO2 associated with heat source 2                                                  | [(307b)+(3                  | 10b)] x 100 ÷ (367b) x   | 0.52                          | 317.83                | (368)  |
| Electrical energy for heat distribution                                            | [(3                         | 313) x                   | 0.52                          | 10.59                 | (372)  |
| Total CO2 associated with community s                                              | systems (3                  | 63)(366) + (368)(37      | 2)                            | 998.91                | (373)  |
| CO2 associated with space heating (se                                              | condary) (3                 | 09) x                    | 0                             | = 0                   | (374)  |
| CO2 associated with water from immer                                               | sion heater or instantaneo  | us heater (312) x        | 0.52                          | 0                     | (375)  |
| Total CO2 associated with space and v                                              | vater heating (3            | 73) + (374) + (375) =    |                               | 998.91                | (376)  |
| CO2 associated with electricity for pum                                            | ps and fans within dwelling | g (331)) x               | 0.52                          | 69.54                 | (378)  |
| CO2 associated with electricity for light                                          | ing (3                      | 32))) x                  | 0.52                          | 144.19                | (379)  |
| Energy saving/generation technologies Item 1                                       | (333) to (334) as applicab  | le                       | 0.52 x 0.01 =                 | -355.23               | (380)  |
| Total CO2, kg/year                                                                 | sum of (376)(382) =         |                          |                               | 857.41                | (383)  |
| Dwelling CO2 Emission Rate                                                         | (383) ÷ (4) =               |                          |                               | 13.96                 | (384)  |
| -                                                                                  |                             |                          |                               |                       | _      |

El rating (section 14)

89.2 (385)

|                                                                                                                            |                                                                       |                 | User D    | otaile:          |            |            |            |                     |                        |      |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|-----------|------------------|------------|------------|------------|---------------------|------------------------|------|
| A N                                                                                                                        | Olavia I I a alva all                                                 | (               |           |                  | - NI       |            |            | OTDO                | 040000                 |      |
| Assessor Name: Software Name:                                                                                              | Chris Hocknell Stroma FSAP 201                                        | 2               |           | Stroma<br>Softwa | _          |            |            |                     | 016363<br>on: 1.0.4.16 |      |
| Software Name.                                                                                                             | Ottoma i Orti 201                                                     |                 |           | Address:         |            |            |            | VCISIO              | JII. 1.0.4.10          |      |
| Address :                                                                                                                  |                                                                       |                 | , ,       |                  |            |            |            |                     |                        |      |
| 1. Overall dwelling dimensions:                                                                                            |                                                                       |                 |           |                  |            |            |            |                     |                        |      |
| Ground floor                                                                                                               |                                                                       |                 |           | a(m²)            | (4-)       |            | ight(m)    | ] <sub>(0=)</sub> = | Volume(m³)             | _    |
|                                                                                                                            | N. 741 N. 74 N. 74 N. 74                                              | \.              |           |                  | (1a) x     |            | 2.7        | (2a) =              | 203.58                 | (3a) |
| Total floor area TFA = (1                                                                                                  | a)+(1b)+(1c)+(1d)+(1e                                                 | )+(1 <b>n</b> ) | 7         | 75.4             | (4)        |            |            |                     |                        | _    |
| Dwelling volume                                                                                                            |                                                                       |                 |           |                  | (3a)+(3b)  | )+(3c)+(3c | l)+(3e)+   | .(3n) =             | 203.58                 | (5)  |
| 2. Ventilation rate:                                                                                                       | main se                                                               | econdary        |           | other            |            | total      |            |                     | m³ per hou             | r    |
| Novele an of ables on a co                                                                                                 | heating h                                                             | eating          | _         |                  | ,          |            |            | 40 - 1              | -                      | _    |
| Number of chimneys                                                                                                         | 0 +                                                                   | 0               | + _       | 0                | ] = [      | 0          |            | 40 =                | 0                      | (6a) |
| Number of open flues                                                                                                       | 0 +                                                                   | 0               | +         | 0                | ]          | 0          |            | 20 =                | 0                      | (6b) |
| Number of intermittent fa                                                                                                  |                                                                       |                 |           |                  |            | 0          | X '        | 10 =                | 0                      | (7a) |
| Number of passive vents                                                                                                    | 3                                                                     |                 |           |                  |            | 0          | X ·        | 10 =                | 0                      | (7b) |
| Number of flueless gas f                                                                                                   | ires                                                                  |                 |           |                  |            | 0          | X 4        | 40 =                | 0                      | (7c) |
|                                                                                                                            |                                                                       |                 |           |                  |            |            |            | Δir ch              | anges per ho           | ur   |
| Air changes per hour  Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$ $0$ $\div (5) =$ $0$ (8) |                                                                       |                 |           |                  |            |            |            |                     |                        |      |
|                                                                                                                            | peen carried out or is intende                                        |                 |           |                  | ontinue fr |            |            | . (3) =             | 0                      | (0)  |
| Number of storeys in t                                                                                                     | he dwelling (ns)                                                      |                 |           |                  |            |            |            |                     | 0                      | (9)  |
| Additional infiltration                                                                                                    |                                                                       |                 |           |                  |            |            | [(9)       | -1]x0.1 =           | 0                      | (10) |
| Structural infiltration: 0                                                                                                 |                                                                       |                 |           |                  | •          | uction     |            |                     | 0                      | (11) |
| deducting areas of openi                                                                                                   | resent, use the value corres <sub>l</sub><br>ngs); if equal user 0.35 | ponaing to tr   | ne greate | er wall are      | а (аптег   |            |            |                     |                        |      |
|                                                                                                                            | floor, enter 0.2 (unseal                                              | ed) or 0.1      | (seale    | d), else         | enter 0    |            |            |                     | 0                      | (12) |
| If no draught lobby, en                                                                                                    | ter 0.05, else enter 0                                                |                 |           |                  |            |            |            |                     | 0                      | (13) |
| Percentage of window                                                                                                       | s and doors draught st                                                | ripped          |           |                  |            |            |            |                     | 0                      | (14) |
| Window infiltration                                                                                                        |                                                                       |                 |           | 0.25 - [0.2      |            |            |            |                     | 0                      | (15) |
| Infiltration rate                                                                                                          |                                                                       |                 |           | (8) + (10)       | , , ,      | , , ,      | , ,        |                     | 0                      | (16) |
| Air permeability value,                                                                                                    | •                                                                     |                 | •         | •                | •          | etre of e  | envelope   | area                | 3                      | (17) |
| If based on air permeabi  Air permeability value applie                                                                    | -                                                                     |                 |           |                  |            | io boing u | and        |                     | 0.15                   | (18) |
| Number of sides sheltere                                                                                                   |                                                                       | s been done     | or a deg  | пее ап рег       | пеаышу     | is being u | seu        |                     | 1                      | (19) |
| Shelter factor                                                                                                             |                                                                       |                 |           | (20) = 1 - [     | 0.075 x (1 | 9)] =      |            |                     | 0.92                   | (20) |
| Infiltration rate incorpora                                                                                                | ting shelter factor                                                   |                 |           | (21) = (18)      | x (20) =   |            |            |                     | 0.14                   | (21) |
| Infiltration rate modified t                                                                                               | for monthly wind speed                                                | I               |           |                  |            |            |            | ļ                   |                        | _    |
| Jan Feb                                                                                                                    | Mar Apr May                                                           | Jun             | Jul       | Aug              | Sep        | Oct        | Nov        | Dec                 |                        |      |
| Monthly average wind sp                                                                                                    | peed from Table 7                                                     |                 |           |                  |            |            |            |                     | =                      |      |
| (22)m= 5.1 5                                                                                                               | 4.9 4.4 4.3                                                           | 3.8             | 3.8       | 3.7              | 4          | 4.3        | 4.5        | 4.7                 |                        |      |
| Wind Factor (22a)m = (2                                                                                                    | 2)m ÷ 4                                                               |                 |           |                  |            |            |            |                     |                        |      |
|                                                                                                                            | 2)m ÷ 4<br>1.23                                                       | 0.95            | 0.95      | 0.92             | 1          | 1.08       | 1.12       | 1.18                |                        |      |
| (                                                                                                                          | 1.00                                                                  | 3.00            | 0.00      | J.02             | •          |            | L <u>-</u> |                     | I                      |      |

| djusted infiltra               | <u>`</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |              |            | 1            | <del>`                                    </del> | (21a) x          | <del>`´</del> |              |                 |           | 1        |        |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|------------|--------------|--------------------------------------------------|------------------|---------------|--------------|-----------------|-----------|----------|--------|
| 0.18<br>Calculate effec        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .17           | 0.15         | 0.15       | 0.13         | 0.13                                             | 0.13             | 0.14          | 0.15         | 0.16            | 0.16      | ]        |        |
| If mechanica                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             | מופ וטו נו   | те арри    | cable ca     | SE                                               |                  |               |              |                 |           | 0.5      | (2:    |
| If exhaust air he              | at pump using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ј Арре        | endix N, (2  | 3b) = (23a | a) × Fmv (e  | equation (                                       | N5)) , othe      | rwise (23b    | ) = (23a)    |                 |           | 0.5      | (2     |
| If balanced with               | heat recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : effici      | ency in %    | allowing f | for in-use f | actor (fror                                      | n Table 4h       | ) =           |              |                 |           | 74.8     | (2     |
| a) If balance                  | d mechanic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al ve         | ntilation    | with he    | at recov     | ery (MV                                          | HR) (24a         | a)m = (22     | 2b)m + (2    | 23b) × [        | 1 – (23c) | ÷ 100]   |        |
| 24a)m= 0.3                     | 0.3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).3           | 0.28         | 0.28       | 0.26         | 0.26                                             | 0.25             | 0.26          | 0.28         | 0.28            | 0.29      | ]        | (2     |
| b) If balance                  | d mechanic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al ve         | ntilation    | without    | heat red     | overy (l                                         | MV) (24b         | )m = (22      | 2b)m + (2    | 23b)            |           | _        |        |
| 24b)m= 0                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0             | 0            | 0          | 0            | 0                                                | 0                | 0             | 0            | 0               | 0         |          | (2     |
| c) If whole ho                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              | •          | •            |                                                  |                  |               |              |                 |           |          |        |
| <u> </u>                       | 1 < 0.5 × (23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>   | <u> </u>     | <u> </u>   | <del>´</del> | · `                                              | <del>ı´ ` </del> | ŕ             | <u> </u>     |                 |           | 1        | (0     |
| 24c)m= 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 .           | 0            | 0          | 0            | 0                                                | 0                | 0             | 0            | 0               | 0         | J        | (2     |
| d) If natural v<br>if (22b)m   | ventilation on a second of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the c |               |              |            |              |                                                  |                  |               | 0.5]         |                 |           |          |        |
| 24d)m= 0                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0             | 0            | 0          | 0            | 0                                                | 0                | 0             | 0            | 0               | 0         | ]        | (2     |
| Effective air                  | change rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e - en        | ter (24a     | or (24)    | b) or (24    | c) or (24                                        | d) in box        | x (25)        |              |                 | •         |          |        |
| 25)m= 0.3                      | 0.3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).3           | 0.28         | 0.28       | 0.26         | 0.26                                             | 0.25             | 0.26          | 0.28         | 0.28            | 0.29      | ]        | (2     |
| 3. Heat losses                 | s and heat l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oss r         | naramete     | zr.        |              |                                                  |                  |               |              |                 |           |          |        |
| LEMENT                         | Gross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000           | Openin       |            | Net Ar       | ea                                               | U-valı           | ue            | AXU          |                 | k-value   | e        | ΑΧk    |
|                                | area (m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·)            | m            |            | A ,r         |                                                  | W/m2             |               | (W/ł         | <)              | kJ/m²·l   |          | kJ/K   |
| oors                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |            | 2            | X                                                | 1.3              | =             | 2.6          |                 |           |          | (2     |
| Vindows Type                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              |            | 1.27         | x1                                               | /[1/( 1.3 )+     | 0.04] =       | 1.57         |                 |           |          | (2     |
| Vindows Type                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              |            | 2.7          | x1                                               | /[1/( 1.3 )+     | 0.04] =       | 3.34         |                 |           |          | (2     |
| Vindows Type                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              |            | 2.22         | x1                                               | /[1/( 1.3 )+     | 0.04] =       | 2.74         |                 |           |          | (2     |
| Vindows Type                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              |            | 2.78         | x1                                               | /[1/( 1.3 )+     | 0.04] =       | 3.44         |                 |           |          | (2     |
| /indows Type                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              |            | 7.75         | x1                                               | /[1/( 1.3 )+     | 0.04] =       | 9.58         |                 |           |          | (2     |
| Vindows Type                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              |            | 1.19         | x1                                               | /[1/( 1.3 )+     | 0.04] =       | 1.47         |                 |           |          | (2     |
| Vindows Type                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              |            | 2            | x1                                               | /[1/( 1.3 )+     | 0.04] =       | 2.47         |                 |           |          | (2     |
| Rooflights                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |            | 1.05         | x1                                               | /[1/(1.6) +      | 0.04] =       | 1.68         |                 |           |          | (2     |
| Valls Type1                    | 68.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 21.91        | 1          | 46.54        | ×                                                | 0.15             | i             | 6.98         | <b>=</b> [      |           |          | (2     |
| Valls Type2                    | 4.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ī             | 2            | 一          | 2.03         | x                                                | 0.13             | = i           | 0.27         | T i             |           | 7 F      | (2     |
| toof                           | 75.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ī             | 1.05         | 一          | 74.35        | 5 x                                              | 0.1              | <u> </u>      | 7.44         |                 |           | 7 7      | (3     |
| otal area of el                | lements, m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>_</b><br>2 |              |            | 147.8        | 8                                                |                  |               |              |                 |           |          | (3     |
| arty wall                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |            | 42.95        | , x                                              | 0                |               | 0            |                 |           |          | (3     |
| arty floor                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |            | 75.4         | =                                                |                  |               | -            |                 |           | <b>-</b> | (3     |
| for windows and                | roof windows,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | use e         | ffective wii | ndow U-va  |              |                                                  | g formula 1      | /[(1/U-valu   | ıe)+0.04] a  | L<br>s given in | paragraph |          |        |
| include the area               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              | s and par  | titions      |                                                  |                  |               |              |                 |           |          |        |
| abric heat los                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,             | U)           |            |              |                                                  | (26)(30)         |               |              |                 |           | 45.9     | 4 (3   |
|                                | 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L \           |              |            |              |                                                  |                  | ((28)         | .(30) + (32) | 0) + (32a)      | (32e) =   | 10770    | AF 1/2 |
| leat capacity (<br>hermal mass | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •             | _            |            |              |                                                  |                  |               | tive Value:  | , , ,           | (020) –   | 13772    | 45 (3  |

| can be used indetend of a detailed calculated using Appendix K if details of thermal bridging are not known (36) = 0.15 x (31) Total fabric heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calculated monthly  Ventilation heat loss calcul | can he i   | isad insta   | ad of a de  | tailed calci | ulation     |                |              |            |             |                       |             |                        |          |          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------------|--------------|-------------|----------------|--------------|------------|-------------|-----------------------|-------------|------------------------|----------|----------|------|
| Internal bridging are not known (36) = 0.15 x (31)   (33) + (36) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              |             |              |             | usina Ap       | pendix I     | K          |             |                       |             |                        |          | 17 49    | (36) |
| Total Eabric heat loss calculated monthly   California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Ū            | `           | ,            |             | • .            | •            |            |             |                       |             |                        |          | 17.40    | (00) |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              |             |              |             |                |              |            |             | (33) +                | (36) =      |                        |          | 63.43    | (37) |
| (38)   (38)   (38)   (38)   (32)   (32)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (38)   (3 | Ventila    | tion hea     | it loss ca  | alculated    | monthly     | y              |              |            |             | (38)m                 | = 0.33 × (  | (25)m x (5)            | )        |          |      |
| Heat transfer coefficient, W/K  (39)m = 83.78 83.55 83.32 82.15 81.92 80.75 80.75 80.52 81.22 81.92 82.38 82.85  Average \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \text{Average} \) \( \sum \) \( \text{Average} \) \( \text{Average} \) \( \text{Average} \) \( \text{Average} \) \( \text{Average} |            | Jan          | Feb         | Mar          | Apr         | May            | Jun          | Jul        | Aug         | Sep                   | Oct         | Nov                    | Dec      |          |      |
| Sayme   83.78   83.55   83.32   82.15   81.92   80.75   80.75   80.52   81.92   82.85   82.85   82.85   82.99   (39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (38)m=     | 20.35        | 20.12       | 19.88        | 18.72       | 18.49          | 17.32        | 17.32      | 17.09       | 17.79                 | 18.49       | 18.95                  | 19.42    |          | (38) |
| Heat loss parameter (HLP), W/m²/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Heat tr    | ansfer c     | oefficier   | nt, W/K      |             |                |              |            |             | (39)m                 | = (37) + (  | 38)m                   |          | _        |      |
| Heat loss parameter (HLP), W/m²K  (40)m= 1.11 1.11 1.11 1.19 1.09 1.09 1.07 1.07 1.07 1.08 1.09 1.09 1.1  Average = Sum(40)z/12= 1.09 (40)  Number of days in month (Table 1a)  (41)m= 31 28 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31  (41)  4. Water heating energy requirement:  **Whit/year**  Assumed occupancy, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (39)m=     | 83.78        | 83.55       | 83.32        | 82.15       | 81.92          | 80.75        | 80.75      | 80.52       | 81.22                 | 81.92       | 82.38                  | 82.85    |          |      |
| Average = Sum(40)/12=   1.09   (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heat Id    | ss para      | meter (H    | HLP), W/     | m²K         |                |              |            |             |                       | _           |                        | 12 /12=  | 82.09    | (39) |
| Number of days in month (Table 1a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (40)m=     | 1.11         | 1.11        | 1.1          | 1.09        | 1.09           | 1.07         | 1.07       | 1.07        | 1.08                  | 1.09        | 1.09                   | 1.1      |          |      |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Numbe      | er of day    | e in moi    | nth (Tah     | le 1a)      |                |              |            |             | ,                     | Average =   | Sum(40) <sub>1</sub>   | 12 /12=  | 1.09     | (40) |
| ### Assumed occupancy, N ### AT 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) ### TFA A 13.9, N = 1 ### Annual average hot water usage in litres per day Vd. average = (25 x N) + 36 ### Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 126 litres per person per day (all water use, hot and cold)  ### Total = Sum(44). ** a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rvambe     |              |             |              | <u> </u>    | May            | Jun          | Jul        | Aug         | Sep                   | Oct         | Nov                    | Dec      | 1        |      |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 85.05 88.67 92.29 95.91 99.53  Total = Sum(44)e = 1085.79 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm /3600 kWh/month (see Tables 1b, ct, d)  (45)m= 147.6 129.09 133.21 116.14 111.44 96.16 89.11 102.25 103.47 120.59 131.63 142.94  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.14 19.36 19.98 17.42 16.72 14.42 13.37 15.34 15.52 18.09 19.74 21.44  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  If community heating see section 4.3  Volume factor from Table 2a (1.03 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (41)m=     | 31           | 28          | 31           | 30          | 31             | 30           | 31         | 31          |                       | 31          | 30                     | 31       | 1        | (41) |
| Assumed occupancy, N  if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  if TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 85.05 88.67 92.29 95.91 99.53  Total = Sum(44)e = 1085.79 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, ct, d)  (45)m= 147.6 129.09 133.21 116.14 111.44 96.16 89.11 102.25 103.47 120.59 131.63 142.94  It instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.14 19.36 19.98 17.42 16.72 14.42 13.37 15.34 15.52 18.09 19.74 21.44  (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  If community heating see section 4.3  Volume factor from Table 2a (1.03 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |             |              |             |                |              | !          |             |                       | l.          |                        |          | 4        |      |
| If TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  If TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd,m = factor from Table 1 c x (43)  (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 85.05 88.67 92.29 95.91 99.53  Total = Sum(44); = 1085.79 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 147.6 129.09 133.21 116.14 111.44 96.16 89.11 102.25 103.47 120.59 131.63 142.94  It instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Energy lost from Water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4. Wa      | iter heat    | ing ener    | rgy requi    | rement:     |                |              |            |             |                       |             |                        | kWh/y    | ear:     |      |
| If TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)  If TFA £ 13.9, N = 1  Annual average hot water usage in litres per day Vd, average = (25 x N) + 36  Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Hot water usage in litres per day for each month Vd,m = factor from Table 1 c x (43)  (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 85.05 88.67 92.29 95.91 99.53  Total = Sum(44); = 1085.79 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 147.6 129.09 133.21 116.14 111.44 96.16 89.11 102.25 103.47 120.59 131.63 142.94  It instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Energy lost from Water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A          |              |             | VI.          |             |                |              |            |             |                       |             |                        |          | 1        | (10) |
| Annual average hot water usage in litres per day Vd,average = (25 x N) + 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | if TF      | A > 13.9     | 9, N = 1    |              | [1 - exp    | (-0.0003       | 349 x (TF    | FA -13.9   | )2)] + 0.0  | 0013 x ( <sup>-</sup> | TFA -13     |                        | .37      | ]        | (42) |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              | •           | ater usag    | ge in litre | es per da      | ay Vd,av     | erage =    | (25 x N)    | + 36                  |             | 90                     | ).48     | 1        | (43) |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              | _           |              |             |                | _            | -          | to achieve  | a water us            | se target o | f                      |          | _        |      |
| Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)  (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 85.05 88.67 92.29 95.91 99.53  Total = Sum(44) = 1085.79 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 147.6 129.09 133.21 116.14 111.44 96.16 89.11 102.25 103.47 120.59 131.63 142.94  Total = Sum(45) = 1423.64 (45)  If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.14 19.36 19.98 17.42 16.72 14.42 13.37 15.34 15.52 18.09 19.74 21.44 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | not more   | : IIIal 125  |             |              |             |                |              |            |             |                       |             |                        | I _      | 1        |      |
| (44)m= 99.53 95.91 92.29 88.67 85.05 81.43 81.43 85.05 88.67 92.29 95.91 99.53  Total = Sum(44) 1085.79 (44)  Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m= 147.6 129.09 133.21 116.14 111.44 96.16 89.11 102.25 103.47 120.59 131.63 142.94  It instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.14 19.36 19.98 17.42 16.72 14.42 13.37 15.34 15.52 18.09 19.74 21.44 (46)  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) x (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hot wate   |              |             |              |             | ,              |              |            |             | Sep                   | Oct         | Nov                    | Dec      |          |      |
| Total = Sum(44) =   1085.79   (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | <del>-</del> |             | ,            |             |                | <del> </del> |            | ·           | 00.07                 | 00.00       | 05.04                  | 00.50    | 1        |      |
| Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)  (45)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (44)m=     | 99.53        | 95.91       | 92.29        | 88.67       | 85.05          | 81.43        | 81.43      | 85.05       |                       | <u> </u>    |                        |          | 1085 70  | (44) |
| Total = Sum(45)112 = 1423.64   (45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Energy o   | content of   | hot water   | used - cal   | culated mo  | onthly $= 4$ . | 190 x Vd,r   | m x nm x E | OTm / 3600  |                       |             |                        |          | 1005.79  | ()   |
| If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)  (46)m= 22.14 19.36 19.98 17.42 16.72 14.42 13.37 15.34 15.52 18.09 19.74 21.44  Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)  Temperature factor from Table 2b 0 (49)  Energy lost from water storage, kWh/year (48) × (49) = 110 (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51)  If community heating see section 4.3  Volume factor from Table 2a 1.03 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (45)m=     | 147.6        | 129.09      | 133.21       | 116.14      | 111.44         | 96.16        | 89.11      | 102.25      | 103.47                | 120.59      | 131.63                 | 142.94   | ]        |      |
| (46)m=22.1419.3619.9817.4216.7214.4213.3715.3415.5218.0919.7421.44Water storage loss:Storage volume (litres) including any solar or WWHRS storage within same vessel0(47)If community heating and no tank in dwelling, enter 110 litres in (47)Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)Water storage loss:a) If manufacturer's declared loss factor is known (kWh/day):0(48)Temperature factor from Table 2b0(49)Energy lost from water storage, kWh/year(48) x (49) =110(50)b) If manufacturer's declared cylinder loss factor is not known:Hot water storage loss factor from Table 2 (kWh/litre/day)0.02(51)If community heating see section 4.3Volume factor from Table 2a1.03(52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              |             |              |             |                |              |            |             |                       | Total = Su  | m(45) <sub>112</sub> = | -        | 1423.64  | (45) |
| Water storage loss:  Storage volume (litres) including any solar or WWHRS storage within same vessel  o  (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (48) x (49) =  110  (50)  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  1.03  (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | If instant | taneous w    | ater heatii | ng at point  |             | hot water      | storage),    | enter 0 in | boxes (46   | ) to (61)             | ,           | ,                      | ,        | -        |      |
| Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)  If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  (48) × (49) = 110  (50)  If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  1.03  (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,        |              |             | 19.98        | 17.42       | 16.72          | 14.42        | 13.37      | 15.34       | 15.52                 | 18.09       | 19.74                  | 21.44    |          | (46) |
| If community heating and no tank in dwelling, enter 110 litres in (47)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  1.03  (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | _            |             | includin     | ia anv so   | olar or W      | /WHRS        | storage    | within sa   | ame ves               | sel         |                        | <u> </u> | 1        | (47) |
| Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)  Water storage loss:  a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  1.03  (48)  (48)  (48)  (49)  (48)  (49)  (50)  (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •          |              | , ,         |              |             |                |              | _          |             |                       |             |                        |          | 1        | ( )  |
| a) If manufacturer's declared loss factor is known (kWh/day):  Temperature factor from Table 2b  Energy lost from water storage, kWh/year  b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  1.03  (48)  (48)  (48)  (49)  0  (49)  0  (50)  1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -            | _           |              |             | _              |              |            | . ,         | ers) ente             | er '0' in ( | 47)                    |          |          |      |
| Temperature factor from Table 2b  Energy lost from water storage, kWh/year b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  (48) × (49) =  110  0.02  (51)  1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | _            |             |              |             |                |              |            |             |                       |             |                        |          | -        |      |
| Energy lost from water storage, kWh/year (48) x (49) = 110 (50) b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0.02 (51) If community heating see section 4.3 Volume factor from Table 2a 1.03 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,          |              |             |              |             | or is kno      | wn (kWl      | n/day):    |             |                       |             |                        | 0        | <u> </u> | (48) |
| b) If manufacturer's declared cylinder loss factor is not known:  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  1.03  (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •          |              |             |              |             |                |              |            |             |                       |             |                        | 0        | <u>]</u> | (49) |
| Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see section 4.3  Volume factor from Table 2a  1.03  (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |             | _            | -           |                | or is not    | known:     | (48) x (49) | ) =                   |             | 1                      | 10       |          | (50) |
| If community heating see section 4.3  Volume factor from Table 2a  1.03  (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •          |              |             |              | -           |                |              |            |             |                       |             | 0.                     | .02      | 1        | (51) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              | _           |              |             | `              |              | -,         |             |                       |             |                        |          | _        | • ,  |
| Temperature factor from Table 2b 0.6 (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |             |              | 0.1         |                |              |            |             |                       |             | 1.                     | .03      | ]        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rempe      | erature fa   | actor fro   | m Table      | 2b          |                |              |            |             |                       |             | 0                      | .6       | J        | (53) |

| Energy lost from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | water storag                                                                                                                                                                                                                           | je, kWh/y                                                                                                            | ear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                         | (47) x (51                                                                                           | ) x (52) x (                                                                                           | 53) =                                                                                   | 1.                                                                              | 03                                                         |               | (54)                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|---------------|----------------------------------------------|
| Enter (50) or (54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l) in (55)                                                                                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                         |                                                                                                      |                                                                                                        |                                                                                         | 1.                                                                              | 03                                                         |               | (55)                                         |
| Water storage lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ss calculated                                                                                                                                                                                                                          | d for each                                                                                                           | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                                                                         | ((56)m = (                                                                                           | (55) × (41)r                                                                                           | n                                                                                       |                                                                                 |                                                            |               |                                              |
| (56)m= 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.92 32.01                                                                                                                                                                                                                            | 30.98                                                                                                                | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.98                                                                                                  | 32.01                                                                                                   | 32.01                                                                                                | 30.98                                                                                                  | 32.01                                                                                   | 30.98                                                                           | 32.01                                                      |               | (56)                                         |
| If cylinder contains d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | edicated solar s                                                                                                                                                                                                                       | torage, (57)                                                                                                         | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x [(50) – (                                                                                            | H11)] ÷ (5                                                                                              | 0), else (5                                                                                          | 7)m = (56)                                                                                             | m where (                                                                               | H11) is fro                                                                     | m Append                                                   | ix H          |                                              |
| (57)m= 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.92 32.01                                                                                                                                                                                                                            | 30.98                                                                                                                | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.98                                                                                                  | 32.01                                                                                                   | 32.01                                                                                                | 30.98                                                                                                  | 32.01                                                                                   | 30.98                                                                           | 32.01                                                      |               | (57)                                         |
| Primary circuit lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ss (annual) t                                                                                                                                                                                                                          | rom Table                                                                                                            | e 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                         |                                                                                                      |                                                                                                        |                                                                                         |                                                                                 | 0                                                          |               | (58)                                         |
| Primary circuit lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ss calculated                                                                                                                                                                                                                          | d for each                                                                                                           | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59)m = (                                                                                               | (58) ÷ 36                                                                                               | 65 × (41)                                                                                            | )m                                                                                                     |                                                                                         |                                                                                 |                                                            |               |                                              |
| (modified by fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ctor from Ta                                                                                                                                                                                                                           | ble H5 if                                                                                                            | there is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olar wat                                                                                               | ter heatii                                                                                              | ng and a                                                                                             | cylinde                                                                                                | thermo                                                                                  | stat)                                                                           |                                                            | 1             |                                              |
| (59)m= 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.01 23.26                                                                                                                                                                                                                            | 22.51                                                                                                                | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.51                                                                                                  | 23.26                                                                                                   | 23.26                                                                                                | 22.51                                                                                                  | 23.26                                                                                   | 22.51                                                                           | 23.26                                                      |               | (59)                                         |
| Combi loss calcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lated for ead                                                                                                                                                                                                                          | ch month                                                                                                             | (61)m = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (60) ÷ 36                                                                                              | 65 × (41)                                                                                               | )m                                                                                                   |                                                                                                        |                                                                                         |                                                                                 |                                                            |               |                                              |
| (61)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                                                                                                    | 0                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 0                                                                                                       | 0                                                                                                    | 0                                                                                                      | 0                                                                                       | 0                                                                               | 0                                                          |               | (61)                                         |
| Total heat requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed for water                                                                                                                                                                                                                           | heating c                                                                                                            | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for eac                                                                                                | h month                                                                                                 | (62)m =                                                                                              | 0.85 × (                                                                                               | 45)m +                                                                                  | (46)m +                                                                         | (57)m +                                                    | (59)m + (61)m |                                              |
| (62)m= 202.88 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.02 188.49                                                                                                                                                                                                                           | 169.63                                                                                                               | 166.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 149.66                                                                                                 | 144.38                                                                                                  | 157.53                                                                                               | 156.97                                                                                                 | 175.87                                                                                  | 185.13                                                                          | 198.22                                                     |               | (62)                                         |
| Solar DHW input cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | culated using A                                                                                                                                                                                                                        | opendix G o                                                                                                          | r Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H (negati                                                                                              | ve quantity                                                                                             | /) (enter '0                                                                                         | ' if no sola                                                                                           | contributi                                                                              | on to wate                                                                      | er heating)                                                |               |                                              |
| (add additional li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nes if FGHR                                                                                                                                                                                                                            | S and/or \                                                                                                           | WWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | applies                                                                                                | , see Ap                                                                                                | pendix (                                                                                             | <b>3</b> )                                                                                             |                                                                                         |                                                                                 |                                                            |               |                                              |
| (63)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                                                                                                    | 0                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 0                                                                                                       | 0                                                                                                    | 0                                                                                                      | 0                                                                                       | 0                                                                               | 0                                                          |               | (63)                                         |
| Output from water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er heater                                                                                                                                                                                                                              | -                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        | -                                                                                                       | -                                                                                                    | -                                                                                                      |                                                                                         |                                                                                 | -                                                          |               |                                              |
| (64)m= 202.88 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.02 188.49                                                                                                                                                                                                                           | 169.63                                                                                                               | 166.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 149.66                                                                                                 | 144.38                                                                                                  | 157.53                                                                                               | 156.97                                                                                                 | 175.87                                                                                  | 185.13                                                                          | 198.22                                                     |               |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                         | Outp                                                                                                 | out from wa                                                                                            | ater heater                                                                             | (annual)                                                                        | 12                                                         | 2074.48       | (64)                                         |
| Heat gains from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | water heatin                                                                                                                                                                                                                           | a k\Mh/m                                                                                                             | onth 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 ′ [0 85                                                                                              | x (45)m                                                                                                 | ⊥ (61)m                                                                                              | 1 ± 0 0 v                                                                                              | [(46)m                                                                                  | ⊥ (57)m                                                                         | . /E0\m                                                    | 1             |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | water neathr                                                                                                                                                                                                                           | 9, KVVII/III                                                                                                         | 011111 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , [0.03                                                                                                | ^ ( <del>4</del> 3)III                                                                                  | . + (0 i <i>)</i> ii                                                                                 | ıj = U.O x                                                                                             | . [( <del>4</del> 6)III                                                                 | + (3 <i>1 )</i> 111                                                             | + (59)111                                                  | J             |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.87 88.51                                                                                                                                                                                                                            | <del>-</del>                                                                                                         | 81.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.77                                                                                                  | 73.85                                                                                                   | 78.22                                                                                                | 77.2                                                                                                   | 84.32                                                                                   | 86.56                                                                           | 91.75                                                      | ]             | (65)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.87 88.51                                                                                                                                                                                                                            | 81.41                                                                                                                | 81.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.77                                                                                                  | 73.85                                                                                                   | 78.22                                                                                                | 77.2                                                                                                   | 84.32                                                                                   | 86.56                                                                           | 91.75                                                      |               | (65)                                         |
| (65)m= 93.3 8<br>include (57)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.51 in calculation                                                                                                                                                                                                                   | 81.41<br>n of (65)m                                                                                                  | 81.27<br>only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.77                                                                                                  | 73.85                                                                                                   | 78.22                                                                                                | 77.2                                                                                                   | 84.32                                                                                   | 86.56                                                                           | 91.75                                                      |               | (65)                                         |
| include (57)m<br>5. Internal gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.87 88.51<br>in calculation<br>s (see Table                                                                                                                                                                                          | 81.41<br>n of (65)m<br>5 and 5a                                                                                      | 81.27<br>only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.77                                                                                                  | 73.85                                                                                                   | 78.22                                                                                                | 77.2                                                                                                   | 84.32                                                                                   | 86.56                                                                           | 91.75                                                      |               | (65)                                         |
| (65)m= 93.3 8<br>include (57)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.87 88.51<br>in calculation<br>s (see Table                                                                                                                                                                                          | 81.41<br>n of (65)m<br>5 and 5a                                                                                      | 81.27<br>only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.77                                                                                                  | 73.85                                                                                                   | 78.22<br>dwelling                                                                                    | 77.2<br>or hot w                                                                                       | 84.32                                                                                   | 86.56                                                                           | 91.75                                                      |               | (65)                                         |
| include (57)m  5. Internal gain Metabolic gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Mai                                                                                                                                                                           | 81.41<br>n of (65)m<br>5 and 5a<br>atts<br>Apr                                                                       | 81.27<br>only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.77<br>ylinder i                                                                                     | 73.85<br>s in the o                                                                                     | 78.22                                                                                                | 77.2                                                                                                   | 84.32<br>ater is fr                                                                     | 86.56<br>om com                                                                 | 91.75<br>munity h                                          |               | (65)                                         |
| include (57)m  5. Internal gain  Metabolic gains  Jan  (66)m= 118.49 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Mai 18.49 118.49                                                                                                                                                              | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49                                                                          | 81.27 only if c ):  May 118.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.77<br>ylinder is<br>Jun<br>118.49                                                                   | 73.85<br>s in the o                                                                                     | 78.22<br>dwelling<br>Aug<br>118.49                                                                   | 77.2<br>or hot w<br>Sep<br>118.49                                                                      | 84.32<br>ater is fr                                                                     | 86.56<br>om com                                                                 | 91.75<br>munity h                                          |               |                                              |
| include (57)m  5. Internal gain  Metabolic gains  Jan  (66)m= 118.49 1  Lighting gains (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Mai 18.49 118.49                                                                                                                                                              | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix                                                                 | 81.27 only if c ):  May 118.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.77<br>ylinder is<br>Jun<br>118.49                                                                   | 73.85<br>s in the o                                                                                     | 78.22<br>dwelling<br>Aug<br>118.49                                                                   | 77.2<br>or hot w<br>Sep<br>118.49                                                                      | 84.32<br>ater is fr                                                                     | 86.56<br>om com                                                                 | 91.75<br>munity h                                          |               |                                              |
| include (57)m  5. Internal gain  Metabolic gains  Jan  (66)m= 118.49 1  Lighting gains (c)  (67)m= 18.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Mai 18.49 118.49 alculated in a 16.59 13.49                                                                                                                                   | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22                                                           | 81.27 only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if | 74.77 ylinder is  Jun 118.49 on L9 of 6.45                                                             | 73.85 s in the o                                                                                        | Aug 118.49 lso see 9.06                                                                              | 77.2<br>or hot w<br>Sep<br>118.49<br>Table 5                                                           | 84.32 ater is fr  Oct  118.49                                                           | 86.56<br>om com<br>Nov<br>118.49                                                | 91.75<br>munity h                                          |               | (66)                                         |
| include (57)m  5. Internal gain  Metabolic gains  Jan  (66)m= 118.49 1  Lighting gains (c  (67)m= 18.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in calculations (see Table (Table 5), W Feb Mai 18.49 118.49 alculated in 16.59 13.49 (calculated                                                                                                                                      | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appen                                                  | 81.27 only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if control only if | 74.77 ylinder is  Jun 118.49 on L9 of 6.45                                                             | 73.85 s in the o                                                                                        | Aug 118.49 lso see 9.06                                                                              | 77.2 or hot w Sep 118.49 Table 5 12.15 o see Tal                                                       | 84.32 ater is fr  Oct  118.49                                                           | 86.56<br>om com<br>Nov<br>118.49                                                | 91.75<br>munity h                                          |               | (66)                                         |
| include (57)m  5. Internal gain  Metabolic gains  Jan  (66)m= 118.49 1  Lighting gains (c  (67)m= 18.68 1  Appliances gains  (68)m= 209.56 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Man 18.49 118.49 alculated in A 16.59 13.49 s (calculated                                                                                                                     | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appen 5 194.59                                         | 81.27 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.77 ylinder is  Jun 118.49 on L9 of 6.45 uation L 166.02                                             | 73.85 s in the o  Jul 118.49 r L9a), a 6.97 13 or L1 156.78                                             | 78.22<br>dwelling<br>Aug<br>118.49<br>lso see<br>9.06<br>3a), also                                   | 77.2<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal<br>160.08                           | 84.32  ater is fr  Oct  118.49  15.43  ble 5  171.75                                    | 86.56<br>om com<br>Nov<br>118.49                                                | 91.75<br>munity h                                          |               | (66)<br>(67)                                 |
| include (57)m  5. Internal gain  Metabolic gains  Jan  (66)m= 118.49 1  Lighting gains (c  (67)m= 18.68  Appliances gains  (68)m= 209.56 2  Cooking gains (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in calculations (see Table (Table 5), W Feb Mai 18.49 118.49 alculated in 16.59 13.49 (calculated 11.73 206.29 calculated in                                                                                                           | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appen 5 194.59 Appendix                                | 81.27 only if control  May 118.49 L, equati 7.64 dix L, equati 179.86 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.77 ylinder is  Jun 118.49 fon L9 of 6.45 uation L 166.02 ion L15                                    | 73.85 s in the of  Jul 118.49 r L9a), a 6.97 13 or L1 156.78 or L15a                                    | 78.22<br>dwelling<br>Aug<br>118.49<br>lso see<br>9.06<br>3a), also<br>154.6                          | 77.2 or hot w Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table                                       | 84.32  ater is fr  Oct  118.49  15.43  ole 5  171.75  5                                 | 86.56<br>om com<br>Nov<br>118.49<br>18.01                                       | 91.75 munity h  Dec 118.49  19.2                           |               | (66)<br>(67)<br>(68)                         |
| include (57)m  5. Internal gain  Metabolic gains  Jan  (66)m= 118.49 1  Lighting gains (c  (67)m= 18.68  Appliances gains  (68)m= 209.56 2  Cooking gains (c  (69)m= 34.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.87 88.51 in calculation s (see Table Table 5), W Feb Mai 18.49 118.49 alculated in 26.59 13.49 (calculated 11.73 206.28 calculated in 34.85 34.85                                                                                   | 81.41 n of (65)m 5 and 5a atts Apr 0 118.49 Appendix 10.22 in Appen 5 194.59 Appendix 34.85                          | 81.27 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.77 ylinder is  Jun 118.49 on L9 of 6.45 uation L 166.02                                             | 73.85 s in the o  Jul 118.49 r L9a), a 6.97 13 or L1 156.78                                             | 78.22<br>dwelling<br>Aug<br>118.49<br>lso see<br>9.06<br>3a), also                                   | 77.2<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal<br>160.08                           | 84.32  ater is fr  Oct  118.49  15.43  ble 5  171.75                                    | 86.56<br>om com<br>Nov<br>118.49                                                | 91.75<br>munity h                                          |               | (66)<br>(67)                                 |
| include (57)m  5. Internal gain  Metabolic gains (  Jan  (66)m= 118.49 1  Lighting gains (c  (67)m= 18.68    Appliances gains  (68)m= 209.56 2  Cooking gains (c  (69)m= 34.85 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Man 18.49 118.49 alculated in A 16.59 13.49 s (calculated 11.73 206.29 alculated in 34.85 34.85 gains (Table                                                                  | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appendi 5 194.59 Appendix 34.85                        | 81.27 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.77 ylinder is  Jun 118.49 fon L9 of 6.45 uation L 166.02 ion L15 34.85                              | 73.85 s in the of  Jul 118.49 r L9a), a 6.97 13 or L1 156.78 or L15a) 34.85                             | Aug<br>118.49<br>Iso see<br>9.06<br>3a), also<br>154.6<br>), also se<br>34.85                        | 77.2<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal<br>160.08<br>ee Table<br>34.85      | 84.32  ater is fr  Oct  118.49  15.43  ble 5  171.75  5  34.85                          | 86.56<br>om com<br>Nov<br>118.49<br>18.01<br>186.47                             | 91.75 munity h  Dec 118.49  19.2  200.31                   |               | (66)<br>(67)<br>(68)<br>(69)                 |
| include (57)m  5. Internal gain  Metabolic gains (  Jan  (66)m= 118.49 1  Lighting gains (c  (67)m= 18.68  Appliances gains  (68)m= 209.56 2  Cooking gains (c  (69)m= 34.85 3  Pumps and fans  (70)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Mai 18.49 118.49 alculated in a 16.59 13.49 s (calculated 11.73 206.29 alculated in a 34.85 34.85 gains (Table 0 0                                                            | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appendix 34.85 2 5a) 0                                 | 81.27 only if control is a control in the control is a control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in | 74.77 ylinder is  Jun 118.49 on L9 of 6.45 uation L 166.02 ion L15 34.85                               | 73.85 s in the of  Jul 118.49 r L9a), a 6.97 13 or L1 156.78 or L15a                                    | 78.22<br>dwelling<br>Aug<br>118.49<br>lso see<br>9.06<br>3a), also<br>154.6                          | 77.2 or hot w Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table                                       | 84.32  ater is fr  Oct  118.49  15.43  ole 5  171.75  5                                 | 86.56<br>om com<br>Nov<br>118.49<br>18.01                                       | 91.75 munity h  Dec 118.49  19.2                           |               | (66)<br>(67)<br>(68)                         |
| include (57)m  5. Internal gain  Metabolic gains  Jan  (66)m= 118.49 1  Lighting gains (c  (67)m= 18.68 2  Appliances gains  (68)m= 209.56 2  Cooking gains (c  (69)m= 34.85 3  Pumps and fans  (70)m= 0  Losses e.g. evap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Man 18.49 118.49 alculated in An 16.59 13.49 s (calculated 11.73 206.29 alculated in 34.85 34.85 gains (Table 0 0                                                             | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appendix 34.85 2 5a) 0 ative value                     | 81.27 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equati 34.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.77 ylinder is  Jun 118.49 on L9 of 6.45 uation L 166.02 ion L15 34.85  0 le 5)                      | 73.85 s in the of  Jul 118.49 r L9a), a 6.97 13 or L1 156.78 or L15a) 34.85                             | 78.22<br>dwelling<br>Aug<br>118.49<br>lso see<br>9.06<br>3a), also<br>154.6<br>), also se<br>34.85   | 77.2 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85                                | 84.32 ater is fr  Oct 118.49  15.43 ole 5 171.75 5 34.85                                | 86.56 om com  Nov 118.49  18.01  186.47  34.85                                  | 91.75 munity h  Dec 118.49  19.2  200.31  34.85            |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include (57)m  5. Internal gain  Metabolic gains (57)m  5. Internal gain  Metabolic gains (57)m  Lighting gains (58)m= 18.68  Appliances gains (68)m= 209.56 2  Cooking gains (669)m= 34.85 3  Pumps and fans (70)m= 0  Losses e.g. evap (71)m= -94.79 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Man 18.49 118.49 alculated in A 16.59 13.49 s (calculated 11.73 206.29 alculated in A 34.85 34.85 gains (Table 0 0 poration (neg 94.79 -94.79                                 | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appendix 34.85 e 5a) 0 attive value 9 -94.79           | 81.27 only if control is a control in the control is a control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in the control in | 74.77 ylinder is  Jun 118.49 on L9 of 6.45 uation L 166.02 ion L15 34.85                               | 73.85 s in the of  Jul 118.49 r L9a), a 6.97 13 or L1 156.78 or L15a) 34.85                             | Aug<br>118.49<br>Iso see<br>9.06<br>3a), also<br>154.6<br>), also se<br>34.85                        | 77.2<br>or hot w<br>Sep<br>118.49<br>Table 5<br>12.15<br>o see Tal<br>160.08<br>ee Table<br>34.85      | 84.32  ater is fr  Oct  118.49  15.43  ble 5  171.75  5  34.85                          | 86.56<br>om com<br>Nov<br>118.49<br>18.01<br>186.47                             | 91.75 munity h  Dec 118.49  19.2  200.31                   |               | (66)<br>(67)<br>(68)<br>(69)                 |
| include (57)m  5. Internal gain  Metabolic gains (  Jan  (66)m= 118.49 1  Lighting gains (c  (67)m= 18.68  Appliances gains  (68)m= 209.56 2  Cooking gains (c  (69)m= 34.85 3  Pumps and fans  (70)m= 0  Losses e.g. evap  (71)m= -94.79  Water heating gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Mai 18.49 118.49 alculated in a 16.59 13.49 s (calculated 11.73 206.29 alculated in 34.85 34.85 gains (Table 0 0 poration (neg 94.79 -94.79 ains (Table 5                     | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appendix 34.85 9 5a) 0 attive value 0 -94.79 )         | 81.27 only if colors  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equati 34.85  0 es) (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.77 ylinder is  Jun 118.49 fon L9 of 6.45 uation L 166.02 ion L15 34.85  0 le 5) -94.79              | 73.85 s in the of  Jul 118.49 r L9a), a 6.97 13 or L1 156.78 or L15a) 34.85                             | 78.22 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85                             | 77.2 or hot w  Sep 118.49 Table 5 12.15 o see Tall 160.08 ee Table 34.85  0                            | 84.32 ater is fr  Oct 118.49  15.43 ole 5 171.75 5 34.85                                | 86.56 om com  Nov 118.49 18.01 186.47 34.85                                     | 91.75 munity h  Dec 118.49  19.2  200.31  34.85            |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| include (57)m  5. Internal gain  Metabolic gains (57)m  5. Internal gain  Metabolic gains (57)m  (66)m= 118.49 1  Lighting gains (57)m= 18.68 1  Appliances gains (68)m= 209.56 2  Cooking gains (69)m= 34.85 3  Pumps and fans (70)m= 0  Losses e.g. evap (71)m= -94.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44.79 - 44. | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Man 18.49 118.49 alculated in An 16.59 13.49 s (calculated 11.73 206.29 alculated in 34.85 34.85 gains (Table 0 0 poration (neg 94.79 -94.79 ains (Table 5 23.31 118.99       | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appendix 34.85 9 5a) 0 attive value 0 -94.79 )         | 81.27 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equati 34.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.77 ylinder is  Jun 118.49 on L9 of 6.45 uation L 166.02 ion L15 34.85  0 le 5) -94.79               | 73.85 s in the of  Jul 118.49 r L9a), a 6.97 13 or L1 156.78 or L15a) 34.85  0  -94.79                  | 78.22 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85  0                          | 77.2 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85  0  -94.79                     | 84.32 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85  0  -94.79                     | 86.56  Om com  Nov  118.49  18.01  186.47  34.85  0  -94.79                     | 91.75 munity h  Dec 118.49  19.2  200.31  34.85  0  -94.79 |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| include (57)m  5. Internal gain  Metabolic gains (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Man 18.49 118.49 alculated in a 16.59 13.49 s (calculated 11.73 206.29 alculated in 34.85 34.85 gains (Table 0 0 poration (neg 94.79 -94.79 ains (Table 5 23.31 118.99 ains = | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appendix 34.85 e 5a) 0 ative value 0 -94.79 ) 7 113.07 | 81.27 only if c ):  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equat 34.85  0 es) (Tab -94.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.77 ylinder is  Jun 118.49 fon L9 of 6.45 uation L 166.02 ion L15 34.85  0 le 5) -94.79  103.85 (66) | 73.85 s in the of  Jul 118.49 r L9a), a 6.97 13 or L1 156.78 or L15a) 34.85  0  -94.79  99.26 m + (67)m | 78.22 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85  0  -94.79  105.14 1+ (68)m | 77.2 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85  0  -94.79  107.22 + (69)m + ( | 84.32 ater is fr  Oct 118.49  15.43 ble 5 171.75  5 34.85  0  -94.79  113.33  70)m + (7 | 86.56  Om com  Nov  118.49  18.01  186.47  34.85  0  -94.79  120.23  1)m + (72) | 91.75 munity h  Dec 118.49  19.2  200.31  34.85  0  -94.79 |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| include (57)m  5. Internal gain  Metabolic gains (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.87 88.51 in calculation s (see Table (Table 5), W Feb Man 18.49 118.49 alculated in An 16.59 13.49 s (calculated 11.73 206.29 alculated in 34.85 34.85 gains (Table 0 0 poration (neg 94.79 -94.79 ains (Table 5 23.31 118.99       | 81.41 n of (65)m 5 and 5a atts Apr 9 118.49 Appendix 10.22 in Appendix 34.85 9 5a) 0 ative value 0 -94.79 ) 7 113.07 | 81.27 only if colors  May 118.49 L, equati 7.64 dix L, equ 179.86 L, equati 34.85  0 es) (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.77 ylinder is  Jun 118.49 on L9 of 6.45 uation L 166.02 ion L15 34.85  0 le 5) -94.79               | 73.85 s in the of  Jul 118.49 r L9a), a 6.97 13 or L1 156.78 or L15a) 34.85  0  -94.79                  | 78.22 dwelling  Aug 118.49 lso see 9.06 3a), also 154.6 ), also se 34.85  0                          | 77.2 or hot w  Sep 118.49 Table 5 12.15 o see Tal 160.08 ee Table 34.85  0  -94.79                     | 84.32 ater is fr  Oct 118.49  15.43 ble 5 171.75 5 34.85  0  -94.79                     | 86.56  Om com  Nov  118.49  18.01  186.47  34.85  0  -94.79                     | 91.75 munity h  Dec 118.49  19.2  200.31  34.85  0  -94.79 |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Stroma FSAP 2012 Version: 1.0.4.16 (SAP 9.92) - http://www.stroma.com

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Factor<br>Table 6d |   | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |            | Gains<br>(W) |      |
|----------------------------------------|---|------------|---|------------------|---|----------------|---|----------------|------------|--------------|------|
| Northeast 0.9x 0.77                    | x | 7.75       | x | 11.28            | x | 0.55           | x | 0.7            | =          | 23.33        | (75) |
| Northeast 0.9x 0.77                    | X | 1.19       | x | 11.28            | x | 0.55           | x | 0.7            | =          | 3.58         | (75) |
| Northeast 0.9x 0.77                    | X | 7.75       | x | 22.97            | x | 0.55           | x | 0.7            | ] =        | 47.49        | (75) |
| Northeast 0.9x 0.77                    | X | 1.19       | x | 22.97            | x | 0.55           | x | 0.7            | Ī =        | 7.29         | (75) |
| Northeast 0.9x 0.77                    | X | 7.75       | x | 41.38            | x | 0.55           | x | 0.7            | ] =        | 85.56        | (75) |
| Northeast 0.9x 0.77                    | X | 1.19       | x | 41.38            | x | 0.55           | x | 0.7            | ] =        | 13.14        | (75) |
| Northeast 0.9x 0.77                    | X | 7.75       | x | 67.96            | x | 0.55           | x | 0.7            | =          | 140.51       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 1.19       | X | 67.96            | x | 0.55           | X | 0.7            | ] <b>=</b> | 21.58        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 7.75       | x | 91.35            | x | 0.55           | X | 0.7            | ] =        | 188.88       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 1.19       | x | 91.35            | X | 0.55           | X | 0.7            | ] =        | 29           | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 7.75       | x | 97.38            | X | 0.55           | X | 0.7            | =          | 201.37       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 1.19       | x | 97.38            | x | 0.55           | X | 0.7            | ] =        | 30.92        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 7.75       | x | 91.1             | X | 0.55           | X | 0.7            | ] =        | 188.37       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 1.19       | x | 91.1             | X | 0.55           | X | 0.7            | =          | 28.92        | (75) |
| Northeast 0.9x 0.77                    | X | 7.75       | x | 72.63            | x | 0.55           | x | 0.7            | =          | 150.17       | (75) |
| Northeast 0.9x 0.77                    | X | 1.19       | x | 72.63            | x | 0.55           | x | 0.7            | =          | 23.06        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 7.75       | x | 50.42            | x | 0.55           | X | 0.7            | =          | 104.26       | (75) |
| Northeast 0.9x 0.77                    | X | 1.19       | x | 50.42            | x | 0.55           | x | 0.7            | =          | 16.01        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | X | 7.75       | x | 28.07            | x | 0.55           | x | 0.7            | =          | 58.04        | (75) |
| Northeast 0.9x 0.77                    | X | 1.19       | x | 28.07            | x | 0.55           | x | 0.7            | ] =        | 8.91         | (75) |
| Northeast 0.9x 0.77                    | X | 7.75       | x | 14.2             | x | 0.55           | x | 0.7            | Ī =        | 29.36        | (75) |
| Northeast 0.9x 0.77                    | X | 1.19       | x | 14.2             | x | 0.55           | х | 0.7            | ] =        | 4.51         | (75) |
| Northeast 0.9x 0.77                    | X | 7.75       | x | 9.21             | x | 0.55           | x | 0.7            | ] =        | 19.05        | (75) |
| Northeast 0.9x 0.77                    | X | 1.19       | x | 9.21             | x | 0.55           | x | 0.7            | =          | 2.93         | (75) |
| Southeast 0.9x 0.77                    | X | 2          | X | 36.79            | X | 0.55           | X | 0.7            | =          | 39.27        | (77) |
| Southeast 0.9x 0.77                    | X | 2          | x | 62.67            | x | 0.55           | X | 0.7            | ] <b>=</b> | 66.89        | (77) |
| Southeast 0.9x 0.77                    | X | 2          | X | 85.75            | x | 0.55           | X | 0.7            | ] =        | 91.52        | (77) |
| Southeast 0.9x 0.77                    | X | 2          | x | 106.25           | x | 0.55           | X | 0.7            | <b>=</b>   | 113.39       | (77) |
| Southeast 0.9x 0.77                    | X | 2          | x | 119.01           | x | 0.55           | x | 0.7            | =          | 127.01       | (77) |
| Southeast 0.9x 0.77                    | X | 2          | x | 118.15           | x | 0.55           | x | 0.7            | <b>=</b>   | 126.09       | (77) |
| Southeast 0.9x 0.77                    | X | 2          | X | 113.91           | X | 0.55           | X | 0.7            | <b>=</b>   | 121.57       | (77) |
| Southeast 0.9x 0.77                    | X | 2          | x | 104.39           | x | 0.55           | X | 0.7            | ] <b>=</b> | 111.41       | (77) |
| Southeast 0.9x 0.77                    | X | 2          | x | 92.85            | X | 0.55           | X | 0.7            | ] =        | 99.09        | (77) |
| Southeast 0.9x 0.77                    | X | 2          | X | 69.27            | X | 0.55           | X | 0.7            | =          | 73.92        | (77) |
| Southeast 0.9x 0.77                    | x | 2          | x | 44.07            | x | 0.55           | x | 0.7            | ] =        | 47.03        | (77) |
| Southeast 0.9x 0.77                    | x | 2          | x | 31.49            | x | 0.55           | x | 0.7            | <b>]</b> = | 33.6         | (77) |
| Southwest <sub>0.9x</sub> 0.77         | x | 1.27       | x | 36.79            | ] | 0.55           | x | 0.7            | j =        | 12.47        | (79) |
| Southwest <sub>0.9x</sub> 0.77         | x | 2.7        | x | 36.79            |   | 0.55           | x | 0.7            | j =        | 26.51        | (79) |
| Southwest <sub>0.9x</sub> 0.77         | x | 2.22       | x | 36.79            |   | 0.55           | x | 0.7            | =          | 21.79        | (79) |

| Southwest <sub>0.9x</sub> |      | 1 .,     | 0.70 | 1      | 00.70  |      | ., | 0.7 | 1 =        | 07.00 | 7(70) |
|---------------------------|------|----------|------|--------|--------|------|----|-----|------------|-------|-------|
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X      | 36.79  | 0.55 | X  | 0.7 | ]<br>1     | 27.29 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | X      | 62.67  | 0.55 | X  | 0.7 | ] =<br>1   | 21.24 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | ] X<br>] | 2.7  | X<br>  | 62.67  | 0.55 | X  | 0.7 | ] =<br>1 _ | 45.15 | (79)  |
| <u> </u>                  | 0.77 | X        | 2.22 | X<br>I | 62.67  | 0.55 | X  | 0.7 | ] =<br>1   | 37.12 | (79)  |
| Southwesters              | 0.77 | X        | 2.78 | X      | 62.67  | 0.55 | X  | 0.7 | ] =<br>1   | 46.49 | (79)  |
| Southwesto.9x             | 0.77 | X        | 1.27 | X      | 85.75  | 0.55 | X  | 0.7 | ] =<br>1   | 29.06 | (79)  |
| Southwesto.9x             | 0.77 | X        | 2.7  | X      | 85.75  | 0.55 | X  | 0.7 | ] =<br>1   | 61.77 | (79)  |
| Southwesto.9x             | 0.77 | X        | 2.22 | X      | 85.75  | 0.55 | X  | 0.7 | ] =<br>1   | 50.79 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X      | 85.75  | 0.55 | X  | 0.7 | ] =<br>1   | 63.6  | (79)  |
| Southwesto.9x             | 0.77 | X        | 1.27 | X      | 106.25 | 0.55 | X  | 0.7 | ] =<br>1   | 36    | (79)  |
| Southwesto.9x             | 0.77 | X        | 2.7  | X      | 106.25 | 0.55 | X  | 0.7 | ] =<br>1   | 76.54 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | X      | 106.25 | 0.55 | X  | 0.7 | ] =<br>1   | 62.93 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X      | 106.25 | 0.55 | X  | 0.7 | ] =<br>1   | 78.81 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | X      | 119.01 | 0.55 | X  | 0.7 | ] =        | 40.33 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.7  | X      | 119.01 | 0.55 | X  | 0.7 | ] =        | 85.73 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | X      | 119.01 | 0.55 | X  | 0.7 | =          | 70.49 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X      | 119.01 | 0.55 | X  | 0.7 | =          | 88.27 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | X      | 118.15 | 0.55 | X  | 0.7 | ] =        | 40.03 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.7  | X      | 118.15 | 0.55 | X  | 0.7 | ] <b>=</b> | 85.11 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | X      | 118.15 | 0.55 | X  | 0.7 | <u> </u>   | 69.98 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X      | 118.15 | 0.55 | X  | 0.7 | =          | 87.63 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | X      | 113.91 | 0.55 | X  | 0.7 | =          | 38.6  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.7  | x      | 113.91 | 0.55 | X  | 0.7 | _ =        | 82.06 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | x      | 113.91 | 0.55 | X  | 0.7 | =          | 67.47 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X      | 113.91 | 0.55 | X  | 0.7 | =          | 84.49 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | x      | 104.39 | 0.55 | X  | 0.7 | =          | 35.37 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.7  | x      | 104.39 | 0.55 | X  | 0.7 | =          | 75.2  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | X      | 104.39 | 0.55 | X  | 0.7 | =          | 61.83 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | x      | 104.39 | 0.55 | X  | 0.7 | =          | 77.43 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | X      | 92.85  | 0.55 | X  | 0.7 | =          | 31.46 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.7  | X      | 92.85  | 0.55 | X  | 0.7 | =          | 66.89 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.22 | X      | 92.85  | 0.55 | X  | 0.7 | =          | 55    | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | X      | 92.85  | 0.55 | X  | 0.7 | =          | 68.87 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | x      | 69.27  | 0.55 | X  | 0.7 | =          | 23.47 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.7  | x      | 69.27  | 0.55 | X  | 0.7 | =          | 49.9  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.22 | x      | 69.27  | 0.55 | x  | 0.7 | ] =        | 41.03 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 2.78 | x      | 69.27  | 0.55 | x  | 0.7 | ] =        | 51.38 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X        | 1.27 | x      | 44.07  | 0.55 | X  | 0.7 | =          | 14.93 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.7  | x      | 44.07  | 0.55 | x  | 0.7 | ] =        | 31.75 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.22 | x      | 44.07  | 0.55 | x  | 0.7 | =          | 26.1  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x        | 2.78 | x      | 44.07  | 0.55 | x  | 0.7 | ] <b>=</b> | 32.69 | (79)  |
| _                         |      |          |      |        |        |      | ,  |     |            |       | _     |

| Southwes                                                                                                                                       | st <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                                                                                                                  | 7                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.49                                                                                                              | ]                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | x                                                                  | 0.7                                                     |                                   | =   | 10.67 | (79)                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|-----|-------|------------------------------------------------------|
| Southwes                                                                                                                                       | st <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7                                                                                                                  | 7                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.49                                                                                                              | ]                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | x                                                                  | 0.7                                                     |                                   | =   | 22.68 | (79)                                                 |
| Southwes                                                                                                                                       | st <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2                                                                                                                  | 2                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.49                                                                                                              | ]                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | x                                                                  | 0.7                                                     |                                   | =   | 18.65 | (79)                                                 |
| Southwes                                                                                                                                       | st <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7                                                                                                                  | 8                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.49                                                                                                              | ]                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | x                                                                  | 0.7                                                     |                                   | =   | 23.36 | (79)                                                 |
| Rooflights                                                                                                                                     | 3 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | x                                                                  | 0.8                                                     |                                   | =   | 10.81 | (82)                                                 |
| Rooflights                                                                                                                                     | 3 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                    | ┌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | x                                                                  | 0.8                                                     |                                   | =   | 22.45 | (82)                                                 |
| Rooflights                                                                                                                                     | 3 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                  | 0.8                                                     |                                   | =   | 39.92 | (82)                                                 |
| Rooflights                                                                                                                                     | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                    | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | T x                                                                | 0.8                                                     |                                   | =   | 62.37 | (82)                                                 |
| Rooflights                                                                                                                                     | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | x                                                                  | 0.8                                                     |                                   | =   | 79.83 | (82)                                                 |
| Rooflights                                                                                                                                     | 3 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                               | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | T x                                                                | 0.8                                                     |                                   | =   | 83.16 | (82)                                                 |
| Rooflights                                                                                                                                     | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                  | 0.8                                                     |                                   | =   | 78.59 | (82)                                                 |
| Rooflights                                                                                                                                     | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | x                                                                  | 0.8                                                     |                                   | =   | 65.28 | (82)                                                 |
| Rooflights                                                                                                                                     | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | Īx                                                                 | 0.8                                                     |                                   | =   | 47.82 | (82)                                                 |
| Rooflights                                                                                                                                     | 3 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                  | 0.8                                                     |                                   | =   | 27.44 | (82)                                                 |
| Rooflights                                                                                                                                     | 3 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                           | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                  | 0.8                                                     |                                   | =   | 13.72 | (82)                                                 |
| Rooflights                                                                                                                                     | 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >                                                                                                                           | ┌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                  | 5                                                                                                            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                | x                                                                  | 0                                      | ).55                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                  | 0.8                                                     | 一                                 | =   | 8.73  | (82)                                                 |
|                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                                                         |                                   |     |       |                                                      |
| Solar gai                                                                                                                                      | ins in v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | watts. ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lculate                                                                                                                     | d fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or each                                                                                                              | n mont                                                                                                       | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   | (83)m                                                              | ı = Sum                                | n(74)m                                                                                                                                                                                                                                                                                                                                                                                                                     | .(82)m                                                             |                                                         |                                   |     |       |                                                      |
| <b>—</b>                                                                                                                                       | 165.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 294.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.36                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92.14                                                                                                                | 709.55                                                                                                       | $\neg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 690.06                                                                                                            | 599                                                                | .75 4                                  | 189.39                                                                                                                                                                                                                                                                                                                                                                                                                     | 334.09                                                             | 200.09                                                  | 139                               | .67 |       | (83)                                                 |
| Total gai                                                                                                                                      | ns – ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nternal a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd sola                                                                                                                     | ır (8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34)m =                                                                                                               | (73)m                                                                                                        | 1 + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83)m ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | watts                                                                                                             |                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | _!                                                      |                                   |     | •     |                                                      |
| (84)m= 5                                                                                                                                       | 77.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 704.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 832.63                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68.56                                                                                                                | 1064.8                                                                                                       | 3 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1011.61                                                                                                           | 927                                                                | .09 8                                  | 827.4                                                                                                                                                                                                                                                                                                                                                                                                                      | 693.14                                                             | 583.35                                                  | 541                               | .05 |       | (84)                                                 |
| (84)m= 577.24 704.3 832.63 968.56 1064.83 1059.16 1011.61 927.09 827.4 693.14 583.35 541.05 (84)                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                                                         |                                   |     |       |                                                      |
| 7. Mear                                                                                                                                        | n interr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nal temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erature                                                                                                                     | (he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eating                                                                                                               | seaso                                                                                                        | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   | <u> </u>                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                                                         |                                   |     |       |                                                      |
|                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nal temp<br>during h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŭ                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rom Tal                                                                                                           | ole 9                                                              | . Th1 (                                | (°C)                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                         |                                   |     | 21    | (85)                                                 |
| Temper                                                                                                                                         | rature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | during h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating                                                                                                                      | peri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iods in                                                                                                              | the liv                                                                                                      | /ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   | ole 9                                                              | , Th1 (                                | (°C)                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                         |                                   |     | 21    | (85)                                                 |
| Temper                                                                                                                                         | rature<br>on fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | during h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating<br>ains for                                                                                                          | peri<br>livii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iods in                                                                                                              | the liva, h1,i                                                                                               | ving<br>m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ee Tal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ole 9a)                                                                                                           |                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            | Oct                                                                | Nov                                                     | D                                 | ec  | 21    | (85)                                                 |
| Temper<br>Utilisatio                                                                                                                           | rature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | during h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating                                                                                                                      | peri<br>livii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iods in                                                                                                              | the liv                                                                                                      | ring<br>m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                    | ug                                     | (°C) Sep 0.65                                                                                                                                                                                                                                                                                                                                                                                                              | Oct                                                                | Nov<br>0.99                                             | D(                                | ec  | 21    | (85)                                                 |
| Temper<br>Utilisatio                                                                                                                           | rature<br>on fac<br>Jan<br><sub>0.99</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | during h<br>tor for ga<br>Feb<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eating<br>ains for<br>Mar<br>0.95                                                                                           | peri<br>livii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iods in<br>ng are<br>Apr                                                                                             | the live<br>a, h1,i<br>May                                                                                   | ving<br>m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ee Tal<br>Jun<br><sup>0.48</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jul<br>0.35                                                                                                       | A<br>0.                                                            | ug 4                                   | Sep 0.65                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | +                                                       | ╁                                 |     | 21    |                                                      |
| Temper Utilisatio                                                                                                                              | rature<br>on fac<br>Jan<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | during h<br>tor for ga<br>Feb<br>0.98<br>tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eating<br>ains for<br>Mar<br>0.95<br>ature in                                                                               | peri<br>livii<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iods in<br>ng are<br>Apr<br>0.85                                                                                     | the live<br>a, h1,i<br>May<br>0.68                                                                           | ring<br>m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ee Tal<br>Jun<br>0.48<br>w ster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ole 9a)  Jul  0.35  os 3 to 7                                                                                     | A<br>0.7                                                           | ug<br>4<br>able 9                      | Sep 0.65 Pc)                                                                                                                                                                                                                                                                                                                                                                                                               | 0.91                                                               | 0.99                                                    | 1                                 |     | 21    | (86)                                                 |
| Temper Utilisatio                                                                                                                              | rature<br>on fac<br>Jan<br><sub>0.99</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | during h<br>tor for ga<br>Feb<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eating<br>ains for<br>Mar<br>0.95                                                                                           | peri<br>livii<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iods in<br>ng are<br>Apr                                                                                             | the live<br>a, h1,i<br>May                                                                                   | ring<br>m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ee Tal<br>Jun<br><sup>0.48</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jul<br>0.35                                                                                                       | A<br>0.                                                            | ug<br>4<br>able 9                      | Sep 0.65                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | 0.99                                                    | ╁                                 |     | 21    |                                                      |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper                                                                                               | rature on fac Jan 0.99 nternal 19.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | during h<br>tor for ga<br>Feb<br>0.98<br>tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eating ains for Mar 0.95 ature in                                                                                           | peri<br>livii<br>livi<br>livi<br>peri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng are Apr 0.85 ing are 20.79                                                                                        | o the lives, h1,1<br>May<br>0.68<br>ea T1 (                                                                  | ring (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ee Tal Jun 0.48  www.ster 20.99  velling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ole 9a)  Jul  0.35  os 3 to 7  21  from Ta                                                                        | 0.7 in T                                                           | ug 4<br>able 9                         | Sep<br>0.65<br>9c)<br>20.97                                                                                                                                                                                                                                                                                                                                                                                                | 0.91                                                               | 0.99                                                    | 1                                 |     | 21    | (86)                                                 |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper                                                                                               | on fac<br>Jan<br>0.99<br>nternal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | during h<br>tor for ga<br>Feb<br>0.98<br>tempera<br>20.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eating ains for Mar 0.95 ature in                                                                                           | peri<br>livii<br>livi<br>livi<br>peri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng are Apr 0.85 ing are                                                                                              | o the lives, h1,1<br>May<br>0.68<br>ea T1 (                                                                  | ring (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jun<br>0.48<br>w ster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ole 9a)  Jul  0.35  os 3 to 7                                                                                     | 0.7 in T                                                           | ug 4  fable 9  1 2  9, Th2             | Sep<br>0.65<br>9c)<br>20.97                                                                                                                                                                                                                                                                                                                                                                                                | 0.91                                                               | 0.99                                                    | 1                                 | 93  | 21    | (86)                                                 |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=                                                                                        | rature on fac Jan 0.99 nternal 19.96 rature 19.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | during h<br>tor for ga<br>Feb<br>0.98<br>tempera<br>20.18<br>during h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eating ains for Mar 0.95 ature in 20.48 eating                                                                              | peri<br>livii<br>livii<br>peri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iods in ng are Apr 0.85 ing are 20.79 iods in                                                                        | n the lives, h1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1                                                          | ring m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun 0.48 w step 0.99 velling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jul<br>0.35<br>os 3 to 7<br>21<br>from Ta<br>20.02                                                                | A 0.7 in T 2 able 9 20.                                            | ug 4  fable 9  1 2  9, Th2             | Sep 0.65 Pc) 20.97 (°C)                                                                                                                                                                                                                                                                                                                                                                                                    | 20.72                                                              | 0.99                                                    | 19.9                              | 93  | 21    | (86)                                                 |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisatio                                                                            | rature on fac Jan 0.99 nternal 19.96 rature 19.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | during h<br>for for ga<br>Feb<br>0.98<br>tempera<br>20.18<br>during h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eating ains for Mar 0.95 ature in 20.48 eating                                                                              | peri<br>livii<br>livii<br>2<br>peri<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iods in ng are Apr 0.85 ing are 20.79 iods in                                                                        | n the lives, h1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1                                                          | ving m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun 0.48 w step 0.99 velling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jul<br>0.35<br>os 3 to 7<br>21<br>from Ta<br>20.02                                                                | A 0.7 in T 2 able 9 20.                                            | ug 4 Fable 9 1 2 9, Th2                | Sep 0.65 Pc) 20.97 (°C)                                                                                                                                                                                                                                                                                                                                                                                                    | 20.72                                                              | 0.99                                                    | 19.9                              | 93  | 21    | (86)                                                 |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisatio (89)m=                                                                     | on factors Jan 0.99 nternal 19.96 rature 19.99 on factors 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | during h tor for ga Feb 0.98 tempera 20.18 during h 19.99 tor for ga 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94                                                             | peri livi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 st of dv 0.81                                                    | the livea, h1,1 May 0.68 ea T1 ( 20.95 rest c 20.01 welling 0.62                                             | ring m (s follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun 0.48  www.step 0.99 velling 0.02  m (second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ole 9a)  Jul  0.35  os 3 to 7  21  from Ta  20.02  e Table  0.27                                                  | A 0.7 in T 2 able 9 20. 9a) 0.3                                    | ug 4 Fable 9 1 2 9, Th2 03 2           | Sep 0.65 Pc) 20.97 20.02 0.57                                                                                                                                                                                                                                                                                                                                                                                              | 0.91<br>20.72<br>20.01<br>0.88                                     | 20.28                                                   | 19.9                              | 93  | 21    | (86)<br>(87)<br>(88)                                 |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisatio (89)m=  Mean ir                                                            | on factors Jan 0.99 nternal 19.96 rature 19.99 on factors 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | during h tor for ga Feb 0.98 tempera 20.18 during h 19.99 tor for ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94                                                             | peri livii livii peri 2 res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 st of dv 0.81                                                    | the livea, h1,1 May 0.68 ea T1 ( 20.95 rest c 20.01 welling 0.62                                             | ring m (s / s / s / s / s / s / s / s / s / s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun 0.48  www.step 0.99 velling 0.02  m (second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ole 9a)  Jul  0.35  os 3 to 7  21  from Ta  20.02  e Table  0.27                                                  | A 0.7 in T 2 able 9 20. 9a) 0.3                                    | ug   4   4   4   4   4   4   4   4   4 | Sep 0.65 Pc) 20.97 20.02 0.57                                                                                                                                                                                                                                                                                                                                                                                              | 0.91<br>20.72<br>20.01<br>0.88                                     | 20.28                                                   | 19.9                              | 93  | 21    | (86)<br>(87)<br>(88)                                 |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisatio (89)m=  Mean ir                                                            | nature on fac Jan 0.99 nternal 19.96 rature 19.99 on fac 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | during h tor for ga Feb 0.98 tempera 20.18 during h 19.99 tor for ga 0.98 tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94 ature in                                                    | peri livii livii peri 2 res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 st of dv 0.81 e rest of                                          | the lives, h1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1                                                            | ring m (s / s / s / s / s / s / s / s / s / s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ee Tal Jun 0.48 w step 20.99 velling 20.02 m (see 0.41 T2 (fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jul<br>0.35<br>0.35<br>0.35<br>0.35<br>0.37<br>21<br>from Ta<br>20.02<br>e Table<br>0.27<br>ollow ste             | A 0 7 in T 2 20 9a) 0.3                                            | ug   4   4   4   4   4   4   4   4   4 | Sep   0.65   9c)   20.97   2 (°C)   20.02   0.57   n Table   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   1   20   20 | 0.91<br>20.72<br>20.01<br>0.88<br>90)<br>19.72                     | 20.28                                                   | 19.9                              | 93  | 21    | (86)<br>(87)<br>(88)<br>(89)                         |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisatio (89)m=  Mean ir (90)m=                                                     | rature on fac Jan 0.99 nternal 19.96 rature 19.99 on fac 0.99 nternal 18.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | during h tor for ga Feb 0.98 tempera 20.18 during h 19.99 tor for ga 0.98 tempera 18.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94 ature in 19.36                                              | peri livii 2 2 peri 1 the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 et of dv 0.81 erest of 19.78                                     | the lives, h1,1<br>May<br>0.68<br>ea T1 (<br>20.95<br>rest of<br>20.01<br>welling<br>0.62<br>of dwe<br>19.97 | ring (s (s follows), h2, h2, h2, h2, h2, h2, h2, h2, h2, h2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | yelling<br>0.41<br>T2 (fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jul<br>0.35<br>0.35<br>0.35<br>0.35<br>0.37<br>21<br>from Ta<br>20.02<br>e Table<br>0.27<br>ollow ster<br>20.02   | A 0 7 in T 2 able 9 20 9a) 0.3                                     | ug   4   4   4   4   4   4   4   4   4 | Sep 0.65 20.97 20.97 20.02 0.57 n Table 20 ft                                                                                                                                                                                                                                                                                                                                                                              | 0.91<br>20.72<br>20.01<br>0.88<br>90)<br>19.72                     | 20.28<br>20.01<br>0.98                                  | 19.9                              | 93  |       | (86)<br>(87)<br>(88)<br>(89)                         |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisatio (89)m=  Mean ir (90)m=                                                     | on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors on factors  | during h tor for ga Feb 0.98 tempera 20.18 during h 19.99 tor for ga 0.98 tempera 18.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94 ature in 19.36                                              | periliviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii liviii livii | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 st of dv 0.81 e rest of 19.78 he who                             | the lives, h1,1 May 0.68 ea T1 (20.95 a rest of 20.01 evelling 0.62 of dwe 19.97 ole dw                      | ving m (s / l / l / l / l / l / l / l / l / l /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee Tal  Jun  0.48  w step  0.99  velling  0.02  m (sec  0.41  T2 (fc  0.02  g) = fL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jul<br>0.35<br>DS 3 to 7<br>21<br>from Ta<br>20.02<br>e Table<br>0.27<br>ollow ste<br>20.02                       | A O.7 in T 2 20. 20. 20. 4 + (1                                    | ug   4   4   4   4   4   4   4   4   4 | Sep   0.65   9c)   20.97     (°C)   20.02                                                                                                                                                                                                                                                                                                                                                                                  | 0.91  20.72  20.01  0.88  90)  19.72  A = Liv                      | 0.99<br>20.28<br>20.01<br>0.98<br>19.1<br>ring area ÷ ( | 19.9                              | 993 |       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| Temper Utilisation (86)m=  Mean in (87)m=  Temper (88)m=  Utilisation (89)m=  Mean in (90)m=  Mean in (90)m=                                   | rature on fac Jan 0.99 Internal 19.96 rature 19.99 on fac 0.99 Internal 18.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | during heter for gase of temperature of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second  | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94 ature in 19.36 ature (f                                     | peri livii livii peri livii peri livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii liv | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 erest of dv 19.78 he who 20.14                                   | the lives, h1,1 May 0.68 ea T1 (20.95 carest care) conditions of dwe 19.97 cole dw 20.31                     | ving m (s ving follows) follows 2 contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract the contract t | ee Tal Jun 0.48  w step 20.99  velling 20.02  m (see 0.41  T2 (foe 20.02  g) = fL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dile 9a)  Jul  0.35  DIS 3 to 7  21  from Ta  20.02  Table  0.27  Dillow ste  20.02  A × T1  20.37                | A 0.0 o.1 o.1 o.1 o.1 o.1 o.1 o.1 o.1 o.1 o.1                      | ug   4   4   4   4   4   4   4   4   4 | Sep 0.65   9c)   20.97   1 (°C)   20.02   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                | 0.91 20.72 20.01 0.88 9c) 19.72 A = Liv                            | 0.99  20.28  20.01  0.98  19.1  ing area ÷ (            | 19.9                              | 993 |       | (86)<br>(87)<br>(88)<br>(89)                         |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisatio (89)m=  Mean ir (90)m=  Mean ir (92)m=  Apply a                            | on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on factorial dijustment on fac | during h tor for ga Feb 0.98 tempera 20.18 during h 19.99 tor for ga 0.98 tempera 18.94 tempera 19.38 nent to th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94 ature in 19.36 ature (f                                     | peri livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii l | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 st of dv 0.81 e rest of 19.78 he who 20.14 internal              | the lives, h1,1 May 0.68 Part 1 ( 20.95 1 rest 0 20.01 Welling 0.62 19.97 Ole dwe 20.31 tempe                | ring (s) follo z follo z f dw z llling z ellin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ee Tal  Jun  0.48  w step 20.99  velling 20.02  m (sep 0.41  T2 (for 20.02  g) = fL 20.37  ure from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jul 0.35  DS 3 to 7  21  from Ta 20.02  e Table 0.27  ollow ste 20.02  A × T1 20.37  m Table                      | A  O:  in T  2  able (  20.  9a)  0.3  eps 3  20.  + (1  20.  44e, | ug   4   4   4   4   4   4   4   4   4 | Sep   0.65   9c)   20.97     (°C)   20.02                                                                                                                                                                                                                                                                                                                                                                                  | 0.91  20.72  20.01  0.88  90)  19.72  A = Liv                      | 0.99  20.28  20.01  0.98  19.1  ring area ÷ (           | 19.9                              | 93  |       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| Temper Utilisation (86)m=  Mean in (87)m=  Temper (88)m=  Utilisation (89)m=  Mean in (90)m=  Mean in (90)m=  Apply an (93)m=                  | rature on fac Jan 0.99 Internal 19.96 rature 19.99 on fac 0.99 Internal 18.63 Internal 19.1 djustm 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | during h tor for ga Feb 0.98 tempera 20.18 during h 19.99 tor for ga 0.98 tempera 18.94 tempera 19.38 nent to th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94 ature in 19.36 ature (f 19.76 ne mea 19.76                  | peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii peri livii  | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 erest of dv 19.78 he who 20.14                                   | the lives, h1,1 May 0.68 ea T1 (20.95 carest care) conditions of dwe 19.97 cole dw 20.31                     | ring (s) follo z follo z f dw z llling z ellin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ee Tal Jun 0.48  w step 20.99  velling 20.02  m (see 0.41  T2 (foe 20.02  g) = fL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dile 9a)  Jul  0.35  DIS 3 to 7  21  from Ta  20.02  Table  0.27  Dillow ste  20.02  A × T1  20.37                | A 0.0 o.1 o.1 o.1 o.1 o.1 o.1 o.1 o.1 o.1 o.1                      | ug   4   4   4   4   4   4   4   4   4 | Sep 0.65   9c)   20.97   1 (°C)   20.02   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                | 0.91 20.72 20.01 0.88 9c) 19.72 A = Liv                            | 0.99  20.28  20.01  0.98  19.1  ring area ÷ (           | 19.9                              | 93  |       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisatio (89)m=  Mean ir (90)m=  Mean ir (92)m=  Apply a (93)m=  8. Space           | on factorial of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | during heter for garage of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperatu | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94 ature in 19.36 ature (f 19.76 ne mea 19.76 uiremer          | peri livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii livii l | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 st of dv 0.81 e rest of 19.78 he who 20.14 internal 20.14        | the lives, h1,1 May 0.68 ea T1 (20.95 rest of 20.01 welling 0.62 of dwe 19.97 ole dw 20.31 tempe 20.31       | ring m (s / l / l / l / l / l / l / l / l / l /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee Tal<br>Jun   0.48   0.48   0.48   0.49   0.49   0.02   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0. | ole 9a)  Jul  0.35  os 3 to 7  21  from Ta  20.02  e Table  0.27  ollow ste  20.02  A × T1  20.37  m Table  20.37 | A O. 7 in T 2 able 9 20. 9a) 0.3 20. + (1 20. 44e, 20.             | ug   4   4   4   4   4   4   4   4   4 | Sep   0.65   9c)   20.97     (°C)   20.02                                                                                                                                                                                                                                                                                                                                                                                  | 0.91  20.72  20.01  0.88  9c)  19.72  A = Liv  20.07  priate 20.07 | 0.99  20.28  20.01  0.98  19.1  ing area ÷ (  19.52     | 19.9<br>20<br>0.9<br>18.9<br>4) = | 93  | 0.35  | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| Temper Utilisatio (86)m=  Mean ir (87)m=  Temper (88)m=  Utilisatio (89)m=  Mean ir (90)m=  Mean ir (92)m=  Apply a (93)m=  8. Space Set Ti to | on factors  Jan  0.99  nternal  19.99  on factors  0.99  nternal  18.63  nternal  19.1  djustm  19.1  ce head  o the residuation the residuation of the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation the residuation that residuation the residuation that residuation the residuation that residuation the residuation that residuation the residuation that residuation the residuation that residuation the residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation that residuation  | during heter for garage of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperatu | eating ains for Mar 0.95 ature in 20.48 eating 20 ains for 0.94 ature in 19.36 ature (f 19.76 ne mea 19.76 diremer ernal te | periliviii liviii perilivii 2 res 1 the 1 1 2 ttemp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iods in ng are Apr 0.85 ing are 20.79 iods in 20.01 st of dv 0.81 e rest of 19.78 he who 20.14 aternal 20.14 oeratur | the lives, h1,1 May 0.68 ea T1 (20.95) rest of 20.01 welling 0.62 of dwe 19.97 ole dw 20.31 temper 20.31     | ring m (s / l / l / l / l / l / l / l / l / l /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ee Tal<br>Jun   0.48   0.48   0.48   0.49   0.49   0.02   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0. | ole 9a)  Jul  0.35  os 3 to 7  21  from Ta  20.02  e Table  0.27  ollow ste  20.02  A × T1  20.37  m Table  20.37 | A O. 7 in T 2 able 9 20. 9a) 0.3 20. + (1 20. 44e, 20.             | ug   4   4   4   4   4   4   4   4   4 | Sep   0.65   9c)   20.97     (°C)   20.02                                                                                                                                                                                                                                                                                                                                                                                  | 0.91  20.72  20.01  0.88  9c)  19.72  A = Liv  20.07  priate 20.07 | 0.99  20.28  20.01  0.98  19.1  ring area ÷ (           | 19.9<br>20<br>0.9<br>18.9<br>4) = | 93  | 0.35  | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Mar

Jan

Feb

| Litilization factor for gains, hm:                                                                                                                          |                                       |               |             |             |          |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|-------------|-------------|----------|--------|
| Utilisation factor for gains, hm:  (94)m= 0.99 0.97 0.93 0.82 0.63 0.44 0.3                                                                                 | 0.34 0.59                             | 0.88          | 0.98        | 0.99        |          | (94)   |
| Useful gains, hmGm , W = (94)m x (84)m                                                                                                                      |                                       |               | 1           |             |          | ` '    |
|                                                                                                                                                             | 319.04 491.6                          | 3 612.57      | 569.72      | 536.86      |          | (95)   |
| Monthly average external temperature from Table 8                                                                                                           | · · · · · · · · · · · · · · · · · · · |               | •           |             |          |        |
| (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6                                                                                                                       | 16.4 14.1                             | 10.6          | 7.1         | 4.2         |          | (96)   |
| Heat loss rate for mean internal temperature, Lm , W = $[(39)$ m x $(97)$ m = $1240.2$ $1209.93$ $1104.51$ $923.15$ $705.65$ $465.57$ $304.45$              | [(93)m- (96)<br>319.76 506.9          | -ī            | 1023.21     | 1221.00     |          | (97)   |
| (97)m=   1240.2   1209.93   1104.51   923.15   705.65   465.57   304.45   Space heating requirement for each month, kWh/month = 0.024                       |                                       |               |             | 1231.09     |          | (91)   |
| (98)m= 497.7 352.23 244.87 93.42 22 0 0                                                                                                                     | 0 0                                   | 121.67        | 326.52      | 516.51      |          |        |
|                                                                                                                                                             | Total per ye                          | ar (kWh/yea   | r) = Sum(9  | 8)15,912 =  | 2174.92  | (98)   |
| Space heating requirement in kWh/m²/year                                                                                                                    |                                       |               |             | Ì           | 28.85    | (99)   |
| 9b. Energy requirements – Community heating scheme                                                                                                          |                                       |               |             | _           |          |        |
| This part is used for space heating, space cooling or water heating.                                                                                        | • .                                   | •             | unity sch   | neme.       |          | 7(204) |
| Fraction of space heat from secondary/supplementary heating (T                                                                                              | rable II) U II                        | none          |             | Ĺ           | 0        | (301)  |
| Fraction of space heat from community system 1 – (301) =                                                                                                    |                                       |               |             | L           | 1        | (302)  |
| The community scheme may obtain heat from several sources. The procedure as includes boilers, heat pumps, geothermal and waste heat from power stations. So |                                       | nd up to four | other heat  | sources; th | e latter | _      |
| Fraction of heat from Community heat pump                                                                                                                   |                                       |               |             | L           | 1        | (303a) |
| Fraction of heat from Community heat pump (Water)                                                                                                           |                                       |               |             |             | 0.7      | (303a) |
| Fraction of community heat from heat source 2 (Water)                                                                                                       |                                       |               |             | [           | 0.3      | (303b) |
| Fraction of total space heat from Community heat pump                                                                                                       |                                       | (3            | 302) x (303 | sa) =       | 1        | (304a) |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                             | nity heating s                        | ystem         |             | [           | 1        | (305)  |
| Distribution loss factor (Table 12c) for community heating system                                                                                           | n                                     |               |             |             | 1.05     | (306)  |
| Distribution loss factor (Table 12c) for community heating system                                                                                           | n (Water)                             |               |             |             | 1.05     | (306)  |
| Space heating                                                                                                                                               |                                       |               |             | _           | kWh/yea  |        |
| Annual space heating requirement                                                                                                                            |                                       |               |             |             | 2174.92  |        |
| Space heat from Community heat pump                                                                                                                         | (98) x                                | (304a) x (30  | 5) x (306)  | = [         | 2283.66  | (307a) |
| Efficiency of secondary/supplementary heating system in % (from                                                                                             | n Table 4a or                         | Appendix      | (E)         | [           | 0        | (308   |
| Space heating requirement from secondary/supplementary systematics                                                                                          | em (98) x                             | (301) x 100   | ÷ (308) =   | [           | 0        | (309)  |
| Water heating                                                                                                                                               |                                       |               |             | _           |          | _      |
| Annual water heating requirement                                                                                                                            |                                       |               |             | L           | 2074.48  |        |
| If DHW from community scheme: Water heat from CHP (Water)                                                                                                   | (64) x                                | (303a) x (30  | 5) x (306)  | = [         | 1524.75  | (310a) |
| Water heat from heat source 2 (Water)                                                                                                                       | (64) x                                | (303a) x (30  | 5) x (306)  | = [         | 653.46   | (310b) |
| Electricity used for heat distribution                                                                                                                      | 0.01 × [(307                          | a)(307e) ·    | + (310a)(   | (310e)] =   | 22.84    | (313)  |
| Electricity used for heat distribution (Water)                                                                                                              | 0.01 × [(307                          | a)(307e)      | + (310a)(   | (310e)] =   | 21.78    | (313)  |
| Cooling System Energy Efficiency Ratio                                                                                                                      |                                       |               |             | Ţ           | 0        | (314)  |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                                                          | = (107                                | () ÷ (314) =  |             | [           | 0        | (315)  |
|                                                                                                                                                             |                                       |               |             |             |          |        |

| Electricity for pumps and fans within dwelling (                             | Table 4f)·                                                        |                               |                          |        |
|------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|--------------------------|--------|
| mechanical ventilation - balanced, extract or p                              | •                                                                 |                               | 186.28                   | (330a) |
| warm air heating system fans                                                 |                                                                   |                               | 0                        | (330b) |
| pump for solar water heating                                                 |                                                                   |                               | 0                        | (330g) |
| Total electricity for the above, kWh/year                                    | =(330a) + (330                                                    | 0b) + (330g) =                | 186.28                   | (331)  |
| Energy for lighting (calculated in Appendix L)                               |                                                                   |                               | 329.94                   | (332)  |
| Electricity generated by PVs (Appendix M) (ne                                | gative quantity)                                                  |                               | -684.44                  | (333)  |
| Electricity generated by wind turbine (Appendi                               | x M) (negative quantity)                                          |                               | 0                        | (334)  |
| 12b. CO2 Emissions – Community heating sch                                   | neme                                                              |                               |                          |        |
|                                                                              | Energy<br>kWh/year                                                | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/year |        |
| CO2 from other sources of space and water he Efficiency of heat source 1 (%) | eating (not CHP) If there is CHP using two fuels repeat (363) to  | o (366) for the second fue    | 300                      | (367a) |
| CO2 associated with heat source 1                                            | [(307b)+(310b)] x 100 ÷ (367b) x                                  | 0.52                          | 395.07                   | (367)  |
| Electrical energy for heat distribution                                      | [(313) x                                                          | 0.52                          | 11.85                    | (372)  |
| Water heating from separate community syste                                  | m                                                                 |                               |                          |        |
| CO2 from other sources of space and water I Efficiency of heat source 1 (%)  | neating (not CHP) If there is CHP using two fuels repeat (363) to | o (366) for the second fue    | 300                      | (367a) |
| Efficiency of heat source 2 (%)                                              | If there is CHP using two fuels repeat (363) to                   | (366) for the second fue      | 100                      | (367b) |
| CO2 associated with heat source 1                                            | [(307b)+(310b)] x 100 ÷ (367b) x                                  | 0                             | 263.78                   | (367)  |
| CO2 associated with heat source 2                                            | [(307b)+(310b)] x 100 ÷ (367b) x                                  | 0.52                          | 339.15                   | (368)  |
| Electrical energy for heat distribution                                      | [(313) x                                                          | 0.52                          | 11.3                     | (372)  |
| Total CO2 associated with community systems                                  | S (363)(366) + (368)(37                                           | (2)                           | 1021.16                  | (373)  |
| CO2 associated with space heating (secondar                                  | y) (309) x                                                        | 0 :                           | 0                        | (374)  |
| CO2 associated with water from immersion he                                  | ater or instantaneous heater (312) x                              | 0.52                          | 0                        | (375)  |
| Total CO2 associated with space and water he                                 | eating (373) + (374) + (375) =                                    |                               | 1021.16                  | (376)  |
| CO2 associated with electricity for pumps and                                | fans within dwelling (331)) x                                     | 0.52                          | 96.68                    | (378)  |
| CO2 associated with electricity for lighting                                 | (332))) x                                                         | 0.52                          | 171.24                   | (379)  |
| Energy saving/generation technologies (333) t                                | o (334) as applicable                                             | 0.52 x 0.01 =                 | -355.23                  | (380)  |
| Total CO2, kg/year sum of                                                    | (376)(382) =                                                      | -                             | 933.85                   | (383)  |
| Dwelling CO2 Emission Rate (383)                                             | - (4) =                                                           |                               | 12.39                    | (384)  |
| El rating (section 14)                                                       |                                                                   |                               | 89.61                    | (385)  |